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We have calculated the free energy of solvation for hard sphere solutes, as large as 20 Å in diameter, in two
simple-point-charge models of water. These results were obtained using umbrella sampling of ensembles
with fixed, ambient temperature and pressure. For the same water models, we have also calculated the surface
tension of a liquid-vapor interface at room temperature. Analogous calculations were carried out for three
thermodynamic states of the Lennard-Jones (LJ) fluid near liquid-vapor coexistence. For both water and the
LJ fluid at the conditions we have simulated, extrapolation of our results suggests that the planar interface
between coexisting liquid and vapor phases has the same surface tension as the planar limit of hard sphere
solvation. We expect this correspondence to be a general result for fluids at thermodynamic states close to
phase coexistence, as measured by the difference in chemical potential between bulk liquid and vapor phases,
and far from the critical point. The solvation free energies we have computed for water and the LJ fluid cross
over at microscopic solute sizes from a dependence on solute volume to an approximate dependence on
solute surface area, as predicted by Lum et al. [J. Phys. Chem. B1999, 103, 4570].

I. Introduction

Recent work has highlighted the existence of a crossover in
the dependence of hydrophobic solvation upon solute size:1

Accommodation of a small hard sphere (the ideal hydrophobic
solute) in simulated liquid water is governed by solvent density
fluctuations that closely obey Gaussian statistics.2-4 The excess
free energy of solvation,∆µ, scales approximately with the
solute’s volume in this case. For very large solutes, on the other
hand, water molecules near the solute experience a strong net
attraction toward the bulk. Because water at ambient conditions
is not far from liquid-vapor coexistence, significant solvent
depletion, or drying, then occurs at the surface of the solute, as
anticipated long ago by Stillinger.5 In this case,∆µ is dominated
by interfacial free energetics and should scale with the solute’s
surface area. A crossover thus exists in∆µ(R) as a function of
solute radiusR.1 Many phenomena, such as protein folding,
involve hydrophobic regions of widely varying length scales.
For such processes, the crossover in∆µ(R) as a function ofR
is expected to have important implications.6

In the present work, we establish details of the crossover in
∆µ(R), using Monte Carlo simulations of SPC7 and SPC/E8

models of water at fixed temperature and pressure. By effect-
ively growing cavities in water reversibly, as described in section
II A, we have determined the range of solute sizes at which the
crossover occurs, as well as the asymptotic behavior of∆µ(R)
for largeR. These details have not been provided by previous
simulations9-17 because sufficiently large hydrophobic solutes
have not been considered.

At liquid-vapor phase coexistence, the presence of a large
hydrophobic surface will nucleate a vapor phase. In this case,
the surface contribution to∆µ(R) scales asymptotically as
4πγR2, whereγ is the surface tension of the corresponding
liquid-vapor interface. In contrast, away from coexistence, the
distribution of solvent molecules around the solute differs from

the structure of a liquid-vapor interface, and interfacial
fluctuations may be inhibited by a rigid solute. The effective
surface tension of the solute in this case,γ̃, may therefore deviate
from γ. Water at standard conditions is close to but not at phase
coexistence. The distinction betweenγ andγ̃ for this substance
is thus worthy of consideration. Here, we refer to a fluid “close
to coexistence” as one in which the difference in chemical
potential between metastable vapor and liquid,µg - µl, is
comparable to the energy of typical thermal fluctuations, of the
order of kBT. The structure of a surface-induced interface in
such a fluid is likely not to differ significantly from that of the
interface exactly at coexistence. We show in section II B that,
for both the SPC and SPC/E models at room temperature and
1 atm pressure,γ and γ̃ are essentially indistinguishable, as
Stillinger imagined.5 Work from our group18 suggested thatγ
and γ̃ should differ slightly. This suggestion, we shall see, is
the result of an incomplete analysis of the asymptotic behavior
of ∆µ(R).

The length-scale dependence of hydrophobicity we have
described is in fact a general feature of solvophobic solvation
in dense liquids with intermolecular attractions. “Solvophobic”
refers to the general case of a solute which attracts solvent
molecules less strongly than solvent molecules attract one
another. Indeed, the onset of drying with increasing solute size
has been demonstrated in simulations of hard sphere solutes in
a Lennard-Jones (LJ) fluid.18 In section III, we take advantage
of the computational simplicity of the LJ fluid to examine the
crossover in∆µ(R) for thermodynamic states at and near
coexistence [i.e., (µg - µl)/kBT j 1] that are away from the
triple point but still far from the critical point. As in the case of
water at ambient conditions, we find thatγ̃ for these states,
suitably corrected for nonnegligible vapor density, is virtually
indistinguishable fromγ.

II. Solvation in Water

A. Solvation of Spherical Cavities.We have determined
∆µ(R) for hard sphere solutes, with radii 0e R e 10.25 Å, by

† Part of the special issue “Bruce Berne Festschrift”.
* To whom correspondence should be addressed. E-mail: chandler@

cchem.berkeley.edu.

6704 J. Phys. Chem. B2001,105,6704-6709

10.1021/jp0104029 CCC: $20.00 © 2001 American Chemical Society
Published on Web 05/10/2001



computing the distribution of cavity sizes in water at equilib-
rium:10

In eq 1,P(R) is the probability that the largest hard sphere solute
that may be inserted at the origin has radiusR, kB is Boltzmann’s
constant, andT is temperature. Because the spontaneous
formation of large cavities is extremely unlikely, we use
umbrella sampling19 to computeP(R) in Monte Carlo simula-
tions. Specifically,P(R) is determined for several overlapping
windows, Rmin < R < Rmax, of width 0.6-1.0 Å. In each
window, a bias potential is applied to achieve nearly uniform
sampling of cavity sizes. The unbiased distribution is then
constructed over the entire range ofR using the multiple
histogram method,20 which minimizes the variance in the
computed distribution while ensuring thatP(R) is continuous.
By allowing the system to equilibrate subject to a sequence of
constraints corresponding to successively larger solute radii, we
in effect calculate the reversible work to grow large cavities.
Most simulations were carried out with 864 molecules. No
noticeable differences were observed when calculations ofP(R)
were repeated for the largestR with 2048 molecules.

Our simulations were performed at constant pressure. This
feature is crucial, because drying at the solute’s surface is
accompanied by significant volume fluctuations of the central
simulation cell. A constraint of constant volume would inhibit
these fluctuations and, therefore, artificially prevent the pos-
sibility of drying. The thermodynamic states defined by the
applied pressure (1 atm) and temperature (298 K) in our
simulations mimic ambient conditions and have been found,21

for both water models considered, to be about as close to
coexistence as real water. Specifically, (µg - µl)/kBT ≈
ln(p/pcoex) is 3.5 for real water, 4.6 for the SPC/E model, and
3.5 for the SPC model. Here,pcoex is the liquid-vapor
coexistence pressure at temperatureT.

The intermolecular potentials in both the SPC and SPC/E
models consist of Coulomb and LJ interactions. The Coulomb
interactions are treated by Ewald summation, which properly
accounts for their long-ranged nature. The LJ interactions are
truncated at a distance,rc, of half the simulation cell length
and shifted to preserve continuity of the potential. Although
this truncation should not significantly influence the ensemble
of configurations we sample, the omitted attractive tail,ut(r),
of the LJ potential does make a significant contribution to∆µ(R).
We compute this contribution using first order thermodynamic
perturbation theory:

Here,F(2)(r1,r2,〈V〉) is the joint probability that a particular
water molecule is located atr1 and a second water molecule is
simultaneously located atr2, for a system of average volume
〈V〉. In eq 2,〈V〉R is the average volume of the system containing
a solute of radiusR. We arrive at eq 3 by assuming that the
pair density,F(2)(r1,r2), can be decomposed into a product of
the single particle densities,F(r1) and F(r2), and the pair
correlation function,g(0)(|r1 - r2|), of the uniform liquid with

densityFl.22 We further assume that the fluid is incompressible,
i.e., 〈V〉R - 〈V〉0 ≈ 4πR3/3. On the basis of the changes in
volume with cavity size in our simulations, this assumption of
incompressibility appears to be quite accurate. In the planar
limit, R f ∞, the expression for∆µtail(R)/(4πR2) in eq 3 is
consistent with the tail correction expression due to Blokhuis
et al.23 for the surface tension of a liquid-vapor interface. This
correspondence results from approximating the density profile
by a step function,F(r ) ) Flθ(r - R), and assumingg(0)(r) )
1 for r > rc.

The excess solvation free energy per surface area is plotted
in Figure 1a for both the SPC and SPC/E models. As expected
from theory,1-3 ∆µ(R)/(4πR2) scales approximately withR for
small R. Results for the two models are nearly identical forR
< 2.5 Å. Such small solutes may be accommodated by the
solvent through small rearrangements, so that∆µ(R) is largely
entropic. Although the solute reduces the volume of con-
figuration space available to the solvent, large energetic penalties
corresponding to broken hydrogen bonds are not incurred.
Differences between the two models at this length scale are
nearly proportional to the roughly 2% difference in bulk density.
At a microscopic radius of about 5 Å,∆µ(R)/(4πR2) crosses
over to a weakerRdependence. Quantitative results for the two
models deviate strongly beyond this crossover. Large solutes
have a disruptive effect on the hydrogen bond network, and
the free energetics become dominated by the strength of these
interactions. In this regime, solvation is more costly in the SPC/E
model, reflecting in part the difference in surface tensions for
the two models (see Table 1).

To obtain a surface tension of the solute-solvent interface
in the limit R f ∞, we assume that

as in scaled particle theory.24,25The first term on the right-hand
side of eq 4 is the work to expand a cavity against the external
pressure,p. Because of water’s proximity to the triple point at
room temperature, the applied pressure in our simulations is
very small, and this contribution to the free energy is significant
only for extremely large solute volumes. The second term on
the right-hand side of eq 4 describes the work due to surface
tension, including the leading term in an expansion in powers
of 1/R. For a macroscopic surface, the coefficientδ is the
Tolman length, which determines the free energetics of inter-
facial curvature.26 In our analysis of microscopic solutes,δ
describes the approach to an asymptotic scaling of∆µ with
surface area and need not correspond to the Tolman length. The
curves in Figure 1a were fit to eq 4 for radiiR between 6.0 and
10.25 Å. The resulting values ofγ̃ andδ are given in Table 1.

Our simulation data suggest that the large-solute limit, in
which ∆µ is proportional to the areaA ) 4πR2 of the interface
between solvent and solute, is approached slowly. It has been
suggested, however, that this proportionality may hold even for
small solutes if a different choice is made for the interfacial
area,Ã ) 4π(R - Rs)2.27 Here,Rs ) 1.4 Å is the approximate
radius of a water molecule. To test this idea, we have plotted
∆µ/4π(R - Rs)2 in Figure 1a as a function ofR. With this
alternative choice of the solvent-solute dividing surface, the
range ofR for which ∆µ ∝ Ã clearly does not extend toR < 1
nm. This choice also does not significantly change the extra-
polation of our data, yielding an estimate ofγ̃ that differs by
less than 5% from the value given in Table 1.

The radial distribution function about the solute,g(r), from
simulation and the theory of solvation due to Lum, Chandler,

∆µ(R) ) -kBT ln[∫R

∞
dR′ P(R′)] (1)

∆µtail(R) ) 1
2
[∫〈V〉R

dr1 ∫〈V〉R
dr2 F(2)(r1,r2,〈V〉R)ut(r12) -

∫〈V〉0
dr1 ∫〈V〉0

dr2 F(2)(r1,r2,〈V〉0)ut(r12)] (2)

≈ 4π2∫R

∞
dr r 2∫0

∞
dr′ r′2ut(r′)g(0)(r′) ×

∫-1

1
ds [F(r)F([r2 + r′2 + 2rr ′s]1/2) - Fl

2] (3)

∆µ(R)

4πR2
≈ pR

3
+ γ̃(1 - 2δ

R ) (4)
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and Weeks (LCW),1 is plotted in Figure 2 for several solute
sizes in SPC/E water.28 The simulation and theory curves show
similar behavior. The density at contact,g(R), increases initially
with R because of the packing of solvent molecules around the
solute. ForR > 4 Å, g(R) decreases monotonically as the

unbalanced attractive force from the bulk grows in magnitude.1

For the largest solute size we have studied by simulation,R )
10 Å, a drying interface is beginning to nucleate, i.e.,g(R) <
1.

B. Surface Tension of a Free Liquid-Vapor Interface.
To interpret the planar limit of hard sphere solvation, we have
computed the liquid-vapor surface tensions,γ, of the SPC and
SPC/E water models at 298 K. This calculation is accomplished
in molecular dynamics simulations by constraining the total
density so that the system lies in the two-phase region. With
this constraint, a slab of liquid forms in the simulation cell,
minimizing the area of interfaces between liquid and vapor. The
surface tension may then be computed through the difference

Figure 1. (a) Excess chemical potential per surface area,∆µ(R)/(4πR2),
including tail correction,∆µtail(R), for a solute of radiusR in water at
298 K and 1.0 atm for the SPC/E (lower solid line) and SPC (lower
dashed line) models. The dotted lines are the results of the regression
analysis using eq 4. The dot-dashed line is the LCW theory prediction
of the free energy for SPC/E water,∆µLCW(R)/(4πR2). The upper solid
curve (SPC/E model) and upper dashed curve (SPC model) show
∆µ(4π(R-Rs)2), whereRs is 1.4 Å, reflecting a different choice of
solute-solvent dividing surface. (b and c) The largeR behavior of the
regression line for SPC/E water (solid line),∆µLCW(R)/(4πR2) (dotted
line), and∆µ̃LCW(R)/(4πR2) (dashed line). (See the text for descriptions
of these quantities.) The arrow in c indicates the value of the liquid-
vapor surface tension,γ. The simulation curves were calculated from
data collected every five simulation cycles until an average of
approximately 10 000 points were collected in each histogram bin (of
width 0.1 Å), after equilibrating for 40 000 steps. The statistical error
in the free energy was estimated from the variance of block averages.19

Simulations in each window were carried out in blocks of 40 000 Monte
Carlo cycles (apparently sufficient for data from adjacent blocks to be
uncorrelated). The block average of the free energy was constructed
using data from one block in each window. The standard deviation is
approximately 1.0 mJ/m2 for almost all of the points along the curves.
The tail correction,∆µtail(R), was obtained from eq 3 for the full range
of R by assumingF(r) ≈ Flθ(r - R) and g(0) ≈ 1. Almost identical
results were obtained using calculated density profiles,F(r), for R )
2, 4, 6, 8, and 10 Å, and the oxygen-oxygen pair correlation function,
g(0)(r), from a simulation of the uniform liquid.∆µtail(R)/(4πR2) is
approximately 1.5 mJ/m2 for the largestR.

TABLE 1: Surface Tension of the Liquid-Vapor Interface,
γ, and Effective Surface Tension,γ̃, and Tolman Length, δ,
of a Hard Sphere Solute, Calculated for the SPC and SPC/E
Water Models

fluid T [K] p [atm] γa [mJ/m2] γ̃b [mJ/m2] δb [mJ/m2]

SPC 298.0 1.0 65.3( 2 64.2( 0.8 0.76( 0.05
SPC/E 298.0 1.0 73.6( 2 71.8( 0.8 0.90( 0.03

a Calculated in liquid-vapor interface simulations 2 ns in length.
Systems were allowed to equilibrate for 1 ns, after which the density
profile and components of the pressure tensor fluctuated around mean
values. Statistical error was determined by computing the distribution
of instantaneous values ofγ and estimating the number of independent
observations from the decay of time correlation functions.b Regression
coefficients obtained using a general linear least squares procedure,
which uses both the values and the estimated statistical error of the
data points. The error was taken as the square root of the diagonal
elements of the covariance matrix.36 Values ofRused in the regression
were chosen to be sufficiently large that the asymptotic expression in
eq 4 is valid but covering a wide enough range that the error inγ̃ is
smaller than that inγ.

Figure 2. Radial distribution function,g(r), as a function of distance
r from the solute center for solutes with radiiR ) 2.0, 4.0, 6.0, 8.0,
and 10.0 Å, in SPC/E water at 298 K and 1.0 atm from (a) simulation
and (b) LCW theory.
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of pressure tensor components normal and tangential to the
interface.30 In these simulations, LJ interactions were truncated
and shifted at 9.8 Å. The tail correction toγ was computed
using eq 5 of ref 23. Simulations were carried out for 512 water
molecules in a simulation cell with dimensions 19.7× 19.7×
100 Å.

The calculated values ofγ are given in Table 1. The SPC/E
value differs by only a few percent from an extrapolation of
the results of Alejandre et al.31 for a similar model with flexible
molecular geometry. The results forγ are consistent with the
values ofγ̃ computed in the cavity simulations for both water
models. This correspondence reflects the proximity of both
systems to coexistence. It also indicates that the contributions
of interfacial fluctuations are relatively weak. Transverse
fluctuations are permitted for a free liquid-vapor interface but
are hindered in the case of hard sphere solvation by the presence
of a rigid boundary. If fluctuations of the free interface were
large enough to make a significant entropic contribution to the
interfacial free energy, then their hindrance would lead to a
noticeable difference betweenγ and γ̃.

III. Solvation in the LJ Fluid

The simulations of aqueous solvation described above are
computationally very expensive and would be time-consuming
to repeat at a variety of thermodynamic states. To investigate
solvation behavior outside the neighborhood of the triple point,
we have instead performed analogous simulations of a LJ fluid.
We consider three thermodynamic states, denoted LJ-1, LJ-2,
and LJ-3. (Thermodynamic conditions are given in Table 2.)
For the fluid we simulate, in which interactions are truncated
and shifted at 2.5σ, the first two states are at coexistence. LJ-1
lies close to the triple point, and LJ-2 is approximately a third
of the way between the triple and critical points.32 The last state
is close to, but quantitatively away from, coexistence, as
measured by (µg - µl)/kBT ≈ ln(p/pcoex) ) 0.22.32 For
comparison, we have also computed the liquid-vapor surface
tension at coexistence for the same temperatures.

Hard sphere solvation simulations were carried out with 2048
LJ solvent particles for 0e Re 4.1σ and 4000 solvent particles
for 3.5σ eR e 5.5σ. We repeated these calculations with 6912
solvent particles for 5.0σ e R e 5.5σ and found no significant
dependence on system size. Slab simulations involved 1024
particles in simulation boxes with dimensions 6.84σ × 6.84σ
× 40.0σ at T* ) 0.701 and 6.84σ × 6.84σ × 50.0σ at T* )
0.836.

Results for these LJ fluids (see Figure 3 and Table 2) differ
from those for water in two important respects. First, the
crossover to drying occurs for much smaller hard sphere solutes
than in water (relative to the solvent diameter, which is roughly
2.8 Å, for water). Correspondingly, density depletion at contact
with the solute occurs for much smaller solutes for the LJ fluid18

than observed in Figure 2 for water. The relatively slower
approach to drying for water is expected because of the strong
energetic preference for maintaining hydrogen bond networks.

Second, the surface tension of a planar solute,γ̃, as defined
in eq 4, does not closely match the liquid-vapor surface tension,

γ, for the states LJ-2 and LJ-3. A simple argument accounts
for this discrepancy quantitatively. The first term on the right-
hand side of eq 4 describes the free energy obtained by replacing
a hard sphere solute with an ideal vapor of the same volume.
The contributionpR/3 is appropriate for a rarefied gas, such as
water vapor at 298 K. The vapor phases for LJ-2 and LJ-3,
however, have densities,Fg, that are 4% and 5% of the bulk
liquid density, respectively. At these densities, the gases are
significantly nonideal. A more appropriate asymptotic expression
for these states is

where∆µgf0 is the reversible work to change the gas density

TABLE 2: Surface Tension of the Liquid-Vapor Interface, γ, and Effective Surface Tension,γ̃, and Tolman Length, δ, of a
Hard Sphere Solute, Calculated for Three Examples of the LJ Fluid

fluid T [ε/kB] p [ε/σ3] γa [ε/σ2] γ̃b [ε/σ2] δb [σ] γ̃c
b [ε/σ2] δ̃c

b [σ]

LJ-1 0.701 0.0050 0.67( 0.04 0.69( 0.01 -0.17( 0.04 0.66( 0.01 -0.21( 0.04
LJ-2 0.836 0.020 0.37( 0.04 0.42( 0.01 -0.57( 0.05 0.37( 0.01 -0.69( 0.06
LJ-3 0.836 0.025 0.42( 0.02 -0.59( 0.09 0.36( 0.02 -0.73( 0.10

a Calculated in liquid-vapor interface simulations of length 250 000 elementary LJ time steps,τ, after equilibrating for 50 000τ. Statistical error
determined as described in Table 1.b Defined in eqs 4 and 5 and obtained by regression for 4.5< R < 5.5σ, as described in Table 1.

Figure 3. Excess chemical potential per surface area,∆µ(R)/(4πR2),
for a solute of radiusR in the LJ fluid at three thermodynamic states:
(a) LJ-1, (b) LJ-2, and (c) LJ-3 (solid lines). See Table 2 for definitions
of these states.∆µ(R)/(4πR2) - ∆µgf0(R)/(4πR2) is also plotted for
(a) LJ-1, (b) LJ-2, and (c) LJ-3 (dashed lines). Curves were constructed
from data collected in simulations in which approximately 15 000 points
were obtained in each histogram bin (width 0.05σ). The standard
deviation is 0.5-1.0× 10-2 for almost all of the points along the curves.
Values of∆µ(R)/(4πR2) from the LCW theory are also shown for the
(a) LJ-1 and (b) LJ-2 states (dotted lines).

∆µ(R)

4πR2
≈ ∆µgf0

4πR2
+ γ̃c(1 -

2δc

R ) (5)
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in the volumeV from Fg to zero. Only for an ideal gas is this
work pV. To account for deviations from this ideal behavior,
we have computed∆µgf0 using umbrella sampling19 in precisely
the way described in ref 18. The results are plotted in Figure 4
for each of the LJ fluids. These results reflect strong nonideality.
For R ) 5σ, ∆µgf0 is 6ε, 15ε, and 17ε larger than the ideal gas
result for LJ-1, LJ-2, and LJ-3, respectively. The data shown
in Figure 4 were fit to a cubic equation inR to obtain∆µgf0

for all R. The corrected surface tension,γ̃c, then obtained by
fitting ∆µ(R)/(4πR2) to the asymptotic form in eq 5, is nearly
identical to the liquid-vapor surface tension,γ, at the same
temperature, even for the state away from coexistence (see Table
2). As in the case of water, for the LJ states we have considered,
interfacial structure, and fluctuations near a planar solute appear
to be very similar to those of a free liquid-vapor interface.

We have compared our simulations with the LCW theory1

by including the theoretical predictions of∆µ(R)/(4πR2) in
Figures 1 and 3. For both water and the LJ fluid,28 the theory
gives a reasonable prediction of the crossover but overestimates
the free energy for solute radii beyond the crossover. For the
case of water, some of the differences between theory and
simulation have trivial origins that are easily corrected. In
particular, to a good approximation, the vapor phase of water
at 298 K and 1 atm is an ideal gas, for which density fluctuations
obey Poisson statistics, and hence,∆µgf0 should bekBTFgV )
pV. Gaussian statistics used in the LCW theory, however, predict
this reversible work to be a factor of 2 smaller, i.e.,kBTFgV/2.
In addition, the simple two parameter equation of state that has
been used when applying the LCW theory to water1 predicts a
value for the vapor density,Fg,LCW, which is much smaller than
the liquid density but still a factor of 10 larger than the actual
Fg. (In the LJ solvent case, we have used a more accurate
equation of state32 that avoids this error.) As such, the LCW
prediction for very large hard spheres in water,∆µLCW(R), can
be improved by replacing it with

∆µ̃LCW(R)/(4πR2) and∆µLCW(R)/(4πR2) are plotted along with
the extrapolated simulation results in Figure 1b. Figure 1c shows

that the largeR limit of ∆µ̃LCW(R)/(4πR2) - kBTFgR/3 ap-
proaches a surface free energy,γ̃LCW, that is nearly identical to
that of the extrapolated simulation result,γ̃ ≈ γ. However, the
two results approach this largeR limit differently.

In our previous work,18 the asymptotic behavior ofγ̃ was
deduced from a visual inspection of graphs such as Figure 3,
rather than the extrapolations given by eqs 4 and 5. The
conclusion in that work thatγ andγ̃ differ is incorrect, because
of the very slow approach of∆µ(R)/(4πR2) to theR f ∞ limit.
The magnitude ofδ is a measure of the approach to this limit.
In our calculations,δ is negative for all three LJ fluids and is
positive for the SPC and SPC/E water models. The correct sign
of δ for these systems in the thermodynamic limit (the Tolman
length) has not been unambiguously determined and is a matter
of controversy.33,34 Interestingly, the magnitude of our values,
fractions of the solvent diameter, are consistent with previously
reported values of the Tolman length.35
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