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SUMMARY

The linear theory of elasticity formulated in terms of dimensionless strain components
does not allow the introduction of any space scaling except linear relations between
fracture length and displacements and thus the determination theoretically of the
strength of a body or structure directly. Self-similarity of a fracture process means
the existence of a universal faulting mechanism. However, the general applicability of
universal scaling to ®eld observations and rock mechanics measurements remains the
subject of some debate. Complete self-similarity of a fracture process is hardly ever
found experimentally, except in some aluminium alloys. At early stages of the loading,
material degrades due to increasing microcrack concentrations. Later, these microcracks
where distributed in the process zone localize into a subcritically growing macrocrack,
and ®nally the fracture process accelerates and rupture runs away, producing dynamic
fracture. The macroscopic effects of distributed cracking and other types of damage
require treatment by constitutive models that include non-linear stress±strain relations
together with material degradation and recovery. The present model treats two physical
aspects of the brittle rock behaviour: (1) a mechanical aspect, that is, the sensitivity
of the macroscopic elastic moduli to distributed cracks and to the type of loading, and
(2) a kinetic aspect, that is, damage evolution (degradation/recovery of elasticity) in
response to ongoing deformation. To analyse the scaling of a fracture process and the
onset of the dynamic events, we present here the results of numerical modelling of mode I
crack growth. It is shown that the distributed damage and the process zone created
eliminate the stress±strain crack-tip singularities, providing a ®nite rate of quasi-static
crack growth. The growth rate of these cracks ®ts well the experimentally observed
power law, with the subcritical crack index depending on the ratio between the driving
force and the con®ning pressure. The geometry of the process zone around a quasi-static
crack has a self-similar shape identical to that predicted by universal scaling of the linear
fracture mechanics. At a certain stage, controlled by dynamic weakening and approxi-
mated by the reduction of the critical damage level proportional to the rate of a damage
increase, the self-similarity breaks down and crack velocity signi®cantly deviates from
that predicted by the quasi-static regime. The subcritical crack growth index increases
steeply, crack growth accelerates, the size of the process zone decreases, and the rate of
crack growth ceases to be controlled by the rate of damage increase. Furthermore, the
crack speed approaches that predicted by the elastodynamic equation. The model
presented describes transition from quasi-static crack propagation to the dynamic
regime and gives proper time and length scales for the onset of the catastrophic dynamic
process.
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I N T R O D U C T I O N

Some of the fractures or fracture zones in the Earth's crust

were probably created in quasi-static regimes as a result of

the slow propagation and joining of microcracks, while others

formed during earthquakes or in dynamic regimes. Under some

conditions, a quasi-static crack may accelerate, or a fracture

front may run away, producing a dynamic fracture. Although

this may be common in nature, classical fracture mechanics

does not provide a means for determining theoretically the

transition between quasi-static and dynamic regimes. The reason

is that the theory of elasticity is linear and is formulated in
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terms of small strain components. Moreover, these strain com-

ponents are dimensionless and it is therefore not possible to

introduce scaling, except for linear relations between fracture

lengths and displacements (Scholz et al. 1993). Such scaling

is compatible with ®eld observations that suggest the size of

the process zone grows proportionally to the fracture length

(Vermilye & Scholz 1998). Although this observation is in

violation of the premises of the critical stress intensity factor

approach (Rubin 1995a,b), it is decisively documented around

dykes that form by the injection of magma into fractures

(Delaney et al. 1986; Baer 1991; Weinberger et al. 1995; Hoek

1995). However, the general applicability of the universal scaling

remains the subject of some debate. The length of the process

zone around the tip of a propagating fracture, as well as the

fracture energy and toughness, are functions of the specimen or

of the structure size and shape (e.g. Bazant & Kazemi 1990).

Sinclair & Chambers (1987) have reviewed the experimental

evidence of the size effect. Field observations of two populations

of tensile fractures in the Kra¯a ®ssure swarm of northeast

Iceland clearly show the breaking of self-similarity and the non-

universal scaling of fracture length and aperture (Hatton et al.

1994; Renshaw & Park 1997).

Laboratory investigations of fracturing show that this pro-

cess cannot be described in terms of the propagation of a single

crack (e.g. Yukutake 1989; Lockner et al. 1991; Reches &

Lockner 1994). The ®nite size effect of the fracture process zone

is often treated with models that specify a cohesive zone near

the crack tip within the plane of the crack (Dugdale 1960;

Barenblatt 1962; Ida 1972; Palmer & Rice 1973; Rubin 1993;

Willemse & Pollard 1998). However, in most engineering and

rock-like materials, a slowly propagating crack is preceded by an

evolving out-of-plane process zone around its tip (e.g. Bazant

& Cedolin 1991; Lockner et al. 1991). The distributed damage

modi®es the elastic coef®cients in the medium around the tip

and hence controls the macrocrack trajectory and the growth

rate (Huang et al. 1991; Chai 1993; Zietlow & Labuz 1998).

Thus, it is desirable to account speci®cally for the out-of-plane

inelastic deformation around the propagating crack.

A rheological model of an elastic material with distributed

damage reproduces the main features of subcritical crack

growth under constant and cyclic loading (fatigue). The object

of this paper is to show that such a model simulates the fracture

process that controls the transition between quasi-static and

dynamic regimes, and introduces temporal and spatial scaling.

It also reproduces the breaking of scaling.

S U B C R I T I C A L C R A C K G R O W T H

Classical fracture mechanics postulates that an isolated crack

will propagate at velocities approaching the speed of sound

in the medium once a critical stress intensity factor, KCR, has

been reached or exceeded at the crack tip (Irwin 1958). At

lower stress intensity factors, the crack remains stable. A more

general approach in classical fracture mechanics is to con-

sider the strain energy release rate, G, during crack extension

(e.g. Freund 1990). Dynamic crack extension occurs when G

reaches a critical value GCR.

These classical models have been used successfully to predict

catastrophic crack propagation in metals, ceramics and glasses.

In grainy materials, however, the stress ®eld is highly non-

uniform at the grain scale. When such materials are subjected

to long-term loading, they show considerable rates of macro-

scopic crack extension at values of K and G signi®cantly lower

than the critical values. This phenomenon is known as sub-

critical crack growth (Swanson 1984; Atkinson & Meredith

1987; Ingraffea 1987; Cox & Scholz 1988).

The rates of subcritical crack growth are most commonly

represented by a power law equation (Charles 1958),

dL

dt
~A1Km

I , (1a)

or by the Paris & Erdogan (1963) law for a cycling load,

dL

dn
~A2(*KI)m , (1b)

where L is the crack length, t is time, n is the number of cycles

and KI is the mode I stress intensity factor or its amplitude in

the loading cycle. The values A1, A2 and the subcritical crack

growth index, m, are material parameters that depend on the

con®ning pressure, temperature and chemical environment

(that is, the presence of an active pore ¯uid and its chemical

activity). Eqs (1a) and (1b) are well established by engineering

and rock mechanics experiments and re¯ect a self-similarity in

the fracture process that relates the rate of crack growth to its

length,

dL

dt
~A3Lm=2 : (1c)

For a constant remote stress, KI is approximated by dL, and

A3 is set equal to A1 or A2 multiplied by the remote stress to

the power of m. For m=2, the growth law d ln(L)=A3dt

is completely scale-independent. This `complete similarity', in

terms of Barenblatt (1996), is hardly ever found, except in some

aluminium alloys.

Experimental observations of fracture propagation (e.g.

Meredith & Atkinson 1985; Collins 1993) and indirect calcu-

lation of the m-values from microseismic data (Main et al.

1992; 1993) indicate that plots of fracture propagation rate

versus its length can generally be divided into three segments

(Fig. 1). Propagation probably starts with m=2 in the very slow

crack corrosion regime (region I) and increases up to about 5.

In rocks, the exponent m decreases in region II, where crack

behaviour is controlled by the rate of transport of reactive

species to the crack tip. This regime typically does not exist in

the fracturing of metals. The rupture in regime III is largely

independent of chemical environment and therefore m increases

steeply in this region.

In the following sections, it is shown that the rate of quasi-

static crack propagation in a material governed by damage

rheology ®ts eq. (1) for m varying from 2 to 5 with increasing

con®ning pressure. The relation between the rate of fracture pro-

cess and material strength, introduced in the model as dynamic

weakening, is responsible for the transition to regime III and

further crack acceleration up to the dynamic regime. The model

does not include any type of reactive species transport and thus

cannot describe regime II of rock behaviour.

D A M A G E R H E O L O G Y

In this section, the main features of the damage rheology

model are presented. Detailed explanations and comparisons

with rock mechanic experiments may be found in Lyakhovsky

et al. (1997a,b).
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The cumulative effect of distributed microcracks and ¯aws in

the elastic material leads to non-linearity, which is described by

an energy potential equation of the form:

U~
1

o
j
2

I2
1 zkI2{cI1

����
I2

p� �
, (2)

where r is the density, I1=eii, I2=eijeij are two invariants of

the strain tensor eij, and l, m and c are Lame parameters.

The energy expression eq. (2) includes a new non-analytical,

second-order term in addition to the quadratic terms contain-

ing invariants of the strain tensor of the Hookean elastic solid.

The effect of variable damage is introduced by making the

Lame parameters a function of the damage level a (that is, l(a),

m(a) and coupling coef®cient c(a), 0jaj1). The variable a can

be envisioned as the density of microcracks in a laboratory

specimen or as the density of small faults in a crustal domain.

In damage-free material (a=0), the coupling coef®cient c
vanishes and the energy potential is Hookean. The coef®cient

c increases with material degradation and achieves its maxi-

mum for totally destroyed material (a=1). According to the

equation in Murnaghan (1951), the stress tensor, sij, is de®ned

as the derivative of the energy potential with respect to the

strain tensor,

pij~o
LU

Leij
~ j{

c
m

� �
I1dijz2 k{

1

2
cm

� �
eij : (3)

The non-zero coupling coef®cient c makes the effective elastic

moduli dependent on the strain diagonality, j=I1/dI2, which

varies from xd3 for 3-D compaction to d3 for 3-D tension.

j=t1 means uniaxial tension or compression, respectively,

and j=0xzero volumetric strain (I1=0).

The amount of damage evolves in time as a result of

an applied load. Using the balance equations of the energy

and entropy, and accounting for irreversible changes related

to viscous deformation and material damage, the equation of

damage evolution has the form (Lyakhovsky et al. 1997a)

da
dt

~{C
LU

La
, (4)

where C is a positive function of the state variables describing

the temporal rate of the damage process. It must be emphasized

that this approach describes not only damage increase but

also a process of material recovery associated with healing

of microcracks, which is favoured by high con®ning pressure,

low shear stress and high temperature. Agnon & Lyakhovsky

(1995) chose the moduli m and c to be linear functions of a
(i.e. m=m0xamr, c=acr) and the modulus l be constant. The

values of mr, cr are calculated from the condition of material

destruction for a=1 (eq. 15 from Lyakhovsky et al. 1997a).

The latest analysis of laboratory acoustic emission and stress±

strain data, and their comparison to theoretical modelling,

con®rms this assumption (Liu et al. 1999). Increasing the added

modulus c from zero for linear elastic damage-free material to

its maximum value at critical damage ampli®es the material

non-linearity with damage accumulation. Lyakhovsky et al.

(1997a) suggested that the damage rate equation has different

forms for weakening and for healing. These are, respectively,

da
dt

~
CdI2(m{m0) , for m§m0

C1 exp [a/C2]I2(m{m0) , for m¦m0

(
: (5)

Both equations include an adjustable parameter j0 that indicates

the transition stage from strengthening to degradation. Agnon

& Lyakhovsky (1995) and Lyakhovsky et al. (1997a) related

this parameter to the angle of internal friction by considering

the critical shear stress for Mohr±Coulomb sliding. They found

j0=x0.8 for typical ratios of elastic moduli for damage-

free material l/my1 (Poisson's ratio of 0.25) and an internal

friction angle y40u (eq. 37 and Fig. 3 of Lyakhovsky et al.

1997a). This value varies little for different rocks with Poisson's

ratios between 0.2 and 0.3 and is used for the following

numerical simulations. The parameter Cd is the damage rate

constant, which de®nes the time needed to achieve failure after

the onset of damage at j=j0. Cd is assumed to be a material

property and its value has been estimated to vary from 0.5 to

5 sx1 for different rocks tested at more than 20 MPa con®ning

pressure and room temperature (Lyakhovsky et al. 1997a). This

parameter certainly depends on temperature and chemical

environment, two factors that are not simulated in this paper. It

might also be pressure-dependent, especially at low con®ning

pressures. Making the damage rate for healing proportional to

the exponent of the current damage level (a) gives logarithmic-

in-time material recovery that mimics the logarithmic-in-time

increase of the static friction with the duration of stationary

contact, as reported by Dieterich (1972) and others. This allows

us to relate the constants C1 and C2, which describe the rate of

healing, to the coef®cients of the experimental static friction

law (Lyakhovsky et al. 1997a).

When deformation in some region achieves a threshold state

(j=j0), the damage starts to increase, weakening the material

element. The weakening ends when the damage level becomes

critical and stress drop occurs [see eqs 14 and 15 and Fig. 1 of

Lyakhovsky et al. (1997a) for the relation between the critical

damage acr and strain diagonality j]. The brittle failure leads to

an increase of non-reversible plastic deformation, correspond-

ing to the non-reversible slip in models that approximate the

fault structure as a plane. During failure, the local deviatoric
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Figure 1. Typical relation between crack length and crack growth

rate. The curve is divided into three sections, each representing a

different mechanism limiting the fracture growth rate.
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stresses of the destroyed element drop to zero, keeping only the

con®ning component. This is supported by laboratory experi-

ments (e.g. Brune et al. 1993), theoretical models (e.g. Heaton

1990; Mora & Place 1994; Andrews & Ben-Zion 1997) and a

variety of geophysical observations (see Ben-Zion & Andrews

1998 for a summary). After failure, the stress conditions in the

post-failure region favour healing, which may last until the next

failure event. The duration of the cycle between previous and

subsequent failure depends on the rate of loading and material

recovery.

The real dynamic process, wherein waves are generated by the

stress drop, is not simulated here. However, a quasi-dynamic

procedure is applied to simulate a rupture front propagation.

This is accomplished by recalculating the stress ®eld after each

stress drop in every element involved in the rupture process,

and by incorporating dynamic weakening of material; the latter

is achieved by reducing the critical value of the damage

parameter, acr, to adynamic:

adynamic~acr{

�����������
qa

da
dt

r
, (6)

where ta is a material parameter. The condition a=acr means that

the material does not support any static load. Mathematically

this criterion corresponds to a loss of convexity of the elastic

energy U (eq. 2) or to a zero elastic modulus in the 1-D case. In

reality, this condition can be achieved only if damage increase is

in®nitesimally slow. Damage increase at a ®nite rate causes the

ampli®cation of elastic waves. Using the linear relation between

elastic moduli and damage level, the characteristic time of this

ampli®cation is (acrxa)2/(da/dt). However, waves are attenuated

with characteristic time ta, which is related to a Q parameter of

the medium (tayQ/f, where f is frequency) (Aki & Richards

1980). While the ampli®cation makes the system dynamically

unstable, the attenuation brings the system back to the stable

regime. The dynamic instability occurs when these processes have

the same effect, or when a is slightly below the acr corrected

after the rate of damage increase and attenuation. A detailed

derivation of eq. (6) and its consequences are given in Agnon et al.

(1997, 1999).

G R O W T H O F M O D E I C R A C K U N D E R
C O N F I N I N G P R E S S U R E

Consider a mode I crack embedded in an in®nite elastic solid

governed by damage rheology. Assume that the crack lies in a

horizontal plane and propagates in its own direction (Fig. 2).

The crack starts to grow from a small notch (0.03 of the area

length) in a damage-free material. Stress concentration around

the crack tip results in a build-up of a process zone or a zone

where the damage is non-zero (a>0). When the damage in

front of the crack tip achieves its critical value, the crack length

increases and previously destroyed elements form a crack

boundary. Thus, a post-failure zone (a zone where plastic strain

is accumulated and the material effectively behaves as a gouge

zone governed by healing) surrounds the crack.

The entire systemÐcrack and surrounding materialÐis

subjected to a certain con®ning pressure, Pc, and tensional

driving force, Fd, acting in the direction perpendicular to the

crack plane and applied at in®nity. The upper boundary of

the simulated area is placed far from the process zone, where

the damage-free material behaves as linear elastic. However, it

is not placed far enough to ignore the effect of the boundary

condition and the directly applied constant traction Fd. Such an

increase of the simulated area is computationally too expensive.

Instead, this boundary is allowed to be displaced and the

applied boundary forces, Fi, compensate the linear elastic defor-

mation of the outer space between the numerical boundary and

in®nity. The time and space variable force vector correspond-

ing to the constant uniform traction applied in®nitely far from

the simulated area is calculated according to the linear elasticity

equation

Fi~Fdz
k0

n(1{l)

�?
{?

Lui

Lx

dò
x{ò

, (7)

where Fd is a driving force per unit area applied at in®nity, Fi

and ui are the boundary force and displacement, respectively,

m0 is the shear modulus and n is the Poisson's ratio of the

damage-free material. The formulation of the problem suggests

mirror symmetry with respect to the crack plane and a vertical

line splitting the crack into two halves. These two lines with

free-slip conditions bound the simulated area (Fig. 2). The right

edge of the simulated area is placed far enough from the crack

tip (maximum crack length is 0.3 of the area size) and therefore

the zero displacement boundary condition has negligibly small

effect on stress distribution inside. The flac algorithm, modi®ed

for damage rheology, is used for the simulations (Weinberger

et al. 1999).

The velocity of quasi-static, damage-controlled crack propa-

gation depends on the rate of damage increase. The timescale of

the damage increase, td, is de®ned by the kinetics of the damage

process (Meriaux et al. 1999),

td~
k0

Fd

� �2
1

cd
: (8)

Numerical simulations for different ratios between the driving

force and con®ning pressure (Pc/Fd) are scaled with td. The

results are presented below. If the driving force, Fd, is three

orders of magnitude below the rigidity, m0, of the damage-free

material (ey10x3 far from the crack tip) and cd=1 sx1, then

the timescale, td, is 106 s. Therefore, the initial 10x3 m notch

should propagate with a velocity of the order of 10x9 m sx1.

This value is close to the lower boundary of the observed sub-

critical crack velocity, which ranges from 10x2 to 10x10 m sx1

(Swanson 1984; Swanson 1987; Atkinson & Meredith 1987;

Cox & Scholz 1988).
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Figure 2. The problem set-up for numerical simulation of crack

propagation. The variable force vector, Fi (eq. 7), applied to each node

at the top boundary, corresponds to the constant traction force, Fd,

applied in®nitely far from the simulated region. Each element is

subjected to the initial con®ning pressure Pc.
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The kinetics of the damage process allows the introduction

of a timescale for the fracture process; nevertheless, as in linear

elasticity, it does not provide a clear length scale. Thus, results

of simulations are scaled with the length of the initial notch.

Scale-dependent behaviour and de®nition of the critical length

derive from the dynamic weakening equation (6) and are

discussed in the following section.

R E S U L T S O F S I M U L A T I O N S

Stress and strain crack-tip singularity

As is well known from linear elasticity, loading of the crack

walls as well as remote loading in damage-free elastic material

produce crack-tip stress and strain singularities. Stress (Fig. 3a)

and strain (Fig. 3b) distributions (circles) around the initial

notch prior to the damage onset perfectly ®t an analytical

solution (heavy line) that decreases as rx1/2 with distance r

from the crack tip. In agreement with the analytical results of

Meriaux et al. (1999), increasing the damage and build-up of

the process zone prior to failure regularizes the stress distri-

bution and ampli®es the strains (diamonds in Fig. 3). Stresses

in the process zone (r<0.1L) fall below the rx1/2 line, while the

strains steeply increase at small distances. The strain value is

already twice as large as the classical analytical solution for

r=0.017L. Further damage increase up to a critical value and

consequent stress drop lead to the formation of a post-failure

zone that accumulates plastic strains. This zone around the

propagating crack not only eliminates the stress singularity,

but also regularizes the elastic part of the total deformation.

Stress at the crack tip (triangles in Fig. 3a) drops to the con-

®ning pressure (x2.5 for the simulation presented), where the

tensional elastic strain vanishes (triangles in Fig. 3b). The stress

and strain increase and achieve a maximum at a distance of

about 0.03L. They approach the linear elastic solution and

coincide with it outside the process zone at a distance of r>0.1L.

This stress±strain distribution is similar to that predicted by the

Barenblatt±Dugdale model of a crack with a cohesive zone

near the tip (Dugdale 1960; Barenblatt 1962; Rubin 1993;

Willemse & Pollard 1998).

Quasi-static crack growth

The regularization of the stress and strain tip singularity

allows the growth rate for the quasi-static damage-controlled

crack propagation to be correctly de®ned. Results of numerical

simulations (Fig. 4) with different ratios between con®ning

pressure and driving force (Pc/Fd) ®t the power law equation

(1c) well for crack length changes of one order of magnitude

(from 0.03 to 0.3 of the area size). The velocity of the longer

cracks is below that predicted by the power law equation (not

shown here); this is probably the effect of the proximity of the

®xed boundary on the right. The subcritical crack growth index

increases from m=2.6±3.5 as the ratio Pc/Fd increases from 1.5

to 3.5 (Fig. 4). The material properties used in this and other

simulations are j0=x0.8, Cd=1 sx1, C1=10x8, C2=0.05,

m0=l (Poisson's ratio of 0.25) and m0/Fd=10x3. According to

eq. (8), the timescale, td, is equal to 106 s.

Based on the results of compression acoustic emission tests

with intact rocks, Main et al. (1993) presented four experi-

mental values for the subcritical crack growth index (Figs 10I±iv

in their paper): m=3.5, 2.7, 2.8, 2.4. The theoretically obtained

range (m=2.6±3.5) perfectly ®ts the experimental values; how-

ever, it is not clear whether the experimental results con®rm or

contradict the theoretically predicted increase in subcritical

crack growth index with increasing con®ning pressure. It is also

problematic to compare the theoretically derived values with

experimental results from different authors who used different

rocks (Westerly granite and Darley-Dale sandstone) under

different experimental conditions.

These simulations are carried out under the inviscid limit,

where the relaxation time is much shorter than the damage time-

scale (td&ta). Hence, self-similarity for quasi-static crack

growth is preserved. In spite of the incomplete similarity

(m>2), the size of the process zone increases proportionally to

the crack length, except for a small perturbation at the initial

stage that forms a bulge at the tip of the initial notch. All the

isodamage lines behind the crack tip are nearly straight and

have the same slope (compare Figs 5a, b and c). The slope of

the outer boundary of the process zone is about 5u for different
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Figure 3. The process zone around the crack eliminates tip singularity

for stress (a) and strain (b) distribution (triangles). Circles represent

the stress (a) and strain (b) distributions prior to the onset of damage;

this con®guration ®ts perfectly an analytical solution (heavy line).

Diamonds correspond to the stress (a) and strain (b) distributions

around a crack surrounded by a process zone without the post-failure

zone (prior to the onset of crack propagation).
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stages of the crack growth. This slope and the related size of

the process zone around the crack decrease with increasing

con®ning pressure (Fig. 6). The maximum size of the process

zone, characterized by a 15u slope of the outer boundary, was

obtained for the lowest con®ning pressure, Pc/Fd=1.5 (Fig. 6a);

the minimum size, characterized by a 2.5u slope, corresponds to

Pc/Fd=3.5 (Fig. 6c). This tendency corresponds to the expected

increase of the area with high tensile stress around the crack tip

with decrease of the con®ning pressure. The strain diagonality

for an extensional driving force and zero con®ning pressure,

uniaxial tension, is equal to j=+1, which is above the critical

value j0=x0.8. Thus, uniaxial tension produces a simultaneous

damage increase everywhere, because the condition for damage

onset (j>j0) is satis®ed in the whole plate, not only in the vicinity

of the pre-existing notch. In this case the vertical size of the

simulated area should be signi®cantly increased, which makes

proper numerical analysis of the uncon®ned crack growth

impossible. In this case, the self-similarity is probably complete

with the subcritical crack growth index m=2.
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Figure 5. The process zone for three different stages of quasi-static

crack growth (Pc/Fd=2.5) has a self-similar geometry with a constant

5u slope of the outer boundary. Here and in Figs 6 and 8 the step

between contour levels is 0.1.
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Figure 4. Log±log plot of the crack velocity versus the length of the

quasi-static propagating crack for different ratios of con®ning pressure

to driving force (Pc/Fd). The numerical solutions (dotted lines with

markers) ®t the power law equation (1c) (straight lines with slope m/2)

well, representing increasing subcritical crack growth index (m) as a

result of increasing con®ning pressure.
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Figure 6. The size of the process zone around a crack of the same

length as in Fig. 5 depends on the ratio between con®ning pressure and

driving force (Pc/Fd). (a) Lower con®ning pressure (Pc/Fd=1.5)

corresponds to the largest process zone, which has a 15u slope of the

outer boundary; (b) medium-sized process zone with 5u slope

corresponds to Pc/Fd=2.5, as in Fig. 5(c); (c) minimum-sized process

zone with 2.5u slope corresponds to Pc/Fd=3.5.
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Effect of dynamic weakening

The proportional increase of the process zone with crack length

indicates that the damage rate around the propagating crack

®ts the power law with the same index m as the crack growth

equation (1c),

da
dt

~
B

td
Lm=2 , (9)

and a dimensional coef®cient B depending on the con®ning

pressure. Eq. (9), together with the equation for the dynamic

weakening (6), allows the de®nition of the upper boundary of

the crack length, Lcr, for a crack propagating in the quasi-static

self-similar regime described by eqs (1a) and (1b),

Lcr~
Bqa
td

� �({2=m)

: (10)

Substituting eq. (10) into eq. (9) and then into eq. (6) gives

zero critical damage (acr=0) for the crack length equal to

Lcr. Consequently, a process zone is not created around the

crack tip, the quasi-static regime is impossible and the crack

propagates in the dynamic regime governed by an elasto-

dynamic equation (e.g. Freund 1990). This transition is shown

in Fig. 7 for simulated crack growth with ta=30td. All other

material and geometrical parameters are the same as in the

quasi-static case. Crack velocity (dotted lines with markers)

follows the power law of the quasi-static regime (heavy lines

taken from Fig. 4) until the crack length becomes 2±4 times its

initial length. Dynamic weakening starts to decrease the critical

damage value and crack growth accelerates in a similar manner

to stage III of Fig. 1. This acceleration cannot be related to the

proximity of the boundary on the right because it has an

opposite effect, slowing down much longer cracks. When crack

velocity approaches the speed of elastic waves, the crack growth

ceases to be controlled by the damage process.

The process zone around the crack changes its shape due

to the dynamic weakening (Fig. 8). Prior to the signi®cant

reduction in critical damage (Fig. 8a), it is similar to that

around a quasi-static crack (Fig. 5a). Further reduction of the

critical damage decreases the size of the process zone (Fig. 8b).

The slope of the outer boundary of the process zone behind the

crack tip is much lower and some of the internal isodamage

lines have negative slope. This tendency is ampli®ed with further

crack acceleration (Fig. 8c), reducing the process zone size to

zero. Thus, the process zone of the dynamically propagating

crack is very small, or does not exist at all.

D I S C U S S I O N

The damage rheology model outlined above is based on

thermodynamic principles and fundamental observations of

rock deformation. Its advantage over other crack propagation

models is that it provides the time and spatial scaling of the

fracture process and reproduces the main features of subcritical

crack growth under constant and cycling loads, including

transition between a quasi-static and a dynamic regime. The

results of the theoretical and numerical analyses of mode I

crack growth can be summarized as follows.
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Figure 7. Dynamic weakening with td=30td (dotted lines with

markers) breaks the self-similarity quasi-static propagation (straight

lines from Fig. 4) when the crack length reaches 2±4 times its initial

length. At this stage the dynamic weakening signi®cantly decreases the

critical value of the damage density; crack growth accelerates and

ceases to be controlled by the damage process.
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Figure 8. The process zone around the crack corresponding to the

ratio (Pc/Fd=2.5) has the same geometry until the dynamic weakening

is negligible (a). The size of the process zone increases much more

slowly when the dynamic weakening becomes important (b), and even

decreases at the crack acceleration stage (c).
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Crack-tip singularity. Positive damage evolution starts when

the strain becomes critical, leading to gradual damage in a

process zone. The results of the near-tip analysis show that the

stress singularity is regularized by a damage model relative to

the linear elasticity (Meriaux et al. 1999). However, the strain

singularity is ampli®ed at the initial stage of the damage

evolution, which lasts until a critical damage value is reached

and stress drop occurs. Stress drop and accumulation of plastic

deformation in the post-failure zone not only regularize stress,

but also eliminate strain singularity. The equations of stress

have a regular solution at every point, including at the crack

tip. These solutions provide the ®nite rate of quasi-static crack

growth.

Quasi-static crack growth. The theoretically derived rate

of quasi-static crack growth ®ts the experimentally observed

power law (eq. 1) well, with the subcritical crack growth index

depending on the ratio between the driving force and con®ning

pressure. The numerical results presented here correspond to

subcritical crack growth indexes ranging from 2.6 to 3.5,

depending on the con®ning pressure. This variation falls within

the experimentally observed range (2±5) and is comparable

with the range characteristic of subcritical crack growth in the

crack corrosion regime (stage I in Fig. 1).

Process zone. The geometry of the process zone around

a quasi-static crack has a self-similar shape identical to the

universal scaling of linear fracture mechanics. The size of the

process zone depends not only on the driving force and material

properties, but also on the con®ning pressure. Increasing the

con®ning pressure results in decreasing the process zone. This

explains why the same rocks under the same differential loading

produce narrow fault zones under high con®ning pressure, and

wide zones of distributed damage under low con®ning or

uncon®ned conditions.

Critical crack length. The dynamic weakening decreases the

critical damage value and leads to acceleration of the crack

growth. When dynamic weakening reduces the critical damage

to zero, the process zone vanishes and the crack propagates in a

dynamic regime. This allows the introduction of the critical

length (eq. 10), which depends on the relaxation time, ta; in

turn, the relaxation time is related to the attenuation of the

elastic waves, which is proportional to the Q parameter. Under

the loading corresponding to the same quasi-static growth rate

(same td and B as in eq. 10), the critical length decreases with Q

as LcryQx2/m. Therefore, the critical length is expected to be

signi®cantly smaller for granite than for sandstone, as demon-

strated in the laboratory study of quasi-static fault growth

(Lockner et al. 1992) due to high attenuation in the latter

material. Thus, the model predicts the existence of a narrow

zone in granite that formed by relatively few fast-propagating

cracks in a transitional or dynamic regime, and numerous distri-

buted quasi-static cracks in sandstone, where every nucleus

remains stable for a longer time.

The fracture process in rocks decelerates at the transition

between stages I and III (stage II). Stage II is usually considered

to be controlled by the rate of transport of reactive species to

the crack tip; therefore, this stage does not exist in the fracture

process of metals, in which the role of ¯uids is minor. In rock

fracturing, however, ¯uids probably play a signi®cant role.

Although this factor is not considered in the model discussed

above, future improvements of the model may introduce

damage±¯uid interaction in order to understand the effect of

¯uids on the rate of rupture front propagation.

C O N C L U S I O N S

The damage rheology model of brittle rocks predicts the

existence of two different regimes of fracture growth: quasi-

static damage-controlled growth and dynamic growth. The rate

of quasi-static crack propagation ®ts the power law with small

subcritical crack growth index (m=2±5) well. At a certain

stage, controlled by dynamic weakening and approximated by

the condition given by eq. (10), the self-similarity breaks down

and crack velocity signi®cantly deviates from that predicted

by the quasi-static regime. The subcritical crack growth index

increases steeply, crack growth accelerates, the size of the process

zone decreases, and the rate of crack growth ceases to be con-

trolled by the rate of damage increase. Furthermore, the crack

speed approaches that predicted by the elastodynamic equation.

The model presented above, which includes a reduction of the

critical level of damage due to dynamic weakening, describes

the transition from fracture regime I to regime III and sets

proper time and length scales for the fracture process.
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