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Scaling of Quasi-Brittle Fracture 
and the Fractal Question 

Zdenek P. Bazant 
Waiter P Murohy P'ciessor ot Civil 
Engineering ana Mater:a;s Scence. 

Nort~'Nester,l unlvo:Slty. 
banstcn. IL 50208 

The paper represents an extended text of a lecture presenting a review of recent 

remits un scaling offailure in structures made of quasibrittle matenals. characterz:ed 

by a large fracture process ~one. and examining the question of p~ssible role of Ihe 
fractal nature of crack surfaces in the scaling. TJ"f problem of scaling IS approached 

through dimensional analysis. the laws of thennodynamlcs and asymptotic matching. 
Large-si;.e alld smail-si::.e asymptotic expansions of the si~e effect on the nominal 
strellgth of structures are given. for specimens with large notches (or tractIOn-free 
cracks) as well as :.ero notches. and simple si::e effectfonnulas matching the requIred 

asymptutic propenies are reponed. The asymptotic analysis is carried out. in general. 
for fractal cracks. and the practically important case of nonfractal crack propagatIon 

is acquired as a special case. Regarding the fractal nature of crack surfaces in 

quasibrittle I1ILJterials. the conclllsion is that it cannot playa SIgnification role m 

fracture propaganon and the observed si::.e effect. The reason why We/bull statistical 

theurv of random I1ILJterial strength does not explain the sl~e effect In quaslbmt!c 
failu;es IS explained. Fillallv. some recent applications to fractllre. simulation uv 
panicle models I discrete element method) a.'1d ro the detennlnatlO~ oJ sl::.e effect Q.'zJ 

fracrure characteristics of carbon-epoxy composIte laminates are onefiy revIewed. 

1 Introduction 

Scaling is the esser:tial characteristic of every physical theory. 
However. in mechanics of materials. little attention has been 
paid to the scaling of failure. )Vlore than a dozen years ago. the 
observed effect of strucrure size on the nominal strength of a 
strucrure had generally been ex.plained by Weibull-type theories 
of random strength. However. careful recent analysis (Balant 
and Xi. 1991) indicates that this Wei bull-type theory does not 
caprure the essential cause of size effect for quasibrittle materi­
als such as rocks. toughened ceramics. concretes. mortars. brittle 
fiber composites. ice (especially sea ice). wood particle board 
and paper. in which the fracture process zone IS not small com­
pared to structural dim-.!nsions and large stable crack growth 
occurs prior to failure. Rather. the dominant source of size effect 
in these materials is deterministic and consists in the global 
release of stored energy from the strucrure as a result of large 
fracture and the associated redistribution of stresses. 

Approximate analysis of the global energy release was shown 
to le:ld to a simple size effect law (Balant 1983. 1984) for 
quasi-brittle fracture. This law subsequently received extensive 
justifications. based on: ( 1 ) comparisons with tests of notched 
fracture specimens of concretes. mortars. rocks, ceramics. fiber 
composites (Baiant and Pfeiffer. 1987: BaZant and Kazemi. 
1990a.b; Balant et al .• 1991; Genu et al .. 1991. Balant et al .. 
1994; Balant et al.. 1995) as well as unnotched reinforced 
concrete structures. (2) similirude in energy release and dimen­
sional analysis. (3) comparison with discrete element (random 
particle) numerical model for fracrure (Bafant et aI.. 1990: 
Iirisek and Balant. 1995). ( .. ) derivation as a deterministic 
limit of a nonlocal generalization of Wei bull statistical theory 
of strength (Balant and Xi. 1991). and (5) comparison with 
finite element solutions based on nonlocal model of damage 
(Balam et al.. 1994). The simple size effect law has been 
shown useful for evaluation of material fracture characteristics 
from tests. Significant contributions to the srudy of size effects 
in quasi-brittle fracrure have also been made by Carpinteri 
(1986). Planas and Elices (1988a.b). van Mier ([986) etc. 
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Recentlv. the fra.:tal nature of ~rack surfaces in quasi'oritrie 
materiais (Mandelbrot et a1. 1984: MecholsKy and ~1ackin. 
1988: ~Iolosov and Borodich. 1992: Borodich. 1992: Xie. 1993. 
etc.) has been studied and it has been suggested that the crack 
surface fractal it: might be an alternate source of the observed 
size effect (Carpinteri. 1994; Carpinteri et al.. 1993. 19~5: 

Lange et a1.. 1993. and Saouma et al .. 1990. 1994). 
This paper. which represents the expanded text of a lecrure 

at the Diamond Jubilee Symposium of ASME Materials Divl­
,ion held in San Francisco in ~ovember. 1995. presentS a gener­
alized asymptotic theory of scaling of quasibrittle fracrure and 
also explores the possible roie of the crack surface fractality in 
the size effect. Some selected applications to particulate mater.ai 
models and to fracrure testing of fibre composite laminates are 
also briefly demonstrated. 

2 Large-Size Asymptotic Expansion of Size Effect 

for ~onfractal and Fractal Fracture . 

) For the sake of generality we will conduct the analysis for 
fractal cracks and the noniractal case will then simply ensue as 
a limit case. Let us consider a crack representing a fractal curve 
(Fig. 1) whose length is defined as a~ = /jo(a//jo)": where d( 
= fractal dimension of the crack curve (;;: 1) and 64') = [ower 
limit of fractality implied by material microstrucrure. which 
may be regarded as the length of a ruler by which the .:nck 
length is measured (Mandelbrot et aI .. 1984). Unlike the ca!-e 
of classical. nonfractal fracrure mechanics. the energy dissipated 
per unit length of a fractal crack cannot be considered a.s J 

matenal constant because the length of a fractal curve is int1nlte. 
Rather. the energy hi dissipated by a fractal crack in a two­
dimensional body of thickness b needs to be defined as 

II) 

where Gft = fractal fracture energy. of dimension 1m -d!-l . A 
nonfractal crack is the special case for df = 1. and in that case 
Gft reduces to G/. representing the standard fracrure energy. of 
dimension Jm-~. Fractality of the crack surface profiles across 
tluckness b is not considered. 

The following three hypotheses will be introduced: 
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Fig. 1 Von Koch curves .s examples of fractal crack at progressive 

refinement 

I. Within a cenain range of sufficiently small scales. the 
failure is caused by propagation of a single fractal crack. 

2. The fractal fracture energy. GIl is a material constant 
correctly defining energy dissipation. 

3. The material may (although need not) possess a material 

length. cf· 

The rate of .macroscopic energy dissipation 'fer with respect 
to the "smooth·, (projected. Euclidean) crack length a is: 

101ft d _I 

'1 = - -- = GI/dfa f 
er b oa 

(2) 

(e.g., Borodich. 1992; Molosov and Borodich. 1992). To char­
acterize the size effect in geomeuically similar strucrures of 
different sizes D (characteristic dimensions), we introduce, as 
usual. the nominal stress (TN = PlbD where D = characteristic 
size (dimension) of the structure. P = dead load applied on the 
struCture (or load parameter). and b = structure thickness in 
the third dimension (we resuict attention to two-dimensional 
similarity; generalization to three-dimensional similarity is ob­
vious). Wheo P = P_ = maximum load. (TN = nominal 
strength. 

The materia1length, C f. may be regarded as the size ( smooth. 
or projected) of the fractal fracture process ZOne in an infinitely 
large specimen (in which the structure geometry effects on the 
process zone disappear). The special case C f = 0 represents 
fractal generalization of linear elastic fracture mechanics 
(LEFM). Alternatively. if we imagine the fracture process zone 
to be described by smeared cracking or continuum damage 
mechanics. we may define cl = (G"IWd)/(~-df) in which W.­
= energy dissipated per unit volume of the cootinuum represent­
ing in a smeared way the fracture process zone (area under 
the complete streSS-strain curve with strain softening). As still 
another alternative. in view of nonlinear fracture mechanics 
such as the cohesive crack mode). we may define c, = 
(EG"ln>I/Il-'-,) in which E = Young's modulus and f, = 
material tensile strength.. 

"There are two basic:- variables. a and C I. both having the 
dimension of Euclidealt length. We will introduce two dimen­
sionless variables: a=- (l/D and 9:0 clD. According to Buck­
ingham's theorem of dimensional analysis (e.g .• Sedov. 1959; 
Barenblatt. 1979). the complementary energy n· of the struc­
rure with a fractal crack may be expressed in the form: 

(3) 

in which f is a dimensionless continuous function of a and 8. 
char.lcterizing the geometry of the structure and loading. 

The laws of thermodynamics must be satisfied by non fractal 
as well as fractal cracks. Let us begin with the first law. i.e., 
energy balance. In this respect. note that the energy release 
from !be structure as a whole must be calculated on the basis 
of a rather than at. Indeed, the smooth length a is the length 
that matters for the overall strain energy of the elastic stress 
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field on the macroscale. Therefore. an·{ aa 0: 0 7l'f{ oa, Substi· 
tuting (2) and differentiating. we obtain 

(T~ a-~ O(T" t Dg(a, 8) + :'Dlf(a. 9) E 8a 0: "cr 

in which g(a. 8) = of (a, 8)toa = dimensionless energy re­

lease rate. 
According to the second law of thermodynamics. the condi­

tion of stability of equilibrium state of a structure is equivalent 
(e.g .• Ba!ant and Cedolin. 1991. chapter 10) to the condition 
8Pt8a > O. At the stability limit, 8Pt8a = 0 which coincides 
with the condition of maximum load. Therefore. if we are inter­
ested in the size effect on the load at the limit of stability. that 
is, the maximum load or nominal strength. we have the condi­

tion au"t aa = O. So, Eq. (4) gives: 

Er;" 
(TN = 

D,(ao. (J) 

where ao = relative crack length a at maximum load. 

3 Fractal and Nonfractal Scaling Laws 

(5 ) 

Because function g( ao. 8) ought to be smooth, we may ex­
pand it into Taylor series about the point (a. 8) !E (ao, 8), Eq. 
( 4) thus provides: 

(6) 

in which gl(ao. 0) = og(ao. (J)/88. g2(aO. 0) = alg(aQ. 8){ 

O(J2, ...• all evaluated at 8 = O. The last equation represents 
the large-size asymptotic series expansion of size effect. To 
obtain a simplified approximation. we now truncate the asymp­
totic series after the linear term. Then. with the notations: 

II = c 81(ao.O, Bf' = EG, (7) 
o , g(ao. 0) • t cI8.(ao.0) 

the following size effect of fractal frac~re is obtained: 

( 
D)-1/2 

U1l = Bf:D(.-,-1l/2 1 + Do (8) 

For the nonfractal case, d, .... I. this reduces to the size effect 
law deduced by Ba!ant (1983. 1984). which reads . 

Bf; D 
UN=-. /3 =-

vI + /3 Do 
(9) 

in which {3 is called the brittleness number (Balant 1987: Ba­
zant and Pfeiffer. 1987). 

For geomeuically similar fracrure test specimens, ao is con­
stant (independent of D). and so is Do. For brittle failures of 
geo~euically similar quasibrittle strucrures without notches. it 
is often observed that the crack lengths at maximum load are 
approximately geomeuically similar. For concrete structures. 
the geometric similarity of cracks at maximum load has been 
experimentally demonstrated for diagonal shear of beams, 
punching of slabs. torsion, anchor pullout or bar pullout. and 
bar splice failure. and is also supported by finite element solu­
tions (e.g., ACt 1992; Balant et al .• 1994> and discrete element 
(random particle) simulations (Ba1ant et al., 1990). albeit for 
only a limited size range of D. Thus. k, Co. Do. u~ and BI: 
are all constant. In these typical cases. (8) and (9) describe the 
dependence of UN on size D only, that is. the size effect. Figure 
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d, = fractal 
dimension 
of crack 

0, Do log 0 

FIg. 2 SIze effect curves obtained for geometrica'ly similar specimens 
with nonfraetal and fractal cracks and finite size of fracture process zone 
(possible transition to horizontal line for nonfractal behavior is shown 

forD < 0,) 

2 shows the size effect plot of log rI,,, versus log D at constant 
ao. Two size effect curves are shown: ( 1) the fractal curve and 
(2) the nonfractal curve (for which the possibility of a cut-off 
of fractality at the left end is considered in the plot). 

The curve of fractal scaling obtained in Fig. 2 does not agree 
with the bulk of the aforementioned experimental evidence (for 
concrete. see e.g., Bafant et al., 1994). lust to give some exam­
ple, Fig. 3 shows the data for size effect measured on double 
edge-notched and single edge-notched tensile fracture speci­
mens of carbon fiber epoxy composites used in aerospace indus­
try (Bafant et al., 1995), and Fig. 4 shows the data for size 
effect measured by BaZant and Pfeiffer ( 1987) on three types 
of fracture specimens of concrete and mortar. So it must be 
concluded that the size effect is not significantly affected nor 
explained by the fractal nature of crack surfaces in quasibrinle 
materials. 

The aforementioned objection to the fractal hypothesis is not 
the only one. The fracture front in quasibrinle materials does 
not consist of a single crack. but a wide band of microcracks, 
which all must form and dissipate energy before the fracture 
can propagate. Only very few of the microcracks and slip planes 
eventually coalesce into a single continuous crack. which forms 
the final crack surface with fractal characteristics. Thus, even 
though the final crack surface may be to a large extent fractal. 

0.0 .---,---..,..---r---....,....---. 

~-O.l 
CD 
...... 

Z 
tI 

.. -0.2 
~ 

-0.3 

-0.4 '--_-'-__ -'-_--' __ -'-_----l 

-1.2 -o.a -0.. 0.0 0.4 o.a 
10, (D/Do) 

FIg. 3 SIze etr.ct on --.. IhnVIh ~ on -.ply ~ 
mens of ~llY composite ......... with double edge notches 
(1he circles show 1he ~ v--. Mel 1he vertIc* segments show the 
rnuImum rnch of random sartt.r). After a.unt, DarMI end U (19M) 
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Fig.4 Size effect on nornlrwl strength mnsured on concrete and mortar 
specimens (totr. ttIree-9oint bend specimens, middle: double edge­
notched centric tension specimen.. bottom: eccentric compression 
symmetrically edge-notched specimens: d. = muimum aggregate size). 
After Baiant and Pfeiffer (1887). 

the fractality cannot be relevant for the fracture process zone 
advance. Most of the energy is dissipated in the fracture process 
zone by microcracks (as well as plastic-frictional slips) that do 
not become pan of the final crack surface and thus can have 
nothing to do with the fractality of the final crack surface. 

So it appears one ought to distinguish two types of fractality: 
( I ) Fractality of the final crack surface. which is an undisputed 

~orphological feature (although only for a limited range of 
scales); and (2) fractality of the fracture process controlling 
energy dissipatioD_ The latter cannot be a significant property 
of quasibrinle materials. 

There is another. conceptUal, problem. Unlike the sh6reline 
of England, the crack must have a morphology that is kinemati­
cally admissible. such that the zones of material adjacent to the 
crack face could move apan as two rigid bodies. But a fractal 
curve can have recessive segments and even spiraling segments 
which preclude such movemenL 

4 Extensions and Ramifications of Asymptotic Anal­
ysis 

Material length c,ean. in particular, be rigorously and unam­
biguously defined as the LEFM-effective length (measured in 
the direction of propagation) of the fracture process zone in a 
specimen of infinite size. In that case. (} = c,tD = (a - Q,)/D 
= a - ao, and so g(a, 9) reduces to the LEFM function of 
one variable. g(a). Also, g(ao. 0) reduces to g(ao). {)/{)9 = 
d/da. and gl(a. 0) takes the meaning of g'(a) = dg(a)/da. 
Equation (7) thus yields: 
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g'(ao) 
Do = c,--, 

g(ao) 

~o _ 
v,v -

and so Eq. (8) takes the fonn: 

g'(ao)c, + g(ao)D 

( 10) 

(11 ) 

The advantage of this equation is that its parameters are directly 
the material fracture parameters. For d, = I. Eq. (II ) reduces 
to the fonn of size effect law derived in a different manner by 
BaZant and Kazemi (1990. 1991) (also Eq. 12.2.11 in BaZant 
and Cedolin. 1991). Fining this equation to size effect data. 
which can be done easily by rearranging the equation to a linear 
regression plot. one can detennine G,or G" and c,. This serves 
the basis of the size effect method for measuring the material 
fracture parameters. which has been adopted by RlLEM as an 
international standard for concrete. 

Alternatively. one may introduce more general dimensionless 
variables ~ = 8' = (c,/D),. h(ao. {) = [g(ao. 8)],. with any 
r> O. Then. expanding in Taylor series function h(ao. {) with 

. respect to ~. one obtains by a similar procedure as before a 
more general large-size asymptotic series expansion (whose 
nonfl"3ctal special case was derived in Batan!, 1985. 1987): 

(jN = (jp[(3' + I + 1(1(3-' + 1(j3-~' + 1(3{3-3, + ... ]-112, (12) 

where (3 = D / Do and K" 1(2 •... are certain constants. However. 
based on experiments as well some limit properties. it seems 
that r = 1 is the appropriate value for most cases. 

It may be noted that, by retaining more terms of the large­
size asymptotic expansion (12). the accuracy can be improved, 
but only for large D. The expansion in Eq. (12) diverges for 
D -+ O. To get a better description of the size effect for small 
D. one needs a small-size asymptotic expansion. 

The previous energy release rate equation «(j~/E)Dg(a. 19) 
= 90'" (Eq. 4) is not me:mingful for constitutive models such as 
the smeared craCking or the continuum damage mechanics. For 
such models. the material failure must be characterized by H, 
rather than G,. Therefore. instead of Eq. ( 4 ). the energy balance 
equation (first law) for o(jNloa = 0 (second law) must now 
be written in the form (jU",(a. 1/»)'IE ... W,wbere "'(a. 11) = 
dimensionless funcnon of dimensionless variables a = a/ D and 
11 = (Dlc,Y = 19-' (vanable 19 is now unsuitable because 19 ..... 
x: for D -+ 0). a'ld exponent r > 0 is introduced for the sake 
of generality. same ti before. Because, for very small D. there 
is a diffuse failure zone, a must now be interpreted as the 
characteristic size of the failure zone, e.g., the length of cracking 
band. The same procedure as before now furnishes: 

(jN = (jp[l + {3' + bJ31' + bJJl' + ... r"l , 

in which b2 • bJ •••• are certain constants and 

(13 ) 

(14) 

Equation (14) represents the small-size asymptotic series 
expansion. This expansion of course cannot correct1y describe 
the asymptotic limit for D ..... <lO. 

. One impo~t common feature of the large-size and small­
size asymptonc series expansions in Eqs. ( 12) and ( 14) is that 
they have in common the first two terms. Thus if either series 
is truncated after the second term. it reduces to the same general­
ized size effect law (Batant, 1985): 
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(jv = O"p( I + ,3,)-11:' (/3 = DIDo) (is) 

Since this law. including its special case for r = 1. is anchored 
to the asymptotic cases on both sides and shares with both 
expansions the first two tenns. it may be regarded as a matched 
asymptotic. that is. an intennediate approximation of unifonn 
applicability for any size of the structure (e.g .. Bender and 
Orszag. 1978; Barenblatt, 1979). Based on experience. the 
value r = I appears. for various reasons. most appropriate for 
practical use. 

In some types of failure. such as compression failures and 
especially the brazilian split-cylinder test. a plastic mechanism 
can operate simultaneously with fracture. In that case. the fol­
lowing generalization with nonzero residual nominal strength 
(j, may be used (Balanr. 1987): 

(16) 

Unnotched quasibrittle structures that reach the maximum 
load when the crack initiates from a smooth surface. as exempli­
fied by the bending test of modulus of rupture f, of a plain 
concrete beam. require a different approach. Applying the size 
effect law in Eq. (8) or (9) for the case ao -+ 0 is impossible 
because g(ao. 0) vanishes as ao -+ O. To deal with this case. 
one must truncate the large-size asymptotic series expansion 
only after the third term. Then. considering that r = 1 and g (ao. 

0) = O. and restricting attention to the nonfractal case. the same 
derivation as that which led to Eq. (1 I ) furnishes 

(j.\. = = erN 1 - - (17) 1 EG, z ( 2Db)-"2 

g' (O)~ + ~ g"(O)cjD- 1 D 

in which (j~ = vEG,lg'(O)c, and Db = -[g·(O)/4g'(0)J~. 
with subscript b referring to !be boundary layer. in which the 
crack tip is located during crack initiation; and ~, = KC, where 
I( = constant ~ I but close to I. The reason that ~, ~ c, is that 
the fracture process zone for fracture initiation without a notch 
may be expected to be larger than for a crack starting from a 
notch. It is now convenient to introduce the approximation (I 

- ~) -1/2 ... 1 + ~ with ~ ::: Dbl D. which is admissible because 
it does not change the size effect for large D. The resulting size 
effect law for failures at crack initiation from a smooth surface 
is 

I7N = 8/~ (1 + ~) =/~ [1 -·O.0634g"(O) ~] (18) 

The first part of this equation was derived by Batant et al. 
~ 199~) in a different manner; I ~ is the modulus of rupture for 
mfirutely large beam (but not so large that Weibull statistical 
size effect would become significant). and 8 is a dimensionless 
parameter. It is important to note that the limiting value g' (0) 
is shape independent, and so is 81 ~. provided .that the crack 
does not initiate from a sharp comer tip; always g' (0) = 1.122;r 
which leads to the last expression in (20). This equation can 
be arranged as a linear regression of (j N versus liD. which is 
again helpful for easy identification of the constants from tests. 

By matching of the three asymptotic expansions. namely: ( I ) 
the large-size expansion for large «10, (2) the large-size expan­
sion for vanishing ao. and (3) the small-size expansion for large 
ao. the following approximated universal size effect law valid 
for failures at both large cracks and crack initiation from a 
smooth surface may be derived: 

(jN = (jo( 1 + ~) -Ill 
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where. denoting g = g(ao). g' = g'(ao>. g~ = i'(O). g" = 

g"(ao>' 

@;.Dg'DI/(g")--("")_O) 
Jo = Cy V crg " Q = g cr· • = 4g;- Cr· Cj = KCf 

v( gO) = (- g") = negative part of g"; TJ = empirical constant 
close to 1; K = I for ao 2: cf. K = constant > I for ao = ° (/( 
... IA). 

Equation (19) can be proven by expressing J.v1 in terms of 
Ii and expanding it into Taylor series in .,J about point f} = O. 
This vields ( II) if ao > O. and J.v/ f; ..., I + Db/( D + ."Db) 

if ao '= 0. The laner differs from ( 18) by constant .". but this 
does not affect the first two terms of the ex.pansion in D-

1 
in 

the denominator in Eq. ( 17). Introducing constant ." achieves 
that (j.v be finite for D -+ 0. for both ao > 0 and ao = O. The 
reason for introducing the negative pan of g" is that for go > ° the crack cannot initiate at the surface (because the stresses 
before fracture are not maximum at the surface). 

5 Review of Some Recent Applications 

5.1 Size Effect Tests of Fracture Characteristics of Car­
bon-Epoxy Laminates. Measurements of the size effect on 
the nominal strength of notched geometrically similar speci­
mens of fiber composite laminates were conducted by Bafant 
et al. (1995). Tests were made on graphite/epoxy laminates 
made of 0.127 mm thick unidirectional plies. The specimens 
were rectangular strips of 0.25. 0.5. I. and 2 in. widths and 1. 
2. 4. and 8 in. lengths. One set of specimens had double-edge 
notches and a [O/~]. cross-ply layup. and another set of speci­
mens had a single-sided edge notch and a [0/=:45/90]. quasi­
isotropic layup. 

A significant size effect was observed in these tests. It was 
found to approximately agree with Eq. (9) and (11); see Fig. 
3. Optimum fits of the test results with the size effect fonnula 
in Eq. (11) were obtained, and the size effect law parameters 
determined by linear regression were then used to identify the 
material fracture characteristics. particularly the fracture energy 
Gt and the effective length cl of the fracture process zone. 
Because the crossply laminate is not isotropic but orthotropic. 
the LEFM energy release rate function g(a) was determined 
according to the recent solution of the stress intensity factor for 
orthotropic specimens of the geometry used. which had been 
obtained by Bao et al. (1992). Comparisons of the test results 
to the size effect law for the cross-ply and quasi-isotropic lami­
nates are shown in Fig. 3. in which the circles represent the 
nominal strengths measured in individual tests. 

The R-curves were detennined on the basis of the maximum 
load data (Fig. 3). using the procedure proposed in Bafant and 
Kazemi ( 1990). 

The results show that in design situations with notches or 
large traction-free cracks the size effect on the nominal strength 
of fiber composite laminite! must be taken into account and 
can be described by the size effect theory expounded here. 

5.2 Size E1fec:t in Particulate Material ModeL Fracture 
of quasi brittle materials exhibiting a large zone of distributed 
cracking can be effectively simulated by the particle model. 
representing an adaptation of the discrete element method. It 
has been demonstrated that the size effect exhibited by particle 
models agrees quite well with the size effect law in Eqs. (9) 
or (11) (Bahnt et al .• 1990). This model was extended and 
refin~ in a receot study by Jinisek and Bahnt ( 1995) and was 
~pphed to the detennination of macroscopic fracture character­
Isncs of the particulate material model. The particle locations 
h~ve ~~ generated randomly according to prescribed particle 
size distnbution. The mechanical properties on the macroscale 
were characterized by a triangular elastic-softening force-dis­
placement diagram for the interparticle links. An efficient algo-
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rithm. based on replacing the stiffness matrix changes by inelas­
tic forces applied as external loads. was developed. This algo­
rithm made it possible to calculate the ex.act displacement 
increments in each loading without iterations and using only 
the elastic stiffness matrix. The size effect was simul.lted for 
geometrically similar notched three-point bend beams of sizes 
in the ratio 1:2:4:8. (Fig. 5. top left). The average ma-:imwn 
loads of these beams calculated from about ten random particle 
simulations for each beam size were found to agree quite well 
with the size effect law in Eq. (9). 

Fitting Eq. ( 11) to these data (Fig. 5. top right). which can 

be done by linear regression after this equation is rearranged.. 
the effective macroscopic fracture characteristics, including G, 
and Ct. were determined. This was repeated for many different 
characteristics of the interpanicle force·displacement relation 
specified as the input. In this manner, it was determined (Fig. 
5 bottom) how G/and c/approximately depend on the microduc­
tility 11 and on the coefficient of variation Wf of the randomly 
simulated values of microstrengthf .. (peak of the assumed trian­
gular interpanicle force displacement diagram). which was as­
sumed to have a lognormal distribution. ('II was defined as the 
ratio of interparticle displacement when the interparticle force 
is reduced to zero to the displacement at peak force.) 

Obviously. study of the size effect is effective for determining 
the influence of the microscopic material properties on its mac· 
roscopic fracture characteristics. 

6 Is Weibull-Type Size Effect Significant for Quasi­

brittle Failure? 

Before closing. it is proper to explain at least briefly why 
strength randomness is not considered in the present analysis 
of size effect. Until about a decade ago. the size effect observed 
on the nominal strength of structures has been universally ex· 
plained by randomness of strength and was thought to be prop­
erly calculated according to Weibull theory. Recently. however. 
it has been shown (Bahnt and Xi. 1991) that this theory cannot 
apply when large stable fractures can grow in a stable manner 
prior to maximum load. as is typical of quasibrittle materials. 

The main reason is the redistribution of stresses caused by 
stable fracture growth prior to maximum load and localization 
of damage into a fracture process zone. If the Weibull probabil­
ity integral is applied to the redistributed stress field. which has 
high stress peaks near the crack tip. the dominant contribution to 
the integral comes from the fracture process zone. The important 
point is that the size of this zone is nearly independent of 

.structure size D. The contribution from the rest of the structure 
is nearly vanishing, which corresponds to the fact that the frac­
ture cannot occur outside the process zone. Because. in speci­
mens of different sizes. this zone has about the same size. the 
Weibull-type size effect must. therefore. disappear. In other 
words. the fracture is probabilistic. but only the random proper­
ties of the material in a zone of the same size decide the failure. 
even though the structures have different sizes. 

A generalized version of Weibull-type theory. in which the 
material failure probability depends not on the local stress but 
on the average strain of a characteristic volume of the material. 
has been shown to yield lead to the approximate size effect 
formula (Bahnt and Xi. 1991): 

(21) 

in which m = Weibull modulus (exponent of Weibull distribu­
tion of random strength). whicb is typically about 12 for con­
crete. and n = 1. 2 or 3 for one-. two- and three-dimensional 
similarity. Typically. for n = 2 or 3. 2n/m <C 1. for concrete. 
Then. for m .... 00. which is detenninistic limit, this formula 
approaches the size effect law in (9). Also. for D .... O. this 
formula asymptotically approacbes the classical Weibull size 
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effect law, and for large sizes and any m. this fonnula asymptot­
ically approaches Eq. (9). It has been shown that the difference 
between these two formulas for concrete structures is significant 
only for extremely small sizes. which are below the applicability 
of continuum modeling. 

Thus. for quasibrittle materials. the WeibuU-type size effect 
might be taking place only in very large structureS that fail right 
at crack initiation. Because. for beam depths such as D = 10 Db. 
the (detenninistic) stress redisaibution in the boundary layer. 
underlying Eq. ( 18). is still significant. the beam depth beyond 
which the Weibull-type size effect could begin to dominate 
must be at least D = 100D •. Hardly any case satisfying this 
condition exists in concrete practice, and probably not for other 
materials. Besides. the objective of producing good quasibrinle 
materials. that is. toughening them. is to achieve that c I be as 
large as possible. But this prevents them from failing right at 
crack initiation. 

7 ReiatiODS to Other Fracture Characteristics 
Since the determination of G, and c, by linear regression of 
~ load data based on Sq. (6) is particularly easy. it is 
convenient to use the size effect method for determining the 
fracture parameters of other nonlinear fracture models as well. 
For example. the fracture toughness and the critical crack-tip 
opening displacement of Jenq-Shah two-parameter model for 
concrete fracture (whicll.represents an adaptation of Wells' 
( 1961) model for fracture of metals) may be calculated as 

K~ = ~8(ao)DoBf: = ~E'Gi (22) 

.rs~ 
6hoD = ;;E' vg(ao)g'(ao)DoBf: 

= is Kk rc; = .rs ~GiC' (23) 
10 E' 11" E' 

The R-curve can be obtained from 

R(c) = G, cg'(a) (24) 

cfg'(aO> 

C g'(ao) ( g(a) ) (25) 
"4 = g(ao) g'(a) - a + ao 
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Choosing a series of values of a. one can calculate from (25, 
lhe values of the crack extension from the tip of notch (or 

L-action-free crack). c = a - tlo. For each of lhem. one can 
lhen evaluate R(c) from (24) (Baunt and Kazemi. 1990). This 
R-curve. which represents the envelope of the curves of energy 
rate balance for similar specimens of different sizes, is of cour$e 
strongly dependent on the geometry of the structure. 

The cohesive crack model. pioneered for concrete by Hiller­
borg ( 1985), is characterized by the softening curve f7 .:.: (j)( w ) 

re!ating the cohesive (crack-bridging) stress f7 to the opening 
displacement w. The main characteristics of this curve are the: 
area Gj under the complete curve (j)(w) and the area G} under 
lhe initial tangent of dlis curve. It has been established computa­
tiona!ly and experimentally (Karihaloo and Na1lathambi. 1991: 
Planas and Elices. 1989) that 

G: ... G,. Gj .... 2G, (26) 

Thus. the value of Gf resulting from the size effect law deter· 
rn4nes the initial slope of the softening 4>( w) curve. 

8 ~ain Conclusions 

The size effect in quasibrinle structures can be analyzed on 
lhe basis of asymptotic series expansions and asymptotic match­
ing. This approach. well known from tluid mechanics. is very 
powerful because. while for normal sizes the problem at hand 
is extremely difficult. it becomes much simpler both for very 
large sizes (LEFM) and for very small sizes (plasticity). 
Asymptotic matching is an effective way to obtain a simplified 
descnption in the normal. intermediate range of sizes. The size 
effect at craclc. initiation from a smooth surface can also be 
descnbed the basis of the asymptotic energy release analysis. 
and a universal size effect law comprising both types of size 
effect can be formulated. Knowledge of the size effect law is 
useful for identifying material fracture characteristics from tests. 

The fractal aspect of the morphology of crack surfaces ob­
served in quasibrinle materials does not appear to play a sig­
nIficant role in fracture propagation and the size effect. 

The statistical size effect as described by Weibull's theory 
of random strength cannot playa significant role in quasi brittle 
structures. except for very large structures failing at crack initia­
tion-an undesirable behavior. 
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