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Summary 

In this paper we introduce successively stronger forms of ordinal dependence between categorical 

variables, corresponding to orderings over the categories of the variables. In our main theorem it is 

proved that if these fonns of dependence are present in contingency tables, then the orderings are 

reflected in the correspondence analysis solution, whatever a priori ordering may have been given to 

the categories. This explains two important order phenomena which frequently occur in practice. 

Furthermore a multivariate generalization of the main theorem is given. The results in this paper 

support the use of (multi-) correspondence analysis as a scaling technique for categorical variables. 
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1 Introduction 

There exist many ways of describing the association which is present in a contingency 

table. Hirschfeld (1935) introduced a method which was later (independently) formulated 

by a number of authors. Benzecri ( 1973) gives a description of this method under the now 

well-established name of correspondence analysis. The method can be described from 

several points of view. We formulate correspondence analysis as a method of scaling: it 

assigns q-dimensional scores to the categories of the variables describing the rows and 

columns of the contingency table. (Here q is some integer.) The scaling is performed in 

such a way that the scores of two row categories are close together if their corresponding 

rows are more similar, and similarly for columns. Furthermore, it is customary to display 

the correspondence analysis scores in a q-dimensional graphical representation. In this 

graphical representation each row and column is represented as a point, which has its 

q-dimensional correspondence analysis score as coordinates. We refer to the publications 

of Gifi (1981), Hill (1974), Kester & Schriever (1982) and Lebart, Marineau & Tabard 

(1977) for theoretical treatments and applications of correspondence analysis. 

Correspondence analysis considers the two variables I and J, indicating row and column 

number of the contingency table, as nominal variables, i.e. under permutation of category 

labels, the scores undergo the same permutation, however the following phenomenon is 

frequently observed in practice. For variables whose categories have an intuitively 

meaningful order, this order is often reflected by the order of the one-dimensional 

correspondence analysis scores. In § 3.3 of the present paper we prove that this phenome

non is implied by a strong form of dependence between I and J called order dependence 

of order 1. This form of dependence induces an ordering over the categories of the 

variables I and J; see § 3.2. Since the most important aspect of assigning scores to 



226 B.F. SCHRIEVER 

categories is perhaps the ordering which is induced by these scores, this result supports the 

use of correspondence analysis as a one-dimensional scaling technique. 

Another phenomenon which often occurs in practice is the so-called horseshoe. We 
speak of a horseshoe in the two-dimensional graphical representation of correspondence 

analysis when row points and column points lie on convex or concave curves. We prove 

that a horseshoe occurs when the two variables I and J have a still stronger form of 

dependence, called order dependence of order 2. In fact we prove a generalization of 

these results to higher orders in § 3.3. 
Correspondence analysis can be generalized to the case when more than two variables 

are involved. This generalization is called multicorrespondence analysis by Lebart et al. 

(1977); it is also called homogeneity analysis (Gifi, 1981; Kester & Schriever, 1982), or 

first-order correspondence analysis (Hill, 1974). In the present paper we introduce a 

multivariate generalization of order dependence of order 1, and show that the order of the 

categories in each variable which corresponds to this multiorder dependence is reflected in 

the order of the one-dimensional multicorrespondence analysis scores. However, a 

similarly generalized multiorder dependence of order 2 need not imply horseshoes in a 

two-dimensional graphical representation of multicorrespondence analysis; see § 4.2. 

In this paper we consider only correspondence analysis as applied to frequency tables 

(i.e. tables of relative frequencies or probabilities), disregarding problems of sampling 

variation. In § 5 we give examples of probability models for frequency tables in which 

the variables are (multi-) order dependent of order 2. In this case the frequency table· is 

said to be (M)D02. This abundence of examples demonstrates that (multi-) order depen

dence of order 2 is quite common in practical models. Although this does not imply the 

(M)oo2 character of random samples from such populations, one may nevertheless expect 

that contingency tables are also often (M)oo2 or close to it, and hence that the order 

relations of correspondence analysis remain valid. It is however difficult to derive precise 

and useful statistical properties of such qualitative aspects of (multi-) correspondence 

analysis. For instance, the probability of obtaining correct orders or of obtaining horse

shoes is easily shown to converge exponentialy fast to one as the sample size tends to 

infinity, but such a result has little practical use. 

A better argument for the practical relevance of our results when sampling variation 

should also be taken into account is the fact which we mentioned before that an intuitively 

expected ordering and the horseshoe phenomenon are so often found with small-sample 

real data. Even if, with real data, an obvious deviation from the intuitively expected 

ordering of categories is found, our experience is that a good explanation can usually be 

found for this. This makes (multi-) correspondence analysis a very useful exploratory tool 

for checking that an a priori ordering of the categories of a nominal variable is correct. 

2 Total positivity 

In this paper we make use of matrix theory. Some results of the theory of totally positive 

matrices are summarized in this section. 

We denote matrices by capital letters. The (i, j) element of a matrix A is denoted by a.;i; 

however the diagonal elements of a diagonal matrix are singly subscripted. Vectors are 

denoted by lower case letters and are considered as column vectors. The ith component of 

a vector x is denoted by ~- The transpose of a matrix or vector is denoted by the 
superscript T. 

The identity matrix is denoted by I and the vector having all its components equal to 

unity is denoted by e; the size of this matrix and vector will be clear from the context. 
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For a matrix A of size n x m we denote by 

aid1 aiti2 a;l;. 

A('.1 i2 
;:) = 

a-. a,01 aiiik lzli 

JI i2 

aiJ1 aiJ2 aiJ. 

the determinant formed from the specified elements of A. This determinant is called a 

minor of A of order kif l~i 1 <i2 < ... <ik ~n and 1 ~j 1 <j2 < .. . <jk ~m. 

Definition 2.1. The matrix A is called totally positive of order r (abbreviated TP,) if all 

minors of order :;;;.r are positive. If all minors of order ~r are strictly positive, then A is 

said to be strictly totally positive of order r (sTP, ). 

LEMMA 2.1. If the matrix A 1 of size n x l is TP, and the matrix A 2 of size l x m is TP., then 

the matrix A,A2 is TPmin(r,sl· In the case that A 1 is STP, and A 2 is TP8 and of full rank, A 1A 2 

is actually STPmin(r,sJ· 

Proof. The proof follows from the Binet-Cauchy formula (Gantmacher, 1977, 1, p. 9): 

~k). 
]k 

An important property of (strictly) totally positive matrices is the number of changes of 

sign of the eigenvectors. In counting the number of changes of sign (of the sequence of 

components) of a vector, zero components are permitted to take on arbitrary signs. So the 

number of changes of sign of a vector x will vary between two bounds ff'; and y~-. 

In the next lemma the vectors x<ll, x<21, ... , x<rl denote the eigenvectors of an n x n 

matrix A corresponding to the r 'largest' eigenvalues [A. 1[ ~ [A. 2 [ ~ .•. ~ [A.,i, and X denotes 

the n x r matrix X = (x 0 1, x<21, ... , x<'l). 

LEMMA 2.2. The r largest eigenvalues of an STP, matrix A are strictly positive and distinct: 

,\ 1 > ,\2 > ... >A,> IA.,+ i[. Furthermore, for each k = 1, ... , r there is a <Tk equal to + 1 or -1 

such that 

for all 1 ~ i1 < i2 < ... < ik:;;;. n, and for arbitrary real numbers cb ck+1, ... , c" (1 ~ k ~ l:;;;. r, 

L c'? > 0, where the sum is over t = k, ... , l), the bounds ff'; and Y; of the vector 

satisfy 

l 

x =I c,x<<l 
t~k 

k - 1:;;;_9'; ~ y; ~ 1-1. 

Proof. This lemma is a weaker version of a result of Gantmacher & Krein (1950, 

p. 349). 

Another related property is the variation diminishing property. This gives us a better 

intuitive grasp of total positivity. 
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LEMMA 2.3. Consider transfonnations of the form x = Ay, where A is a matrix of size 

nxm. 

(i) If A is TP,, then, for all y EIJ:r, 

Y; ~ r- l::} g~- ~ff;; 

moreover, for all y such that 

(2.1) 

g;;_ = Y; ~ r -1, (2.2) 

the first nonzero component of x and y have the same sign. 
(ii) If A is STPr, then, for all y f 0, 

Y; ~ r - l::} Y; :s; Y;. (2.3) 

(iii) Conversely, when m < n, then (2.2) and (2.3) imply that A is STP,. If A is of 
full rank m < n, then (2.1) and (2.2) imply that A is TP,. 

Proof. The lemma is a special case of a result of Karlin (1968, p. 233). 

Furthermore we also need the following lemma. 

LEMMA 2.4. Any TP, matrix of rank -;;;;r can be approximated elementwise as closely as 
desired by means of an STP, matrix of the same rank. 

Proof. See Gantmacher & Krein (1950, p. 357). 

3 Ordering properties in correspondence analysis 

3.1 Correspondence analysis 

Let P be a frequency table of size n x m, that is P is an n x m matrix with positive real 
elements P<i-;;;;, 0 (i = 1, ... , n; j = 1, ... , m), such that 

n m 

I :L Pii =i. 
i=l i=l 

Denote by 

m n 

r; = L Pii (i = 1, ... , n), ci = L Pii (j = 1, ... , m) 
i= 1 i=l 

the row and column sums of P. Let these marginals of P form the diagonal elements of the 
diagonal matrixes R and C, respectively. We assume that R and C are nonsingular. 

Let I and I denote the two variables indicating row and column number of the 
frequency table P. Note that the variables giving rise to the frequency table may be 
ordinal or nominal. Correspondence analysis is a technique for analysing the dependence 
between the two variables I and J. There are several ways to look at this technique; in the 
next definition we formulate it as a method of scaling. 

Definition 3.1. A solution of correspondence analysis applied to the frequency table P 
consists of real vectors u<0 = (u~'l, ... , u~l?, called the row factors, and v«> = 
(v~\ ... , v;;{)T, called the column factors, for t = 1, 2, ... , min (m, n), which satisfy 

A.,u(t) = R- 1 Pv«>, A.,v«l = c- 1 pT u«>, 
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where Ar is maximal subject to 

u(t)TRuc'l= 1, v<'lTCv1'l= 1, 

u (t)T Ru(s) = 0 v(t)T Cv(s) == 0 ( = 1 ? -1) 
' s '-, ... ' t ' . 

Let P also denote the (empirical) joint distribution of I and J induced by the frequency 

table P. The components of the ith row of the matrix R- 1p can be interpreted as the 

conditional probabilities P{J = j I I= i}. It follows from A,u«l == R- 1 Pv<ri that if two rows i 

and i' have (approximately) equal conditional distributions, the corresponding correspon

dence analysi~ s~ores ul1l and ul!l, t = 1, 2, ... , min (m, n), are also (approximately) equal. 

Of course a s1m1lar property holds for columns j and j' which have (approximately) equal 

conditional distributions. 

The solution of correspondence analysis can be found by solving eigenvalue problems. 

It can be proved (Hill, 197 4; Kester & Schriever, 1982; Lebart et al., 1977, p. 54; 

Schriever, 1982) that the vectors u<•l and v<1l in Definition 3.1 exist for t = 

1, 2, ... , min (m, n) and are eigenvectors of the matrices R- 1pc-1pT and c- 1pTR-·1p, 

respectively, corresponding to the eigenvalue A;. Conversely, the eigenvectors, suitably 

normalized, of R- 1pc·ipT and c- 1PTR- 1P corresponding to the eigenvalues Ai;;;:,q;;;: 
... ~ ,\;;,in(m. nJ are row and column factors of the correspondence analysis solution. Clearly 

u«l and vC•l are uniquely determined, up to a change of sign, when the corresponding 

eigenvalue ,\~ is simple. Furthermore it can be proved that ,\ 1 = 1 and that the first row 

and column factor can always be taken to be trivial, that is u(l) = e and vm =e. In the 

sequel we assume, in particular in the case 1 = ,\1 = ,\2 , that u<n = e and d 1l =e. 

Hill (197 4) showed that correspondence analysis is algebraically equivalent to Fisher's 

contingency table analysis (Fisher, 1940). This gives us the following interpretation of the 

row and column factors. The first nontrivial row and column factor, uC2l and v<2l, can be 

interpreted as 'optimal' scores of the categories of the variables I and J: they define 

derived variables with maximal correlation. The vectors u(•l and vl•l define scores with 

similar properties subject to orthogonality to previous sets of scores. 

In practice not all min (m, n) factors are computed, but only the first q nontrivial, where 

q is an integer <min (m, n). Moreover, they are usually presented in one or more plots. 

These plots show aspects of the q-dimensional graphical representation of correspondence 

analysis where each row and each column of P is represented as a point; row i has 

coordinates (A.2 u:2 i, ,\ 3 u~ 31 , ••• , Aq+ 1uiq+n), and column j has coordinates 

(A2 v)21, A.3 v)3 l, ... , Aq+iVJq+l\ Thus two row points (column points) lie close to one 

another if the corresponding conditional distributions are approximately equal. It can be 

proved (Gifi, 1981, p. 134; Kester & Schriever, 1982; Lebart et al., 1977, p. 49) that 

when q '3' rank (P)- 1 the converse holds also; in the case that q <rank (P)-1 it holds 

approximately. 

Further results and properties of correspondence analysis can be found in the references 

given in this subsection. 

3. 2 Order dependence 

In this subsection we introduce successively stronger forms of ordinal dependence 

between the variables I and J. These forms of dependence are called order dependence of 

order r (r = 1, 2, 3, ... ). 
Suppose that the rows and columns of the frequency table P can be indexed such that 

the family of induced distributions of JI I= i is stochastically (strictly) increasing, that is 

P{J ~ j 0 \ I= i} is (strictly) decreasing in i for each j 0 • Then the conditional distributions of 

the variable J \ I= i are stochastically ordered in a sequence which is identical to the order 
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given by the row index i. Lehmann (1966) speaks of positive regression dependence of J 
on I. In this case the n x m frequency table P satisfies 

l<:;;i<i'=s;n::;> L Pii/r;?!:- L Pi'ilri' Uo=l, ... ,m-1) (3.1) 
i~io i :s;.ju 

with strict inequality in case of strict regression dependence. In order to write (3.1) in 
matrix notation we introduce the upper triangular matrix s.. of size n x n with unit 

elements on and above the diagonal and with all other elements zero. The inverse of S., is 
the matrix with unit elements on the (main) diagonal, with the elements adjacent and 

above the diagonal (i.e. on the first super diagonal) equal to -1, and with all other 

elements zero. 

Furthermore define 

QR = S;:;1 R-1 PSm, 

and let the (n -1) x (m -1) matrix QR be obtained by deleting the last row and column of 

QR· Thus the (i, j)th element of QR equals 

P{J <:;;j I I= i}- P{J~j I I= i + 1} (i = 1, ... , n -1; j = 1, ... , m -1). 

It follows that (3.1) is equivalent to QR is (s)TP1 . 

A fundamental property of a stochastically increasing family is that it preserves 
monotonicity of functions. To be more specific, a vector if;= (i/li. ... , iflmY1- is said to be 

monotone of order r, denoted by .J;l,, if the vector of differences o = (81 , ..• , om_ 1)T, where 

oi = i.f;i -1./!i+t (j = 1, ... , m -1) 

has a number of changes of sign which satisfies f:f"i,. = r - 1. The vector if; is said to be 

strictly monotone of order r, denoted by ::I .J;l,, if 

f:f8 = ::t; = r - 1. 

Note that monotonicity is a kind of oscillatory property. Now, if we define for any vector 

I.{! the vector <f> =(</>i. ... , </>.,)T of expectations by 

m 

<f>i = L l./liPii/r; (i = 1, ... , n) 
i=l 

then a stochastically (strictly) increasing family of distributions of JI I= i is characterized 

by I.{! is (f:f).M1 :::> c/> is (::I).Ai 1 

(see Theorem 3.1 below); i.e. the family preserves (strictly) order 1 monotonicity of 
functions. 

In the case that the stochastically increasing family also preserves order 2 monotonicity 

of functions, the distribution functions of the family are ordered according to a stronger 
criterium. The difference between consecutive distribution functions is not only always 
positive, as in (3.1), but must also have further regularity properties. We say, in short, that 

the ordering of distributions in the family is stronger. 

To illustrate that this stronger ordering of distributions is natural, consider the problem 

of testing hypotheses about the parameter (row number) of the one-parameter family of 
distributions based on one observation of the variable (column number). If the family is 

stochastically increasing, then any one-sided test has a montone (of order 1) power 
function, as one would hope. In the case that this family also preserves order 2 
monotonicity of functions, then any two-sided test has the desirable property that its 

power function is monotone of order :;;;;2, i.e. first decreases then increases. 
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In the case that the family of conditional distributions of J I I= i preserves order 2 

monotonicity of functions, we have 

t/f is Al,=? <f> is .Jtl., 

where s ~ r and r = 1, 2. 

Generally, the ordering of the distributions of 1 \ I= i becomes successively stronger if 

the family preserves order r monotonicity of functions for r = 1, 2, .... The next theorem 

shows that this can be formulated by means of the matrix QR. 

THEOREM 3.1. If the matrix QR is TP,, then 

t/1 is .Al, =? <f> is .Jtl., 

where 1 ~ s ~ t and t = 1, 2, ... , r. 

Proof. Let e = (ei. ... , e"_1)T be the vector of differences 

Bi= <{Ji -<f>i+l (i = 1, ... , n-1), 

and let o = (o 1, ••• , om_ 1)T be the vector of differences 

oi = t/!i -1'i+ 1 (j = 1, ... , m -1). 

Then we have that e = ORo. The result now follows from Lemma 2.3 (i). 

Note that under slight nondegeneracy conditions the converse holds also. In the case 

that OR is STP, we have 

t/f is El .Al,, <f> is .Al,=? <f> is g .lli (t = 1, 2, ... , r). 

We have described forms of regression dependence of 1 on I such that the conditional 

distributions of J I I= i are successively more strongly ordered with respect to the 

categories of I. Similar ordering properties hold with respect to the categories of J when 

the (m - 1) x (n -1) matrix 

Oc is (s)TP, (r = 1, 2, ... ), 

where the matrix Qc is obtained by deleting the last row and column of 

de= 5~1c-lpT5n-

lf the categories of I and 1 can be indexed such that both conditions hold, we have a 

strong ordinal relation between the two categorical variables. In this case we say that the 

variables I and 1 are (strictly) order dependent of order r. The frequency table P then 

satisfies, possibly after a permutation of rows and columns, the following definition. 

Definition 3.2. The frequency table P is called (strictly) doubly ordered of order r 

(abbreviated (s)oo,) if the matrices QR and Oc are both (s)TPr and have rank ?3r. 

The next theorem gives sufficient conditions for a frequency table P to be (s)oo,. 

THEOREM 3.2. If P is (s)TP,+ 1 and rank (P) ~ r + 1 then P is (s)oo,. 

Proof. First consider the case that P is STPr+t· Since Sm is TPm and has rank m, it follows 

from Lemma 2.1 that R- 1PSm is STP,+i· Hence in particular 

i+ k-1 

jk. 
i + k) =QR(~ 
m Ji 

for l~j 1 <j 2 < ... <j"~m-1; i=l, ... ,n-k-1 and k=l, ... ,r. 
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Application of the result of Karlin (1968, p. 60) for fixed indices ii. . .. , ik yields 

Q ( i1 i2 . . . ik)> 
R . . . 0 

h l2 . . . ]k 

for 1.s:; i1 < i2 < ... < ik ..:; n -1 and k = 1, ... , r. It follows that QR is STP ,. The restriction 

that all minors are strictly positive can be dropped by appealing to Lemma 2.4 and 

continuity. The same arguments hold with respect to the matrix Qc. 

3.3 Correspondence analysis and order dependence 

In this subsection we show that the ordering over the categories of the variables I and J, 

which corresponds to order dependence, is reflected in the ordering of the components of 

the correspondence analysis row and column factors. 

THEOREM 3.3. Let the n x m frequency table P be sno,, then correspondence analysis 

applied to P yields: 

(i) eigenvalues 1 = A1 ;:=. A2 > A3 > ... >A,+ 1 > Ar+2• 
(ii) row and column factors u<tl and v<tl which are Y.i1.i_1 and start oscillating in the 

same direction, for t = 2, 3, ... , r + 1. Moreover, for arbitrary real numbers 

ck> ck+i. ... , er (2.s:; k..:; /-=:; r+ 1, Lt c;>o, where the sum is over t = 
k, ... , l), the vectors 

are .;f.,{,., where k - 1 ..:; s ..:; l - 1. 

(iii) In the case that r;;;.2, the row points (column points) in the two-dimensional 

graphical representation of correspondence analysis lie on a strictly convex or a 

strictly concave curve. 

Proof. Let 

d = s;;.1R-1Pc-1pTs,. 

and let Q be obtained by deleting the last row and column of d. We have that Q = QRQc, 

since the (i, m) elements of QR vanish for i = 1, ... , n -1. 

We first prove that for t = 2, 3, ... , min (m, n) the vector x<tl = (x\t>, ... , x~~ 1 ? is an 

eigenvector of Q corresponding to the eigenvalue ,\; if and only if the eigenvector u<tl of 
R- 1 pc~ipT satisfies 

xf•l = ultl- ul~ 1 (i = 1, ... , n-1). 

Note that u<•l is an eigenvector of R- 1 Pc-1 pT corresponding to ,\; if and only if 

.x<•l = s;;.1 u<•l is an eigenvector of Q corresponding to A;. Since R-1pc- 1pT has row sums 

equal to unity, the elements iitn for i = 1, ... , n -1 vanish. Hence the vector (0, ... , 0, l)T 

is an eigenvector of d corresponding to Ai= 1. For t = 2, 3, ... , min (m, n) we have that 

.x<•l = (i\'l, ... , i~~1. x~Y is an eigenvector of Q corresponding to At if and only if 
x<•l = (i~l, ... , i~~1)T is an eigenvector of Q corresponding to A; and (A;-1).x~i = L; xl'l, 
where the sum is over i = 1, ... , n -1. From .x<•l = s;;1 u<•l it follows that 

xl'l = xl'l = ul•l_ ul~1 (i = 1, ... , n-1). 

Note that ,\~ is the largest eigenvalue of Q. 

Since QR and Oc are STP, it follows from Lemma 2.1 that Q is sTP, also. Application of 
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Lemma 2.2 yields A~>Aj> ... >A;+ 1 >A;+2 , and that for arbitrary real numbers 

ck> ck+ i, ••• , c1 (2 ~ k ~ l ~ r + 1), the vector 

I 

x = L c,x(t) 
t~k 

satisfies k - 2 ~ff-;_~ ::F; ~ l - 2. Furthermore, in the case that r;;;;,: 2 we have 

~?x(2i 3i') > o v_ (l~i<i'~n-1); 

that is 

1 ~ i < i' ~ n - 1::} o- 2 x~ 3 J /x~ 2 l < cr 2 x~?l/x~~1, 

and hence the row points in the two-dimensional graphical representation lie on a strictly 

convex or strictly concave curve. 

Since the same arguments hold for the matrix OcQR with eigenvectors y(rl = 

(y\'l, ... , y~{-1)T, where 

Y<'l=v''l-v<'l1 (1· 1 1) 
1 I J+ = , ... , m- , 

similar results hold for the column factors v(t> (t = 2, 3, ... , r + 1). It follows from (2.2) 

that u(' 1 and v(tl start oscillating in the same direction. 

Note that in the case that 1 = A1 = ,\2 > ,\3 , the vectors u<2 > and v<2l are uniquely 

determined, since we agreed that um= e, v 01 = e always. 

THEOREM 3.4. Let the n x m frequency table P be oo,, then there exist row and column 

factors, u(t> and v''\ of correspondence analysis applied to P such that u'•l and v(rl are .J,l,_ 1 

and start oscillating in the same direction, for t = 2, 3, ... , r + 1 . . MoreovPr for arbitrary real 

numbers ck,Ck+ 1, ... ,c1 (2~k:%;/~r+l, .Lc~>O, where the sum is overt= 

k, ... , !), the vectors 

I 

u = L c,u"\ 
t~k 

I 

v = L c,v<n 
t~k 

are At,, where k - 1 ~ s ~ l - 1. Furthermore, in the case that r;;;;,: 2, there exists a two -

dimensional graphical representation of correspondence analysis such that the row points 

(column points) lie on a convex or concave curve. 

Proof. The proof follows from Theorem 3.3, Lemma 2.4 and continuity considerations. 

Remark 1. Note that when A; is a simple eigenvalue, then u<rl and v''l are uniquely 

determined (up to a change of sign) and thus have the stated monotonicity property. 

Remark 2. Gantmacher & Krein (1950) prove Lemma 2.2 in the case that the matrix A 

is TP, and has some power which is STP,. The conditions of Theorem 3.3 imply that QRQc 

and OcOR are both STP,. Since we only need that some powers of these matrices are STP,, 

these conditions are somewhat too strong. However, it seems hard to find simple sufficient 

conditions for Theorem 3.3 which are essentially weaker. 

As was mentioned in the Introduction, the two most important consequences of 

Theorems 3.3 and 3.4 are as follows. First, when the rows and columns of the frequency 

table are permuted, the components of the row and column factors undergo the same 

permutation. It follows from Theorems 3.3 and 3.4 that if a permutation of rows and 

columns exists such that P is soo,, there exists no other permutation such that P is oo,. 
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This unique permutation is then determined by the order of the components of uc2 i and 

vC2l. Thus when the two variables I and J are (strictly) order dependent of order ~1 the 

ordering over the categories of I and J corresponding to the dependence is reflected in the 

order of the components of the first nontrivial row and column factor, u<2 l and v(2). This 

supports the use of the components of u<21 and vc2l as scores for the categories of the 

variables I and J respectively. 

Secondly, if the two variables are (strictly) order dependent of order ~2, a horseshoe 

occurs in the two-dimensional graphical representation of correspondence analysis. 

4 Ordering properties in multicorrespondence analysis 

4.1 Multicorrespondence analysis 

Correspondence analysis can be generalized to the case that more than two variables are 

involved. In order to see how this can be done, we give the following equivalent 

formulation of correspondence analysis. 

LEMMA 4.1. The vectors (u<<lT v«YI\T = (uC<l u<<l vcri vl•l)T wh <n d <o 
' ) 1 ' ..• ' n ' 1 ' ... ' m ' ere u an v 

are solutions of correspondence analysis applied to P corresponding to A.,, are eigenvectors of 

the matrix 
(
R-1 

B= 
0 

corresponding to an eigenvalue 1 +A, for t = 1, 2, ... , min (m, n). 

Proof. Trivial. 

Note that (uc'JT, -v<'l")T is an eigenvector of B corresponding to an eigenvalue 1 - A,, 

for t = 1, 2, ... , min (m, n). Furthermore if min (m, n) = m, the vectors (u<•n, O")T are 

eigenvectors of B corresponding to an eigenvalue 1 (t = m + 1, ... , n). 

Now consider the case that we have a k-dimensional frequency table P of size 

m 1 x m2 x ... x mk. Let the variables 1i.12, ... , Jk denote the variables indicating the 

category numbers on the dimensions 1, 2, ... , k of P respectively. Furthermore, let Pi1 

denote the mix m1 marginal bivariate frequency table of the variables Ji and Ii, for 

j, l = 1, ... , k. Note that 

Pjz=Pr 0,1=1, .. .,k). 

Denote by Ci the diagonal matrix Pii (j = 1, ... , k), and denote by C the diagonal matrix 

of size m x m, where m =Ii mi with the sum over j = 1, ... , k, with diagonal elements the 

diagonal elements of C i. C2 , •.. , Ck. Assume that C is nonsingular. 

Definition 4.1. A solution of multicorrespondence analysis applied to the k

dimensional frequency table P consists of real vectors 

vO,•l = (vo, o v<L •l)T v<k,tl = (vik, rl v<k. n)T 
l '· • ·' m 1 '· • ·' 1 '· · ·' mk 

called the variable factors, for t = 1, 2, ... , m, such that the vectors v«l = 

(v<ulT, ... , v(k.rl")T satisfy 

C' 
P12 P,) 

A v<'l = c-1 P21 C2 P2k 111 
(4.1) t • . v ' 

pkl pk2 ck 
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where At is maximal subject to 

v(tlTcv<0 =k, v«ncv(sl=O (s=l,2, ... ,t-1). 

Let the m x m matrix B denote the product of the two matrices written on the 
right-hand side of (4.1). Note that the eigenvalue problem (4.1) is equivalent to corres

pondence analysis applied to the symmetric matrix CB, only the row and column factors 
differ by a factor k-1 from the variable factors v<tl and the eigenvalues differ by a factor 

k- 1 (t = 1, 2, ... , m). Therefore, all the eigenvalues At of multicorrespondence analysis 
are positive and the first variable factor can be taken trivially as vrn = e with A1 = k. 
Furthermore it follows that 

Aie TCivU.tl = e TC/Cj1 Pi1' ... , Cj 1Pik)v<rl = eTCv(tl = 0 (j = 1, ... , k; t = 2, 3, ... , m). 

Thus the nontr~vial factors of each variable are also centred. 

The interpretation of multicorrespondence analysis variable factors differs somewhat 

from the interpretation of the row and column factors in correspondence analysis. The 

first nontrivial variable factors vCi·21 (j = 1, ... , k) can be interpreted as 'optimal' scores for 

the categories of the variables J 1' ... , Jk: they define derived variables such that the first 
principal component of their correlation matrix has maximal variance (Hill, 1974). Note 
that the technique considers only marginal bivariate associations. 

Similarly to correspondence analysis, the variable factors v<i-•l (j = 1, ... , k; 
t = 2, 3, ... , q + 1) of multicorrespondence analysis are displayed in a q-dimensional 

graphical representation. 

For further results and properties of multicorrespondence analysis we refer to Gifi 

(1981), Kester & Schriever (1982) and Lebart et al. (1977). 

4.2 Multicorrespondence analysis and multiorder dependence 

In § 3.3 it was proved that (strict) order dependence of order r in the frequency table 

implies that for t = 1, ... , r the tth nontrivial row and column factor are (strictly) 
monotone of order t. In the present subsection we show that a similar property holds for 

multicorrespondence analysis with respect to a (strictly) multiorder dependence of order 
1. However, it need not hold with respect to multiorder dependence of higher order. 

Definition 4.2. The k-dimensional frequency table P is called (strictly) multivariate 

doubly ordered of order r, abbreviated (s)MDO,, if all the marginal bivariate frequency tables 

Pil (jf l;j,l=l, .. . ,k) are (s)oo,. 

The variables 11, 12 , ... , Jk are called (strictly) multiorder dependent of order r if the 
categories of the variables can be indexed such that P is (s)MDo,. This form of dependence 

considers only marginal bivariate associations. 

THEOREM 4.2. Let the k-dimensional frequency table P be SMDOi, then multicorrespon

dence analysis applied to P yields: 

(i) eigenvalues k = A 1 ;:;;,: A2 > A3, 

(ii) first nontrivial variable factors vU-2 l (j = 1, ... , k) which are all strictly increasing or 

all strictly decreasing in their components (i.e. they are all Y .Ad 1 and start oscillating 

in the same direction). 

Proof. Let S denote the m x m block matrix with diagonal blocks Sm,, Smo, ... , Sm. and 
all off-diagonal blocks zero. Furthermore, let Q denote the m x m matrix 6 = s- 1 BS, and 
let the matrix Q of size (m - k) x (m - k) be obtained by deleting the rows and columns 
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corresponding to the k indices m1, m 1+m2, ... ,m1+m2+ ... +mk. Similarly to the 

first part of the proof of Theorem 3.3 it follows that (ii) holds if and only if the eigenvector 

of Q corresponding to the largest eigenvalue A.2 is strictly negative or strictly positive. 

Since the marginal frequency tables P;1 (ji= l; j, l = 1, ... , k) are sno1 it follows that the 

elements of Q are positive; the elements of Q are even strictly positive except on diagonal 

blocks. It follows that 0 2 is STP1. 
Application of Lemma 2.2 with r = 1 (i.e. the theorem of Perron-Frobenius) to 0 2 

yields the result (ii) and A2 > A3 . 

THEOREM 4.3. Let the k-dimensional frequency table P be MD01 ; then there exist variable 

factors v0•2 i (j = 1, ... , k) of multicorrespondence analysis applied to P which are all 

increasing or all decreasing in their components (i.e. they are all .M1 and start oscillating in 

the same direction). 

Proof. The proof follows from application of Lemma 2.4, Theorem 4.2 and continuity 

considerations. 

These theorems show that the order of the components of the variable factors v<i-2l 

reflect the correct ordering of categories, in the case that the variables Ii. . .. , Ik are 

(strictly) multi-order dependent of order ~l. This supports the use of multicorrespondence 

analysis as a one-dimensional scaling technique. 
We now briefly explain why these results can not be extended to multiorder dependence 

of order 2, i.e. the variable factors v0-3 l (j = 1, ... , k) of multicorrespondence analysis 

applied to a k-dimensional frequency table P need not be 9'.M2 when P is SMD02 . For 

instance, suppose that v<i.3l is 9'.M2 for j = 2, 3, ... , k. It follows from the eigenvalue 

problem (4.1) that k 

(A3- l)v(l,3) = L c;:-1 P1;V(j,3). 
i=2 

Although the vectors C1 1P 1;v0·3l (j = 2, 3, .. ., k) are f:f..4l2 , their sum v0 ·3 ' need not be 

f:/.M2 . Examples of this can be given. But if the vectors Ci1P 1iv<i.3l (j = 2, 3, ... , k) all 

attain their maximum (minimum) at the same place, then v0 ·3l is actually ff .M2. 

Furthermore, since v<i.tl and v<i·•l, t=/= s, need not be orthogonal with respect to C; it is 

possible that v<i.3l is also f:f .M1. 

Even in the case that stronger forms of multivariate dependence are present in the 

k-dimensional table P, for example the form of dependence such that for every pair of 

variables I; and Ii. for j =f l, the conditional joint distribution of I; and I 1 given the 

remaining variables is sno,, or the still stronger form in which P is STP,+ 1 in every pair of 

variables where the remaining variables are kept fixed, then we still have that the variable 

factors v0·1l need not be f:f .Mi-i. for t = 3, ... , r. An example of this is a discretization of a 

particular four-dimensional normal distribution given by Gifi (1981, p. 370). 

These considerations indicate that we need some unnatural condition in addition to 

multivariate ordinal dependence in order to get higher order monotonicity results for 

multicorrespondence analysis. It is not the definition of multiorder dependence which is at 

fault, but the actual technique multicorrespondence analysis. It might be more appropriate 

to seek for another technique which analyses multivariate ordinal dependence using more 
information than just bivariate marginals. 

5 (Multi-) order dependence in practice 

In this section we give two important examples of probability models for (s)no frequency 

tables. These examples can easily be extended to the multivariate case. The proofs of the 
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results mentioned in this section are given by Schriever (1982). In these examples it is 
easier to verify that the frequency tables are (s)TP,ci for some r, which implies, by 
Theorem 3.2, that they are (s)oo,. 

A class of probability models for frequency tables is obtained by making a discretization 

of bivariate density functions. Let f be a bivariate density function with respect to a 
product measure a 1 x a 2 on !l~f. The frequency table P is said to be a discretization off if 
there exists two partitions {E;}, for i = 1, ... , n, and {Fj}, for j = 1, ... , m, of~ such that 

Pii =f. f f(x, y) da2(Y) da1(x), a 1(E;)>O, a 2(Fj)>O 
Ei Fi 

(i = 1, ... , n; j = 1, ... , m). 

It turns out that discretizations of bivariate densities are actually STPmin(m,nl' or have some 
power which is STPrnin(m,nJ' when the density f is (s)TP and the elements of the partitions 
{E;} and {Fj} are ordered correctly. Examples are: the bivariate normal, the trinominal, 
the negative trinominal and various types of the bivariate F, the bivariate gamma, the 
bivariate beta, the bivariate logistic, the bivariate Pareto, the bivariate Poisson and the 
bivariate hypergeometric distribution. 

Another more specific example for a frequency table P is the linear by linear interaction 

model 
(i=l, ... ,n; j= l, .. .,m) 

where 
2.; a; = 2.i (3i = 2.; 'Yi = 2.i oi = 0. 

The frequency table P is STPrnin(m.nl if the rows and columns are indexed such that -y, and oi 
are both strictly increasing or both strictly decreasing in their indices. Goodman (1981) 
compares maximum likelihood estimates of 'Y; and oi in this model with the first nontrivial 
row and column factor of correspondence analysis. Furthermore he discusses the ordering 
of rows and columns which is present in this model by means of the TP2 and 001 property, 
however he does not prove that this ordering is reflected in the first nontrivial row and 
column factor of correspondence analysis. 

Acknowledgements 

I am very grateful to Dr. RD. Gill and Prof. dr. J. Oosterhoff for their suggestions and support of this work. I 
also thank Prof. dr. J. De Leeuw for his valuable suggestions. 

References 

Benzecri, J.P. (1973). L'Analyse des donnees II: !'analyse des correspondances. Paris: Dunod. 
Fisher, RA. (1940). The precision of discriminant functions. Ann. Eugen. 10, 422-429. 
Gantmacher, F.R (1977). Matrix Theory, 1, 2. New York: Chelsea. 
Gantmacher, F.R & Krein, M.G. (1950). Oscillation Matrices and Kernels and Small Vibrationis of Mechanical 

Systems; transl. from Russian, issued (1961), AEC-tr-4481, by US Atomic Energy Commision, Washington. 
Gifi, A. (1981). Non-linear multivariate analysis. Dept. of Data Theory, University of Leiden. 
Goodman, L.A. (1981). Association models and canonical correlation in the analysis of cross-classifications 

having ordered categories. J. Am. Statist. Assoc. 76, 320-334. 
Hill, M.O. (1974). Correspondence analysis: a neglected multivariate method. Appl. Statist. 23, 340-354. 
Hirschfeld, H.O. (1935). A connection between correlation and contingency. Proc. Camb. Phil. Soc. 31, 

520-524. 
Karlin, S. (1968). Total Positivity, 1. Stanford University Press. 
Kester, N.K. & Schriever, B.F. (1982). Analysis of Association of Categorical Variables by Numerical Scores and 

Graphical Representation, report SW85. Amsterdam: Mathematisch Centrum. 
Lebart, L., Marineau, A. & Tabard, N. (1977). Techniques de la description statistique. Paris: Dunod. 
Lehmann, E.L. (1966). Some concepts of dependence. Ann. Math. Statist. 37, 1137-1153. 
Schriever, B.F. (1982). Ordering Properties in Correspondence Analysis, report SW80. Amsterdam: Mathematisch 

Centrum. 



238 B.F. SCHRIEVER 

Resume 

Dans cet article nous introduisons des fac;:ons successivement plus forts de dependence ordinale entre deux 

variables categoriques qui induisent des ordres successivement plus forts des modalites des variables. Dans notre 

theoreme principal s' avere que dans le cas ou ces fac;:ons de dependance figurent aux tableaux de contigence, Jes 

ordres sont ref!ectes dans la solution de ]'analyse des correspondances. Cela explique deux phenomenes d'ordre 

importants qui se presentent souvent en pratique. En plus on donne une generalisation multivariate du theoreme 

principal. Les resultats de cet article supportent l'application de ]'analyse des correspondances (multiples) comme 

une technique qui construit des echelles pur des variables categoriques. 
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