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Classical phase transitions occur when a physical system reaches
a state below a critical temperature characterized by macroscopic
order'. Quantum phase transitions occur at absolute zero; they
are induced by the change of an external parameter or coupling
constant’, and are driven by quantum fluctuations. Examples
include transitions in quantum Hall systems>, localization in Si-
MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and
the superconductor—insulator transition in two-dimensional
systems™’. Both classical and quantum critical points are gov-
erned by a diverging correlation length, although quantum
systems possess additional correlations that do not have a
classical counterpart. This phenomenon, known as entangle-
ment, is the resource that enables quantum computation and
communication®. The role of entanglement at a phase transition
is not captured by statistical mechanics—a complete classifi-
cation of the critical many-body state requires the introduction
of concepts from quantum information theory’. Here we connect
the theory of critical phenomena with quantum information by
exploring the entangling resources of a system close to its
quantum critical point. We demonstrate, for a class of one-
dimensional magnetic systems, that entanglement shows scaling
behaviour in the vicinity of the transition point.

There are various questions that emerge in the study of this
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Figure 1 The change in the ground-state wavefunction in the critical region is analysed
considering dC(1)/dA as a function of the reduced coupling strength A. The curves
correspond to different lattice sizes N = 11, 41, 101, 251, 401, oo. We choose N odd to
avoid the subtleties connected with boundary terms'® On increasing the system size, the
minimum gets more pronounced. Also the position of the minimum changes and tends as
N~"87 (left inset) towards the critical point A ;= 1 where for an infinite system a
logarithmic divergence is present (see equation (3)). The right inset shows the behaviour
of the concurrence C(1) itself for an infinite system. The maximum that occurs below A .
is not related to the critical properties of the Ising model. As explained in the text, it is the
change in the ground state and not the wavefunction itself that is a good indicator of the
transition. The structure of the reduced density matrix, necessary to calculate the
concurrence, follows from the symmetry properties of the hamiltonian. Reality and parity
conservation of Htogether with translational invariance already fix the structure of p to be
real symmetric with py1, P22 = 033 023 P14 44 @S the only non-zero entries.
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problem. Because the ground-state wavefunction undergoes quali-
tative changes at a quantum phase transition, it is important to
understand how its genuine quantum aspects evolve throughout the
transition. Will entanglement between distant subsystems be
extended over macroscopic regions, as correlations are? Will it
carry distinct features of the transition itself and show scaling
behaviour? Answering these questions is important for a deeper
understanding of quantum phase transitions, and also from the
perspective of quantum information theory. So results that bridge
these two areas of research are of great relevance.

We study a set of localized spins coupled through exchange
interaction and subjected to an external magnetic field (we consider
only spin-1/2 particles), a model central both to condensed-matter
and information theory and subject to intense study'’. In the
Heisenberg chain, the maximization of the entanglement at zero
temperature is related to the energy minimization'". It is known that
Werner states'” can be generated in a one dimensional XY model"?,
and that temperature and magnetic field can increase the entangle-
ment of the systems, as shown for the Ising and Heisenberg
models'*'>. Finally, we mention the study of the role of the
entanglement in the density matrix renormalization group flow
and the introduction of entanglement-preserving renormalization
schemes'®. Here we address the problem of the relation between
macroscopic order, classical correlations and quantum correlations.
Therefore we analyse the entanglement near the critical point of the
XY model in a transverse magnetic field. Because of the universality
principle—the critical behaviour depends only on the dimension of
the system and the symmetry of the order parameter—our results
have much broader validity. We find that in the vicinity of a
quantum phase transition the entanglement obeys scaling beha-
viour. On the other hand, this analysis provides a clear distinction
between the role of entanglement and correlations in quantum
systems close to a critical point. (We have been made aware that
similar work to that reported here is being performed by T. Osborne
and M. Nielsen; T. Osborne, personal communication.)

The system under consideration is a spin-1/2 ferromagnetic chain
with an exchange coupling J in a transverse magnetic field of
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Figure 2 The finite size scaling is performed for the case of logarithmic divergences®”
The concurrence, considered as a function of the system size and the coupling constant is
afunction of N A — A ) only, and in the case of logarithmic divergence it behaves as
[dCA)/dNyy — [ACAVAAyp, ~ QNN — A )] — QN (Ao — A )] where A gls
a non-critical value and QX) ~ Qo) In x (for large x). All the data from N = 41 up to
N = 2,701 collapse on a single curve. The critical exponent is » = 1, as expected for the
Ising model. The inset shows the divergence of the value at the minimum as the system
size increases.
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strength h. The hamiltonian is
N N

N
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where o are the Pauli matrices (a = x, y,z) and N is the number of
sites. We assume periodic boundary conditions. It is convenient, for
later purposes, to define a dimensionless coupling constant A = J/
2h. For v = 1 equation (1) reduces to the Ising model, whereas for
v = 0 it is the XY model. For all the interval 0 < y = 1 the models
belong to the Ising universality class and for N = oo they undergo a
quantum phase transition at the critical value A= 1. The magnet-
ization (0™) is different from zero for A > 1 and it vanishes at the
transition. On the contrary the magnetization along the z direction
(0 is different from zero for any value of A. At the phase transition
the correlation length £ divergesas £ ~ [A — A /7" with» = 1 (refs
17 and 18).

We confine our interest to the entanglement between two spins,
of position i and j, in the chain. All the information needed is
contained in the reduced density matrix p(i,j) obtained from the
ground-state wavefunction after all the spins except those at
positions i and j have been traced out. The resulting p(i,j) represents
a mixed state of a bipartite system; a good deal of work has been
devoted to quantifying the entanglement in this case’*™% We use
the concurrence’”between sites i and j, related to the “entanglement
of formation”?’, and defined as

C(i,j) = max{ri(i,j) = r2(, j) = r3(i, j) = r4(3, ), 0} 2
In equation (2), r(i,j) are the square roots of the eigenvalues of the
product matrix R = p(4,7)¢(4,j) in descending order; the spin
flipped matrix is defined as p = 0’ ® 0’p*0” ® ¢”. In the previous
definition, the eigenstates of o {| 1), | | )} should be used. Trans-
lation invariance implies that C(4,j) = C(|i — j|). The concurrence
will be evaluated as a function of the relative position |i — j
between the spins and the distance |A — A.| from the critical
point. The structure of the reduced density matrix is obtained by
exploiting symmetries of the model (see Fig. 1 legend). The non-
zero entries of p can then be related to the various correlation
functions, and the concurrence of the ground state is evaluated
exactly starting from the results in refs 17, 18 and 23.

200 . , . , . , .

|

104 [d?C(1)/dA>~dC(1)?/dA?,

N(}-A,)

Figure 3 As in the case of the nearest-neighbour concurrence, data collapse is also
obtained for the next-nearest-neighbour concurrence C(2). In the figure, data for system
size from N= 41 to N = 401 are plotted. The inset shows a peculiarity of the Ising
model: ((2) has its maximum at the critical point for arbitrary system size (note that the
maximum decreases as the size increases). Therefore we consider the second derivative
to perform the scaling analysis. It can also be seen that C(2) is two orders of magnitude
smaller than C(1). For the smallest system sizes, the concurrence is different from zero for
|i—jl=3and A >1.05 (for N=7; for N = 9 C(3) = 0 for all A). In contrast, the
correlation functions are long-ranged at the critical point.
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First, we look at the Ising model (y = 1). The first question we
consider is the range of the entanglement &g, that is, the maximum
distance between two spins at which the concurrence is different
from zero. The result is surprising: even at the critical point, where
spin—spin correlations extend over a long range (the correlation
length is diverging for an infinite system), the concurrence vanishes
unless the two sites are at most next-nearest neighbours. The truly
non-local quantum part of the two-point correlations is nonetheless
very short-ranged.

In order to quantify the change of the many-body wavefunction
when the system crosses the critical point, we look at the derivatives
of the concurrence as a function of A. In this case we need to
consider only the nearest-neighbour and next-nearest-neighbour
concurrence. We first discuss the behaviour of the nearest-neigh-
bour concurrence. The results for systems of different size (includ-
ing the thermodynamic limit) are presented in Fig. 1. For the
infinite chain 9,C(1) diverges on approaching the critical value as:

% = %lnl)\— Al + const. 3)

Equation (3) quantifies non-local correlations in the critical
region. One aspect of this system, particularly relevant for quantum
information, is the study of the precursors of the critical behaviour
in finite samples. This study is known as finite size scaling®*. In Fig. 1
the derivative of C(1) with respect to A is considered for different
system sizes. As expected, there is no divergence for finite N, but
there are clear anomalies. The position of the minimum A, scales
as Am~ Ac+ N~ "% and its value diverges logarithmically with
increasing system size as:

dC(1)

——~>| =-0.2702In N + const. 4
ul @)

m

According to the scaling ansatz** in the case of logarithmic
singularities, the ratio between the two prefactors of the logarithm
in equations (3) and (4) is the exponent that governs the divergence
of the correlation length ». In this case (8/37 = 0.2702) it follows
that » = 1, as it is known from the solution of the Ising model'”. By
proper scaling”® and taking into account the distance of the
minimum of C(1) from the critical point, it is possible to make
all the data from different N collapse onto a single curve (Fig. 2).
This figure contains the data for the lattice size ranging from N = 41
up to N = 2,701. These results show that all the key ingredients of
the finite size scaling are present in the concurrence. We note that
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Figure 4 The universality hypothesis for the entanglement is checked by considering the
model hamiltonian, defined in equation (1), for a different value of . In this case we chose
~ = 0.5 and Nranging from 41 up to 401. Data collapse, shown here for C(1), is
obtained for v = 1, consistent with the model being in the universally class of the Ising
model. In the inset is shown the divergence at the critical point for the infinite system.

609




letters to nature

finite size scaling is fulfilled over a very broad range of values of N
which are of interest in several protocols in quantum information.

A similar analysis can be carried on for the next-nearest-
neighbour concurrence C(2). Since 9,C(2)[. = 0, the logarithmic
singularity here appears first in the second derivative with
respect to N (see Fig. 3 legend). In the thermodynamic limit
93C(2) = 0.1081In|A — A | + const. In this case also, the data col-
lapse and finite size scaling (Fig. 3) agree with the expected scaling
behaviour, » = 1. This completes the analysis of entanglement for
the one-dimensional Ising model.

A cornerstone of the theory of critical phenomena is the concept
of universality—that is, the critical properties depend only on the
dimensionality of the system and the broken symmetry in the
ordered phase. Universality in the critical properties of entangle-
ment was verified by considering the properties of the family of
models defined in equation (1) with y # 1.

Second, we consider the case for y # 1. The range of entangle-
ment £ g is not universal. The maximum possible distance between
entangled pairs increases and tends to infinity as v tends to zero.
From the asymptotic behaviour of the reduced density matrix'® we
find that £ goes as v~ '. This however has no dramatic conse-
quences; the “total concurrence” Z,C(n) stored in the chain is an
increasing function of y (for 0 <y = 1,0 < X,C(n) < 0.2). More
interesting is the critical behaviour of the concurrence. To be specific
we consider C(1) in the case y = 0.5, shown in Fig. 4. As it was
obtained for the hamiltonian of equation (1), scaling is fulfilled with
the critical exponent » = 1 in agreement with the universality
hypothesis.

The analysis of the ‘resource’ entanglement for a condensed-
matter system close to a quantum critical point allows us to
characterize both quantitatively and qualitatively the change in
the wavefunction of the ground state on passing the phase tran-
sition. A notable feature which emerges is that though the entangle-
ment itself is not an indicator of the phase transition, an intimate
connection exists between entanglement, scaling and universality.
In a way, this analysis allows us to discern what is genuinely
quantum in a zero-temperature phase transition. The results pre-
sented here might be tested by measuring different correlation
functions, for example with neutron scattering, and extracting
from these the entanglement properties of the ground state close
to the critical point".

We finally discuss this work in the context of quantum compu-
tation. First, system sizes considered here (~ 10%) could be those of a
realistic quantum computer. Second, the scaling behaviour found
could be a powerful tool to evaluate (and hence to use) entangle-
ment in systems having different numbers of qubits. In particular,
close to the critical point, the entanglement depends strongly on the
field—so it could be tuned, realizing an ‘entanglement switch’. Last,
long-range correlations, typical of the critical region, might be of
great importance in stabilizing the system against errors due to
imperfections. O
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A change in ‘symmetry’ is often observed when matter undergoes
a phase transition—the symmetry is said to be spontaneously
broken. The transition made by underdoped high-transition-
temperature (high-T.) superconductors is unusual, in that it is
not a mean-field transition as seen in other superconductors.
Rather, there is a region in the phase diagram above the super-
conducting transition temperature 7. (where phase coherence
and superconductivity begin) but below a characteristic tem-
perature T* where a ‘pseudogap’ appears in the spectrum of
electronic excitations"? It is therefore important to establish if
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