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Scaling of Hydrophobic Solvation Free Energies

I. Introduction

Recent work has highlighted the existence of a crossover in
the dependence of hydrophobic solvation upon solute size:
Accommodation of a small hard sphere (the ideal hydrophobic
solute) in simulated liquid water is governed by solvent density
fluctuations that closely obey Gaussian statistidsThe excess
free energy of solvationAu, scales approximately with the
solute’s volume in this case. For very large solutes, on the other
hand, water molecules near the solute experience a strong ne
attraction toward the bulk. Because water at ambient conditions
is not far from liquid-vapor coexistence, significant solvent
depletion, or drying, then occurs at the surface of the solute, as
anticipated long ago by Stillingénn this caseAu is dominated
by interfacial free energetics and should scale with the solute’s
surface area. A crossover thus exista\m(R) as a function of
solute radiusR! Many phenomena, such as protein folding,
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We have calculated the free energy of solvation for hard sphere solutes, as large as 20 A in diameter, in two
simple-point-charge models of water. These results were obtained using umbrella sampling of ensembles
with fixed, ambient temperature and pressure. For the same water models, we have also calculated the surface
tension of a liquig-vapor interface at room temperature. Analogous calculations were carried out for three
thermodynamic states of the Lennard-Jones (LJ) fluid near liguaghor coexistence. For both water and the

LJ fluid at the conditions we have simulated, extrapolation of our results suggests that the planar interface
between coexisting liquid and vapor phases has the same surface tension as the planar limit of hard sphere
solvation. We expect this correspondence to be a general result for fluids at thermodynamic states close to
phase coexistence, as measured by the difference in chemical potential between bulk liquid and vapor phases,
and far from the critical point. The solvation free energies we have computed for water and the LJ fluid cross
over at microscopic solute sizes from a dependence on solute volume to an approximate dependence on
solute surface area, as predicted by Lum etalPhys. Chem. B999 103 4570].

the structure of a liquigtvapor interface, and interfacial
fluctuations may be inhibited by a rigid solute. The effective
surface tension of the solute in this caggenay therefore deviate
from y. Water at standard conditions is close to but not at phase
coexistence. The distinction betwegrandy for this substance
is thus worthy of consideration. Here, we refer to a fluid “close
to coexistence” as one in which the difference in chemical
potential between metastable vapor and liquid, — w, is
omparable to the energy of typical thermal fluctuations, of the
rder of kgT. The structure of a surface-induced interface in
such a fluid is likely not to differ significantly from that of the
interface exactly at coexistence. We show in section Il B that,
for both the SPC and SPC/E models at room temperature and
1 atm pressurey and y are essentially indistinguishable, as
Stillinger imagined®. Work from our group® suggested that
andy should differ slightly. This suggestion, we shall see, is
the result of an incomplete analysis of the asymptotic behavior

involve hydrophobic regions of widely varying length scales. of Au(R).

For such processes, the crossoveAi(R) as a function oR
is expected to have important implicatiohs.

In the present work, we establish details of the crossover in .
Au(R), using Monte Carlo simulations of SP@nd SPC/E
models of water at fixed temperature and pressure. By effect-
ively growing cavities in water reversibly, as described in section
Il A, we have determined the range of solute sizes at which the
crossover occurs, as well as the asymptotic behavidudR)
for largeR. These details have not been provided by previous
simulation8~17 because sufficiently large hydrophobic solutes
have not been considered.

At liquid—vapor phase coexistence, the presence of a large
hydrophobic surface will nucleate a vapor phase. In this case,
the surface contribution ta\u(R) scales asymptotically as
47yR?, wherey is the surface tension of the corresponding
liquid—vapor interface. In contrast, away from coexistence, the

The length-scale dependence of hydrophobicity we have
described is in fact a general feature of solvophobic solvation
in dense liquids with intermolecular attractions. “Solvophobic”
refers to the general case of a solute which attracts solvent
molecules less strongly than solvent molecules attract one
another. Indeed, the onset of drying with increasing solute size
has been demonstrated in simulations of hard sphere solutes in
a Lennard-Jones (LJ) fluit.In section IIl, we take advantage
of the computational simplicity of the LJ fluid to examine the
crossover inAu(R) for thermodynamic states at and near
coexistence [i.e.,uy — w)/keT < 1] that are away from the
triple point but still far from the critical point. As in the case of
water at ambient conditions, we find thatfor these states,
suitably corrected for nonnegligible vapor density, is virtually
indistinguishable frony.

distribution of solvent molecules around the solute differs from

II. Solvation in Water
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computing the distribution of cavity sizes in water at equilib- densityp;.22 We further assume that the fluid is incompressible,
rium:10 i.e., Wi — VI§ ~ 47R%3. On the basis of the changes in

volume with cavity size in our simulations, this assumption of

Au(R) = —kgT In[f: drR P(R)] (1) incompressibility appears to be quite accurate. In the planar

limit, R — o, the expression foAuwi(R)/(47R?) in eq 3 is
consistent with the tail correction expression due to Blokhuis
et al23for the surface tension of a liquievapor interface. This
correspondence results from approximating the density profile
by a step functionp(r) = p0(r — R), and assuming©(r) =
1forr > re.

The excess solvation free energy per surface area is plotted
in Figure 1a for both the SPC and SPC/E models. As expected
from theory!—3 Au(R)/(47R?) scales approximately witR for
small R. Results for the two models are nearly identical For
< 2.5 A. Such small solutes may be accommodated by the
solvent through small rearrangements, so tafR) is largely
entropic. Although the solute reduces the volume of con-
figuration space available to the solvent, large energetic penalties
corresponding to broken hydrogen bonds are not incurred.
Differences between the two models at this length scale are
nearly proportional to the roughly 2% difference in bulk density.
At a microscopic radius of about 5 A\u(R)/(47R?) crosses
over to a weakeR dependence. Quantitative results for the two
models deviate strongly beyond this crossover. Large solutes
have a disruptive effect on the hydrogen bond network, and
the free energetics become dominated by the strength of these
interactions. In this regime, solvation is more costly in the SPC/E
model, reflecting in part the difference in surface tensions for
the two models (see Table 1).

To obtain a surface tension of the solutolvent interface
in the limit R — o, we assume that

In eq 1,P(R) is the probability that the largest hard sphere solute
that may be inserted at the origin has radR &g is Boltzmann’s
constant, andT is temperature. Because the spontaneous
formation of large cavities is extremely unlikely, we use
umbrella samplint to computeP(R) in Monte Carlo simula-
tions. SpecificallyP(R) is determined for several overlapping
windows, Rpin < R < Rmax Of width 0.6-1.0 A. In each
window, a bias potential is applied to achieve nearly uniform
sampling of cavity sizes. The unbiased distribution is then
constructed over the entire range Bf using the multiple
histogram method® which minimizes the variance in the
computed distribution while ensuring thR(R) is continuous.

By allowing the system to equilibrate subject to a sequence of
constraints corresponding to successively larger solute radii, we
in effect calculate the reversible work to grow large cavities.
Most simulations were carried out with 864 molecules. No
noticeable differences were observed when calculatioRgR)f
were repeated for the largeRtwith 2048 molecules.

Our simulations were performed at constant pressure. This
feature is crucial, because drying at the solute’s surface is
accompanied by significant volume fluctuations of the central
simulation cell. A constraint of constant volume would inhibit
these fluctuations and, therefore, artificially prevent the pos-
sibility of drying. The thermodynamic states defined by the
applied pressure (1 atm) and temperature (298 K) in our
simulations mimic ambient conditions and have been faiind,

for both water models considered, to be about as close to Au(R) _pR 28
coexistence as real water. Specificallysg (— w)/keT ~ —’“?+37(1—E) 4)
In(p/peoey is 3.5 for real water, 4.6 for the SPC/E model, and 4R

3.5 for the SPC model. Herepex is the liquid—vapor
coexistence pressure at temperafiire

The intermolecular potentials in both the SPC and SPC/E
models consist of Coulomb and LJ interactions. The Coulomb
interactions are treated by Ewald summation, which properly
accounts for their long-ranged nature. The LJ interactions are
truncated at a distance,, of half the simulation cell length
and shifted to preserve continuity of the potential. Although
this truncation should not significantly influence the ensemble
of configurations we sample, the omitted attractive taf),
of the LJ potential does make a significant contributionidR).
We compute this contribution using first order thermodynamic
perturbation theory:

as in scaled particle theo#}2>The first term on the right-hand
side of eq 4 is the work to expand a cavity against the external
pressurep. Because of water’s proximity to the triple point at
room temperature, the applied pressure in our simulations is
very small, and this contribution to the free energy is significant
only for extremely large solute volumes. The second term on
the right-hand side of eq 4 describes the work due to surface
tension, including the leading term in an expansion in powers
of 1/R. For a macroscopic surface, the coefficientis the
Tolman length, which determines the free energetics of inter-
facial curvature In our analysis of microscopic solutes,
describes the approach to an asymptotic scalingz@fwith
surface area and need not correspond to the Tolman length. The
1 @ curves in Figure 1alwere fit to eq 4 for raﬂiib.etwe.en 6.0 and
Augy(R) = E[fwa dr, fmz dr, o (1 .1 5, VDU () — 10.25 A._ The resulting values gfandd are given in Table 1.
- (_)ur sm_wulanon d_ata suggest that the Iarge-sol_ute limit, in
fw dr, fw dr, 09, VR)U(r)] (2) which A is proportional to the ared = 47R? of the interface
between solvent and solute, is approached slowly. It has been
~ 4n2f°° dr r2f°° dr’ r'zut(r')g(o)(r’) « suggested, hoyvever_, that this p(opo_rtionality may ho_ld even_for
R 0 small solutes if a different choice is made for the interfacial
f_ll ds [p(r)p([r? + r'* + 2rr's)¥?) — o’ (3) area,A = 47(R — R)2.27 Here,Rs = 1.4 A is the approximate
radius of a water molecule. To test this idea, we have plotted
Here, p@(r,r,,IV0) is the joint probability that a particular ~ Au/4n(R — Rg)? in Figure 1a as a function dR. With this
water molecule is located at and a second water molecule is  alternative choice of the solvensolute dividing surface, the
simultaneously located ab, for a system of average volume range ofR for which Ax 0 A clearly does not extend 18 < 1
VIn eq 2,[V[& is the average volume of the system containing nm. This choice also does not significantly change the extra-
a solute of radiuRR. We arrive at eq 3 by assuming that the polation of our data, yielding an estimate pfthat differs by
pair density,0@(ry,r,), can be decomposed into a product of less than 5% from the value given in Table 1.
the single particle densities(r1) and p(r), and the pair The radial distribution function about the solutgr), from
correlation functiong©(|ry — r»|), of the uniform liquid with simulation and the theory of solvation due to Lum, Chandler,
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100 Tt —T—T T TABLE 1: Surface Tension of the Liquid—Vapor Interface,
_ | 1(a) y, and Effective Surface Tensionj, and Tolman Length, 4,
“= g0k S ey of a Hard Sphere Solute, Calculated for the SPC and SPC/E
£ S~k | Water Models
E 60 I ,/' conr flud T[K] platm] »2[md/n?]  $°[mI/n?] o6 [mI/n?]
Ve - - 1 SPC 2980 1.0 65%2 642408 0.76+0.05
% 40 - - SPC/E 298.0 1.0 7342 71.8+£0.8 0.90+ 0.03
N [ ] aCalculated in liquid-vapor interface simulations 2 ns in length.
3 20 - Systems were allowed to equilibrate for 1 ns, after which the density
< I | | A | | . 1 profile and components of the pressure tensor fluctuated around mean
0 values. Statistical error was determined by computing the distribution
0 2 4 6 8 1012 14 of instantaneous values pfand estimating the number of independent

observations from the decay of time correlation functidrRegression
coefficients obtained using a general linear least squares procedure,
P R = which uses both the values and the estimated statistical error of the

data points. The error was taken as the square root of the diagonal
elements of the covariance matff/alues ofR used in the regression
were chosen to be sufficiently large that the asymptotic expression in
eq 4 is valid but covering a wide enough range that the errdr im
smaller than that iry.
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Figure 1. (a) Excess chemical potential per surface atedR)/(47R?), L ]
including tail correction Auwi(R), for a solute of radiu® in water at 15k N
298 K and 1.0 atm for the SPC/E (lower solid line) and SPC (lower —_
dashed line) models. The dotted lines are the results of the regression = -
analysis using eq 4. The detlashed line is the LCW theory prediction o0 1k
of the free energy for SPC/E watexy cw(R)/(47R?). The upper solid /
curve (SPC/E model) and upper dashed curve (SPC model) show I
Au(4r(R—R)?), whereRs is 1.4 A, reflecting a different choice of 05 -
solute-solvent dividing surface. (b and c) The lafi@dehavior of the |
regression line for SPC/E water (solid liné) cw(R)/(47R?) (dotted
line), andAji cw(R)/(47R?) (dashed line). (See the text for descriptions 0 . L : '
of these quantities.) The arrow in ¢ indicates the value of the liguid 0 5 10 15
vapor surface tensiory, The simulation curves were calculated from r [A]

data collected every five simulation cycles until an average of S ) ) )
approximately 10 000 points were collected in each histogram bin (of Figure 2. Radial distribution functiong(r), as a function of distance
width 0.1 A), after equilibrating for 40 000 steps. The statistical error r from the solute center for solutes with raéli= 2.0, 4.0, 6.0, 8.0,

in the free energy was estimated from the variance of block avetdges. and 10.0 A, in SPC/E water at 298 K and 1.0 atm from (a) simulation
Simulations in each window were carried out in blocks of 40 000 Monte and (b) LCW theory.

Carlo cycles (apparently sufficient for data from adjacent blocks to be

un_correlatefd). The b'C’ICk kayerageh of the freehenergy was constructedynpalanced attractive force from the bulk grows in magnitude.
using data from one block in each window. The standard deviation is For the largest solute size we have studied by simulafos,

approximately 1.0 mJ/&for almost all of the points along the curves. A ; S .
The tail correctionAusi(R), was obtained from eq 3 for the full range 10 A, a drying interface is beginning to nucleate, i®R) <

of R by assumingoe(r) ~ p0(r — R) andg® ~ 1. Almost identical 1.

results were obtained using calculated dens_ity profi&ejs),, for R = B. Surface Tension of a Free Liquid-Vapor Interface.

2,4, 6,8 and 10 A, and the oxygenxygen pair correlation function,  T¢ interpret the planar limit of hard sphere solvation, we have
g®(r), from a simulation of the uniform liquidAsuai(R)/(47FR) is computed the liquigtvapor surface tensiong, of the SPC and

imately 1.5 mJ/ffor the | R. . L .
approximately m.or the farges SPC/E water models at 298 K. This calculation is accomplished

and Weeks (LCW}, is plotted in Figure 2 for several solute in molecular dynamics simulations by constraining the total
sizes in SPC/E watéf. The simulation and theory curves show density so that the system lies in the two-phase region. With
similar behavior. The density at contag{R), increases initially this constraint, a slab of liquid forms in the simulation cell,
with R because of the packing of solvent molecules around the minimizing the area of interfaces between liquid and vapor. The
solute. ForR > 4 A, g(R) decreases monotonically as the surface tension may then be computed through the difference
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TABLE 2: Surface Tension of the Liquid—Vapor Interface, v, and Effective Surface Tensiony, and Tolman Length, 9, of a
Hard Sphere Solute, Calculated for Three Examples of the LJ Fluid

fluid T [elke] p[elo?] ya[elo?] 7 [elo?] 5 [o] 5 [elo?] 3¢ [o]

LJ-1 0.701 0.0050 0.6Z 0.04 0.69+ 0.01 —0.17+0.04 0.66+ 0.01 —0.21+0.04
LJ-2 0.836 0.020 0.3% 0.04 0.42+ 0.01 —0.57+0.05 0.37+ 0.01 —0.69+ 0.06
LJ-3 0.836 0.025 0.42 0.02 —0.59+ 0.09 0.36+ 0.02 —0.73+0.10

a Calculated in liquid-vapor interface simulations of length 250 000 elementary LJ time stepier equilibrating for 50 00@. Statistical error
determined as described in Table?Defined in eqs 4 and 5 and obtained by regression for4® < 5.50, as described in Table 1.

of pressure tensor components normal and tangential to the

interface3° In these simulations, LJ interactions were truncated !
and shifted at 9.8 A. The tail correction fowas computed & 0.8
using eq 5 of ref 23. Simulations were carried out for 512 water S
molecules in a simulation cell with dimensions 1%719.7 x — 06
100 A. % 04

The calculated values of are given in Table 1. The SPC/E N
value differs by only a few percent from an extrapolation of } 0.2
the results of Alejandre et &kfor a similar model with flexible
molecular geometry. The results fprare consistent with the 0
values ofy computed in the cavity simulations for both water
models. This correspondence reflects the proximity of both L LA B L B B (b)
systems to coexistence. It also indicates that the contributions « 08 -
of interfacial fluctuations are relatively weak. Transverse S F 1
fluctuations are permitted for a free liquidrapor interface but — 06 e T .
are hindered in the case of hard sphere solvation by the presence ”% 04 [ .."' T T ——— ]
of a rigid boundary. If fluctuations of the free interface were N Y A ]
large enough to make a significant entropic contribution to the 3 02 k -
intgrfacial frge energy, then their hindrance would lead to a 0 AN
noticeable difference betweenand?y. 0 L 2 3 4 5 ¢
. Solvation in the LJ Fluid 1 [T T T T T (o)

The simulations of aqueous solvation described above are g 0.8 - 7
computationally very expensive and would be time-consuming 3 i i
to repeat at a variety of thermodynamic states. To investigate e 0.6 i e — ]
solvation behavior outside the neighborhood of the triple point, R4 o4t f -
we have instead performed analogous simulations of a LJ fluid. % - .
We consider three thermodynamic states, denoted LJ-1, LJ-2, g 02 .
and LJ-3. (Thermodynamic conditions are given in Table 2.) o ]

For the fluid we simulate, in which interactions are truncated 0 1 5 3 4 5 6
and shifted at 2.&, the first two states are at coexistence. LJ-1
lies close to the triple point, and LJ-2 is approximately a third R [o]

of the way between the triple and critical poiftsThe last state  Figure 3. Excess chemical potential per surface arka(R)/(47R?),

is close to, but quantitatively away from, coexistence, as for a solute of radiu in the LJ fluid at three thermodynamic states:
measured by i; — w)/keT ~ In(p/peoe) = 0.2232 For (a) LI-1, (b) LI-2, and (c) LI-3 (solid lines). See Table 2 for definitions

comparison, we have also computed the liguidpor surface O these statesAu(R)/(47R) — Augo(R)/(4rR) is aiso plotted for

tensin)n at coexistence for the nge tem e?xufes (a) LI-1, (b) LI-2, a_nd (_c) LJ-_3 (da_shed_llnes). Cu_rves were constru_cted
. . . perat o from data collected in simulations in which approximately 15 000 points

Hard sphere solvation simulations were carried out with 2048 \yere obtained in each histogram bin (width G@5The standard

LJ solvent particles for & R < 4.10 and 4000 solvent particles  deviation is 0.5-1.0 x 10-2for almost all of the points along the curves.
for 3.50 <R < 5.50. We repeated these calculations with 6912 Values ofAu(R)/(47R?) from the LCW theory are also shown for the
solvent particles for 58 < R < 5.50 and found no significant (&) LJ-1 and (b) LJ-2 states (dotted lines).

dependence on system size. Slab simulations involved 1024,, for the states LJ-2 and LJ-3. A simple argument accounts

particles in s*imulation boxes with dimensions G184 6-*840 for this discrepancy quantitatively. The first term on the right-
x 40.0p at T* = 0.701 and 6.84 x 6.847 x 50.0r at T* = hand side of eq 4 describes the free energy obtained by replacing
0.836. a hard sphere solute with an ideal vapor of the same volume.

Results for these LJ fluids (see Figure 3 and Table 2) differ the contributiorpR/3 is appropriate for a rarefied gas, such as
from those for water in two important respects. First, the \yater vapor at 298 K. The vapor phases for LJ-2 and LJ-3,
crossover to drying occurs for much smaller hard sphere solutespgwever, have densitiep,, that are 4% and 5% of the bulk
than in water (relative to the solvent diameter, which is roughly liquid density, respectively. At these densities, the gases are

2.8 A, for water). Correspondingly, density depletion at contact gigniicantly nonideal. A more appropriate asymptotic expression
with the solute occurs for much smaller solutes for the LI#uid {5y these states is

than observed in Figure 2 for water. The relatively slower

approach to drying for water is expected because of the strong Au(R) Apgo | _ 20,

energetic preference for maintaining hydrogen bond networks. AR -~ AR Tl - R
Second, the surface tension of a planar solat@s defined

in eq 4, does not closely match the liquidapor surface tension, ~ whereAug—o is the reversible work to change the gas density

®)
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35 — that the largeR limit of Az cw(R)/(47R?) — ksTpgR/3 ap-
- . proaches a surface free energjyew, that is nearly identical to

30 that of the extrapolated simulation resyltz y. However, the
two results approach this largelimit differently.
25 In our previous work® the asymptotic behavior ¢f was
_ deduced from a visual inspection of graphs such as Figure 3,
=020 rather than the extrapolations given by eqs 4 and 5. The
T conclusion in that work that andy differ is incorrect, because
=15 of the very slow approach @fu(R)/(47R?) to theR — oo limit.
< The magnitude 0 is a measure of the approach to this limit.
10 In our calculationsy is negative for all three LJ fluids and is
positive for the SPC and SPC/E water models. The correct sign
5 of 6 for these systems in the thermodynamic limit (the Tolman
length) has not been unambiguously determined and is a matter
00 of controversy?334 Interestingly, the magnitude of our values,

fractions of the solvent diameter, are consistent with previously
R [o] reported values of the Tolman length.

Figure 4. Change in excess free energyuq—-o, UPON evacuating a

volume with average density equal to the vapor density to obtain an  Acknowledgment. This work was supported by the Director,
empty cavity, for the three LJ fluids studied: LJ-1 (triangles), LJ-2 Office of Science, Office of Basic Energy Sciences, of the U.S.
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