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Abstract. Fracture of quasibrittle materials such as concrete, rock, ice, tough ceramics and various fibrous or
particulate composites, exhibits complex size effects. An asymptotic theory of scaling governing these size effects
is presented, while its extension to fractal cracks is left to a companion paper [1] which follows. The energy release
from the structure is assumed to depend on its size D, on the crack length, and on the material length cf governing
the fracture process zone size. Based on the condition of energy balance during fracture propagation and the
condition of stability limit under load control, the large-size and small-size asymptotic expansions of the size effect
on the nominal strength of structure containing large cracks or notches are derived. It is shown that the form of
the approximate size effect law previously deduced [2] by other arguments can be obtained from these expansions
by asymptotic matching. This law represents a smooth transition from the case of no size effect, corresponding
to plasticity, to the power law size effect of linear elastic fracture mechanics. The analysis is further extended to
deduce the asymptotic expansion of the size effect for crack initiation in the boundary layer from a smooth surface
of structure. Finally, a universal size effect law which approximately describes both failures at large cracks (or
notches) and failures at crack initiation from a smooth surface is derived by matching the aforementioned three
asymptotic expansions.

Key words: Scaling, Size effect, Structural strength, Load capacity, Nonlinear fracture mechanics, quasibrittle
fracture, asymptotic methods, stable load growth, crack initiation, energy release.

1. Introduction

Scaling, that is, the change of response due to similarity preserving changes of the size of
a physical system, is the most fundamental aspect of every physical theory. If scaling is not
understood, the phenomenon itself is not understood. While scaling has played a central role
in many branches of physics, especially fluid mechanics, and important theories have been
developed [3–5], in solid mechanics the problem of scaling has until recently been largely
neglected. The reason for this is that the theories of structural failure that have prevailed for a
long time exhibit no deterministic size effect [6]. These are:

(1) plasticity and other theories based on the concept of critical stress (strength) or critical
strain, and

(2) fracture mechanics applied to a critical flaw (crack) whose size at incipient failure is
independent of the structure size D and negligible in comparison to D, as is typical of
most metal structures embrittled by fatigue.

Therefore, the experimentally observed size effects were generally attributed to the random-
ness on material strength, as proposed by Weibull [7]. However, even though this explanation
is realistic for metallic and other structures that fail before the crack reaches macroscopic
dimensions, it does not work for quasibrittle structures [8, 9], as will be explained in the
subsequent companion paper [1] in this issue.

This paper deals with structures made of quasibrittle materials, such as concrete, rock,
ice, tough ceramics and some composites. As a result of their heterogeneity and development
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20 Z.P. Bažant

of a large fracture process zone, these materials typically fail only after a large crack has
grown in a stable manner. The size effect is understood to be the change of �N nominal
strength as a function of D in geometrically similar structures with similar cracks (the effect
of deviation of cracks from similarity is an effect of shape, which must be described separately
from the size effect). �N of such structures exhibits a complex size effect, which has been
explained by the release of stored energy caused by fracture. While the energy dissipated in
geometrically similar structures with similar cracks is proportional to the crack length and
thus to the structure sizeD, the energy release caused by fracture in structures under the same
nominal stress grows with D faster than proportionally – hence the size effect. But because
of the large size of the fracture process zone, which releases additional energy in proportion
to the fracture length, the overall energy release grows with D less than quadratically. This
causes the size effect to deviate from the power law size effect (� / D�(1=2)) of linear elastic
fracture mechanics (LEFM).

The deviation of size effect from LEFM was experimentally observed on geometrically
similar notched concrete specimens by Walsh [10, 11]. Subsequently, an approximate size
effect law describing such observations was derived by simple energy release arguments and
by dimensional analysis with similitude arguments [12, 2, 6, 9]. This simple law represents
a smooth transition from the case of plasticity, for which there is no size effect, to the case
of LEFM, for which the size effect is the strongest possible. This law has been verified by
numerous test data, and corroborated by extensive non-local finite element solutions and by
discrete element (random particle) simulations [13, 14]. It has been generalized to a form
involving material fracture parameters [15]. This generalization made it possible to determine
the fracture energy Gf of the material and the effective length cf of the fracture process
zone by measuring only the maximum loads of geometrically similar notched specimens of
different sizes.

The size effect law proposed by Bažant applies only to failures after large stable crack
growth. Such failures are typical of reinforced concrete structures as well as some plain
concrete structures such as dams, in which continuous cracks, typically extending over 50
percent to 90 percent of the cross section, grow in a stable manner before the maximum load
is reached.

A different size effect occurs for failures at crack initiation in the boundary layer at a
smooth surface, as known from the tests of the modulus of rupture and demonstrated by finite
element analysis based on the cohesive (or fictitious) crack model [16, 17]. By analysis of the
stress redistribution during the formation of a finite-size fracture process zone at a smooth
surface, a simple law for this type of size effect has also been derived [18, 19].

The problem of scaling of quasibrittle failure is very difficult for normal structural dimen-
sions. But it becomes easy in the asymptotic sense for very large structures as well as very small
structures. For such problems of physics, a powerful approximate approach is the asymptotic
matching [3, 4], that is, interpolation between opposite asymptotic expansions. The purpose
of the present paper (whose main contents were summarized at three recent conferences
[20–22]) is to derive the general large-size and small-size asymptotic expansions of the size
effect and then deduce the approximation for normal structure sizes by asymptotic matching.
New size effect laws for quasibrittle failure at crack initiation from a smooth surface and for
the transition to failure after large stable crack growth will be derived.

The companion paper which follows in this issue [1] (whose main contents were also
summarized in [20–22]) will explore the question whether the observed size effects can be
explained by fractality, either by fractal nature of a continuous crack surface or by fractal
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Quasibrittle fracture: asymptotic analysis 21

Figure 1. Geometrically similar structures of different sizes, with large similar cracks of notches.

distribution of microcracks. The latter is in a certain sense related to the statistical Weibull-
type theory of size effect, and in that context it will also be explained why that theory does
not apply to quasibrittle failures.

2. Energy release and dimensionless parameters

To characterize the size effect in geometrically similar structures of different sizesD (Figure 1),
we introduce, as usual, the nominal stress

�N =
P

bD
; (1)

where D = characteristic size (dimension) of the structure, P = load applied on the struc-
ture (or load parameter), and b = structure thickness in the third dimension. Our analysis
will be restricted to two-dimensional similarity, although generalization to three-dimensional
similarity would be easy and would not change the basic nature of the conclusions. When
P = Pmax = maximum load, �N is called the nominal strength of the structure, and �N is
then just a convenient parameter of the maximum load. The load is considered to be a dead
load (i.e., a load independent of displacement).

For a quasibrittle material, i.e., a brittle material with a large fracture process zone, the
fracture energyGf (with metric dimension J/m2) is defined as the rate of energy dissipation of
a statically propagating crack per unit area of the crack surface in a sufficiently large structure,
such that the fracture process zone is negligible compared to the structure dimensions. (A
large enough structure is required to ensure that the asymptotic LEFM stress field surround
the process zone; because this field is independent of the boundary geometry and loading
arrangement, the same is true for the fracture energy so defined.) For a quasibrittle material,
one must also introduce a second essential fracture characteristic, defined as the effective
length cf of the fracture process zone (or cohesive zone) at fracture front in a sufficiently large
structure. The actual fracture process zone size varies depending on the structure geometry
and characteristic structure size (dimension) D. The special case of LEFM will, of course, be
included in the analysis as the limiting case for cf ! 0.

We have three basic parameters influencing �N – the current crack length a, the initial
traction-free crack length a0 (the notch length), and cf , all having the dimension of length.
They must appear in the energy release expression nondimensionally. The dimensionless
variables may be chosen as

�0 = a0=D; � = a=D; � = cf=D: (2)
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The energy stored in the structure is characterized by the complementary energy ��

(representing, under isothermal conditions, Gibbs’ free energy of the structure). �� must be
expressed as a function of �, � and �0

�� =
�2
N

E
bD2f(�0; �; �); (3)

where f is a dimensionless continuous function. This function characterizes the geometry
of the structure (including the initial notch depth, boundary geometry and arrangement of
loads), but is independent of D. That �� can be expressed in the form of (3) follows from
Buckingham’s �-theorem of dimensional analysis (e.g. [5, 3]), which states that any physical
relationship can be expressed as a dimensionless function of a dimensionless combination of
governing parameters, whose number is the total number of governing parameters minus the
number of governing parameters of different dimensions.

The energy,R, dissipated by the crack per unit area of the crack surface depends on the size,
shape and other characteristics of the fracture process zone which, in quasibrittle materials,
vary during crack propagation. Therefore, same as ��, R must in general also depend on �0,
� and �, and so we may write

R = Gfr(�0; �; �); (4)

where r is a continuous function such that r! 1 or R!Gf for � � � or a � cf and
D � cf . Usually it is assumed thatR depends only on c = a� a0, in which case the function
R(c) is called the resistance curve or briefly the R-curve. But, in general, R also depends on
the structure geometry, as indicated in (4).

Instead of the effective length of the fracture process zone, we may consider cf to represent,
more generally, any material length governing failure. In continuum damage mechanics,
originated by Kachanov, material failure is characterized in terms of a critical damage energy
release rate Wd per unit volume of material (e.g. [23]). Plasticity, or any failure theory with a
yield surface in terms of stresses or strains, can also be cast in a form in which the size of the
yield surface is proportional to a certain critical energy stored per unit volume (with von Mises
plasticity as the simplest example). In fracture mechanics, by contrast, the material failure is
characterized by critical energy dissipation Gf per unit surface area. A quasibrittle material
possesses both characteristics. So, instead of directly postulating the existence of material
length cf , one might prefer to assume that failure is governed by both Gf and Wd. However,
such an assumption is equivalent. Because various kinds of dimensionless combinations of
the governing parameters can be used as the basic parameters, one may, instead of (2), define
the dimensionless parameter � as

� =
1
D

Gf

Wd

: (5)

But this can again be written as � = cf=D, where cf = Gf=Wd. Thus, a material length
emerges in the formulation anyway.

Similarly, consider nonlinear fracture mechanics, in which the crack tip is surrounded by
a finite fracture process zone. Instead of directly postulating the existence of material length,
one makes the hypothesis that failure is governed not only by fracture energy Gf but also by
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tensile strength ft. But this hypothesis is again equivalent. Instead of (2), the dimensionless
parameter may be defined as

� =
1
D

EGf

f 2
t

: (6)

This can again be written as � = cf=D, where cf = EGf=f
2
t (which coincides with Irwin’s

characteristic size of the fracture process zone [24, 25]).

3. Energy conditions for crack propagation at maximum load

The crack can propagate if its energy release rate G becomes equal to R. Introducing the
well-known expression for the energy release rate in terms of ��, we have the condition

G =
1
b

�
@��

@a

�
�N

= R; (7)

where b is the structure thickness in the third dimension at the place of the fracture process
zone, and subscript �N means that the partial derivative must be calculated at constant �N , or
at constant load P . Substituting (3) and differentiating, we obtain the equation

G =
�2
N

E
D~g(�0; �; �) = Gfr(�0; �; �); (8)

in which we introduced the notation

~g(�0; �; �) =
@f(�0; �; �)

@�
: (9)

Function ~g represents the generalized dimensionless energy release rate (generalized, because
the usual energy release rate is considered to be a function of only one variable, a or �). For
the special case cf=D! 0, function ~g coincides with that in LEFM. Same as f , function ~g
reflects the geometry of the structure, crack and load, but is independent of D.

The condition of maximum load, as is well known (e.g. [26], Sect. 12.3), is the condition
that the energy release rate curve at constant load (or constant �N ) must be tangent to the
R-curve, that is, [@G=@�]�N = @R=@�. It is convenient to divide this equation by G = R,
which yields the maximum load condition in the form

1
G
�
@G
@�

�
�N

=
1
R

@R

@�
; (10)

which may also be written as [@ lnG=@�]�N = @ lnR=@�. Expressing G and R according to
(8) and (4), we acquire the equation

@ ln ~g(�0; �; �)

@�
=
@ ln r(�0; �; �)

@�
; (11)

in which �N , E, D, Gf and G do not appear. This equation can, in principle, be solved for
�. The solution, representing the value � = �m for a crack propagating at maximum load,
depends on �0 and � and may be written as

� = �m(�0; �): (12)
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At constant �0, the fracture process zone size at maximum load, cm = D�m, increases with
D (i.e., decreases with �). But it is logical to expect that cm has a finite asymptotic value for
D!1, which is, by definition

lim
D!1

cm = lim
D!1

�
D

�
�m

�
�0;

cf

D

�
� �0

��
= cf : (13)

This means that, in the limit case of an infinitely large body, the fracture process zone occupies
a negligible fraction of the structure volume. In that limit case, the fracture process zone is
subjected at its boundary to the LEFM near-tip asymptotic stress and displacement fields.
These fields are not influenced by the geometry of the structure and loading. Therefore, if the
crack is critical (i.e., propagates), these fields are in the limit case the same for any structure
(note that we do not need to consider only the first term of the LEFM asymptotic expansion
with the inverse square-root singularity in the radial coordinate; the nonsingular second term
and a finite number of the higher-order terms of the expansion are the same as well if the
structure is infinitely large). Therefore, the state of the fracture process zone in an infinitely
large body is the same, too, and so the effective length cf must also be independent of structure
geometry. Due to the limit D!1, cf thus defined is also independent of D, and so it must
be a material constant [32, 33], as assumed.

It must be admitted, though, that the finiteness of the limit cf is not an inevitable mathemat-
ical consequence of the preceding equations alone but is also inferred from the physical nature
of fracture, particularly the finiteness of the binding forces in the solid (and the fact that highly
homogeneous brittle materials, with only microscopic inhomogeneities, have a microscopic
fracture process zone). From the strictly mathematical viewpoint, it cannot for example be
ruled out that cm might increase as logD, in which case also lim(cm=D) = 0 for D!1
(such behavior might manifest itself at the intermediate scale, complicating interpretation of
experiments).

Substituting (12) into (8), and solving the equation for �N , we finally get the result

�N =

s
EGf

Dĝ(�0; �)
; (14)

in which function ĝ is defined as

ĝ(�0; �) =
~g[�0; �m(�0; �); �]

r[�0; �m(�0; �); �]
: (15)

Equation (14) has the same form as the LEFM equation for �N , except that it includes
function ĝ(�0; �) instead of the usual LEFM dimensionless energy release rate g(�). This
means that function ĝ(�0; �) may be regarded as the effective dimensionless energy release
rate.

The argument leading from (10) to (14) was proposed to the writer by J. Planas. The
essential equation in this argument is (11). As indicated in Appendix I, this equation can also
be obtained from the cohesive crack model, which is more general but not as simple as Planas’
argument.

4. Simple geometrical explanation

Equation (14), which is fundamental for the present analysis, allows an intuitive geometrical
justification for some simple structures such as the center-cracked panel in Figure 2. In that
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Figure 2. Interpretation of energy release from a simple specimen by stress-relief zones.

Figure, c = cf = the effective length of the fracture process zone, and a = a0 + c represents
the length of the equivalent crack according to LEFM. According to the shape of the principal
stress trajectories, it is clear that formation of the crack causes the strain energy to be relieved
from the shaded triangular zones in Figure 2, limited by the so-called ‘stress-diffusion’ lines
of slope k. The area of the two triangular shaded zones is k(a0+c)

2. The strain energy density
before fracture is �2

N=2E, and so the strain energy content of the shaded zone before fracture
is �� = bk(a0 + c)2�2

N=2E. Now we may set @��=@c = 2bGf for crack tip dissipation
because the R-curve behavior (variation of effective fracture energy) is taken into account by
(12). Setting also c = cm for the maximum load, we get bk(a0 + cm)�

2
N=E = bGf . Finally,

solving for �N , we obtain (14) in which ĝ(�0; �) = k[�0 + (cm=D)] or

ĝ(�0; �) = k�m(�0; �): (16)

The slope k is empirical but it is known that, for different sizes of geometrically similar
specimens, the k value giving the correct energy release is exactly the same. For an infinitely
large body with a finite crack, the value k = �=2 yields the exact result. Similar geometric
interpretations of (14) are possible for a few other simple specimen geometries (e.g. [26],
Section 12.1).

5. Large-size asymptotic expansion and approximate size effect law

Because ĝ(�0; �) ought to be a smooth function, we may expand it into Taylor series about
the point (�; �) � (�0; 0). Equation (14) thus yields

�N =

s
EGf

D

"
ĝ(�0; 0) + ĝ1(�0; 0)

cf

D
+

1
2!
ĝ2(�0; 0)

�
cf

D

�2

+ � � �
#
�(1=2)

(17)

=
Bf 0tp
D
(D�1

0 +D�1 + �2D
�2 + �3D

�3 + � � �)�(1=2); (18)

where all the following constants are introduced: ĝ1(�0; 0) = @ĝ(�0; �)=@�; ĝ2(�0; 0) =
@2ĝ(�0; �)=@�

2; : : : ; all evaluated at � = 0, �2 = ĝ2(�0; 0)=cf ĝ1(�0; 0); �3 = ĝ3(�0; 0)=
cf ĝ1(�0; 0); : : : ; and
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26 Z.P. Bažant

Figure 3. Size effect law (solid curve), and large-size and small-size asymptotic series expansions of size effect
(dashed curves).

D0 = cf
ĝ1(�0; 0)
ĝ(�0; 0)

; (19)

Bf 0t =

s
EGf

cf ĝ1(�0; 0)
: (20)

With (17) or (18), we have gained a large-size asymptotic series expansion because the
terms of nonzero powers vanish as D!1 and the truncation error tends to zero. The first-
order asymptotic approximation is obtained by truncating the series after the linear term

�N =
Bf 0tp
1 + �

; � =
D

D0
: (21)

This equation represents the approximate size effect law [12, 2] proposed for quasibrittle
fracture on the basis of several different arguments. The relative structure size � is also called
the brittleness number because�!1 represents a fully brittle behavior, and � = 0 represents
a fully nonbrittle, or plastic, behavior.

The solid curve in Figure 3 shows the size effect plot of log �N versus logD at constant
�0, obtained according to the size effect law (21). The size effect curve is seen to represent
the transition from a horizontal asymptote, corresponding to a power law of exponent 0
(characterizing the strength theory), to a descending asymptote, corresponding to a power law
of exponent �1

2 (characterizing LEFM). The transitional size D = D0 represents the point
of intersection of the left-side and right-side asymptotes, that is, the center of the transition
from one power law to another. On the microscale, i.e. for D � D0, the energy release from
the structure is negligible, and on the macroscale, i.e., for D � D0, the energy release is
dominant. The special case of LEFM, for which no material length matters, is obtained as the
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limit for cf=D! 0. In this limit case, the size effect curve is a power curve coinciding in the
log-log plot in Figure 3 with the straight line of slope �1

2 .
To be able to apply (21), the �0-value at maximum load must be known and the same for

all sizes D. In fracture test specimens (of positive geometry) �0 is ensured to be constant by
cutting similar notches because, at maximum load, c = a� a0 � a0 where a0 is the length of
the notch. In geometrically similar specimens the value of �0 is constant (independent of D).
For brittle failures of geometrically similar reinforced concrete structures without notches,
such as diagonal shear of beams, punching shear of slabs, torsion, anchor pullout or bar
pullout, extensive laboratory evidence as well as finite element solutions [6, 9] indicate that
the failure modes are approximately similar and �0 � constant for a broad enough range of
D. However, geometric similarity of failure mode is violated for some cases if a very broad
size range is considered, e.g., for the Brazilian split-cylinder tests of a size range exceeding
about 1:8 [9].

It must be stressed, however, that the nominal strength �P = Bf 0t = lim �N for �! 0
cannot be predicted by plastic limit analysis on the basis of f 0t as a fixed material yield strength.
The reason is that the zero size limit in (21) is an extrapolation of fracture mechanics. The
value of f 0t for which plastic limit analysis gives the correct �P for (21) depends on structure
shape, which includes a dependence on �0. It can be easily shown [19] that this value is

f 0t =
q
EGf=cfg0(�0)=Bp(�0) where Bp(�0) is the nominal strength calculated by plastic

limit analysis for a unit value of the yield strength of material.

6. Size effect law in terms of material fracture parameters

Let the dimensionless LEFM energy release rate function be defined as g(�) = GEb2D=P 2 =
K2

I b
2D=P 2 (e.g. [26], Section 12.2); KI = mode I stress intensity factor, which is given

for many geometries in textbooks [25, 27, 28] and handbooks such as [29]. By contrast to
the general function g(�; �), the LEFM function g(�) has only one argument. In LEFM,

�N =
q
EGf=[Dg(�)]. The similarity of this expression with (14) indicates that, for a LEFM

approximation, the function ĝ(�0; �) in this expression ought to be approximated as g(�0+�).
This provides for the nominal strength the LEFM approximation

�N �
s

EGf

Dg(�0 + �)
: (22)

The error of this approximation approaches 0 faster than � when �! 0, as shown for both the
R-curve model and the cohesive crack model by J. Planas (private communication, 1995).

According to this approximation, g(�0; 0) reduces to g(�0), @=@� = d=d�, and ĝ1(�0; 0)
takes the meaning of g0(�0) = dg(�)=d� at � = �0, with the prime denoting derivatives (or
rates) with respect to �. Equations (19), (20) and (21) thus take the form

D0 = cf
g0(�0)

g(�0)
; (23)

Bf 0t =

s
EGf

cfg0(�0)
; (24)
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and the size effect law in (21) may be written in the form

�N =

s
EGf

g0(�0)cf + g(�0)D
: (25)

This form involves the material fracture parameters and also gives, through function g, the
effect of structure shape, thus allowing comparison of dissimilar structures.

The form of size effect law in (25) was derived in a different manner by Bažant and
Kazemi [15] (see also 12.2.11 in [26]) and was amply justified experimentally, particularly by
the success of the size effect method for determining Gf and cf , based on this equation.

Defining �D = Dg(�0)=g
0(�0) = �cf = intrinsic structure size and �N = �N

p
g0(�0) =

intrinsic stress, one may rewrite (25) in terms of the material parameters only [30, 15]

�N =

s
EGf

cf + �D
: (26)

Equation (25) or (26) serves as the basis of the size effect method – a simple and reliable
method for measuring Gf and cf . To this end, the equation may be reduced to a straight line
plot of ��2

N versus D. The material fracture parameters may then be determined by linear
regression from the measured maximum loads of specimens of a sufficiently broad range of
brittleness numbers � = D=D0. The specimens need not be geometrically similar because
the effect of differences in geometry is taken into account by different values of g(�0) and
g0(�0). However, because function g(�) is only an approximation of function ĝ(�; �), the
accuracy may be expected to be somewhat better when the test specimens adhere to geometric
similarity. Knowing Gf and cf , one can further easily evaluate the critical crack tip opening

displacement, �CTOD = (
q

8Gfcf=E)=� [38, 39]. In relation to the cohesive crack model
for concrete, Gf represents approximately the area under the initial tangent of the curve of
bridging stress versus crack opening, and the total area under this curve is GF � 2Gf .

7. General large-size asymptotic series expansion

There is an alternative, albeit equivalent, crack propagation criterion in terms of the stress

intensity factorKI, which readsKI = KIc =
q
EGf , where KIc is a constant called the frac-

ture toughness. This suggests rewriting (14) in the form �N = KI=h(�)
p
D, where h(�) =p

g(�) = dimensionless function. Now, expanding function h(�), instead of g(�), about the
point �0 leads to a size effect formula different from (21).

In view of this fact, consider now more general dimensionless variables and functions

� = �r =

�
cf

D

�r
; h(�0; �) = [ĝ(�0; �]

r; (27)

with any r > 0, and let function h(�0; �) be expanded into Taylor series with respect to �,
instead of function g(�; �) with respect to �. This leads to a more general asymptotic series
expansion [31, 32]

�N =

s
EGf

D

"
h(�0; 0) +

@h(�0; 0)
@�

� +
1
2!
@2h(�0; 0)

@�2 �2 + � � �
#
�(1=2r)

: (28)
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Rearranging, we obtain the large-size asymptotic series expansion [31, 32]

�N = �P

"�
D

D0

�r
+ 1 + �1

�
D

D0

�
�r

+ �2

�
D

D0

�
�2r

+ �3

�
D

D0

�
�3r

+ � � �
#
�(1=2r)

; (29)

where �1; �2; : : : are certain constants and the following notations are made

�P =

s
EGf

cf

�
@h(�0; 0)

@�

�
�(1=2r)

; D0 =
cf

g(�0; 0)

�
@h(�0; 0)

@�

�1=r

: (30)

Previous study of the size effect formula given by the first two terms of this asymptotic series
expansion, however, indicated that the optimum fit of the test data for concrete is obtained for
r � 1 [33].

8. Small-size asymptotic series expansion and strength theory limit

The error of the truncated asymptotic series expansion in (28) or (29) increases with decreasing
D=D0. Retaining more terms of the expansion, its accuracy gets extended to smaller values
of D=D0. The large-size asymptotic expansion, however, can never establish the asymptotic
behavior for the opposite limit of zero size D. The property that the simple size effect law
(21) approaches for D! 0 the size effect of strength theory (or plasticity), for which there
is no size effect, has not been justified by our preceding calculations. The approach to the
strength theory for D! 0 was a fortuitous result of truncating the series after the linear term.
Justification of this property must be sought in a different argument.

One argument that the strength theory, which implies no size effect [6], must be approached
for D! 0 is that the fracture process zone occupies the entire body, that there is no distinct
fracture at maximum load and no stress concentrations, and that no definable energy flow
mechanism exists. Another argument is that, according to finite element results, the nonlocal
theory of distributed damage tends, for D! 0, to the strength theory.

In this light it is not surprising that although the retention of quadratic and higher-order
terms in the asymptotic series can increase the accuracy for large and intermediate sizes D,
it would actually give an incorrect size effect for D! 0, disagreeing with the size effect of
strength theory. Consequently, as far as the overall approximate description of the entire size
range is concerned, it is in fact better to truncate the Taylor series expansion after the linear
term.

Let us now propose a better argument for the strength theory limit, also providing the
opposite, small-size, asymptotic expansion. We introduce a new variable and a new function

� = ��r =

 
D

cf

!r
;  (�0; �) =

�
ĝ(�0; �)

�

�r
; (31)

where r is any positive constant. Substituting D = cf�
1=r and ĝ(�0; �) = [ (�0; �)]

1=rcf=D

into (14), we obtain for the nominal strength the expression

�N =

s
EGf

cf
[ (�0; �)]

�(1=2r): (32)
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Function  (�0; �) ought to be sufficiently smooth to permit being expanded into Taylor
series about point (�0; 0), which now corresponds to the zero-size limit rather than the infinite
size limit. The expansion furnishes

�N =

s
EGf

cf

"
 (�0; 0) +

@ (�0; 0)
@�

� +
1
2!
@2 (�0; 0)

@�2 �2 + � � �
#
�(1=2r)

; (33)

which may be rewritten in the form

�N = �P

"
1 +

�
D

D0

�r
+ b2

�
D

D0

�2r

+ b3

�
D

D0

�3r

+ � � �
#
�(1=2r)

: (34)

Here b2; b3; : : : are certain constants and the following notations are made

�P =

s
EGf

cf [ (�0; 0)]r
; D0 = cf

�
1

 (�0; 0)
@ (�0; 0)

@�

�
�(1=r)

: (35)

With (34) we acquired the small-size asymptotic series expansion because, for D! 0,
the terms of nonzero power become negligible and the truncation error tends to zero. This
expansion of course cannot yield the asymptotic limit for D!1. The expansion proves that
the small-size asymptotic limit must be the strength theory. So we have established what we
accepted in the preceding analysis on the basis of more extraneous arguments.

Note that, in defining � (and likewise in defining � in (27)), exponent r in (34) cannot be
replaced by some exponent s different from r. It would cause the second term of the series
expansion to be either zero or infinite.

9. Intermediate approximation by asymptotic matching

The large-size and small-size asymptotic series expansions in (17) or (29) and in (34) are
different (Figure 3). However, if both series are truncated after the linear term, they yield
formulae of the same form

�N = �P (1 + �r)�(1=2r); (� = D=D0); (36)

where �P ;D0 and r are constants. This is the generalized size effect law proposed in [31].
Because this law, including its special case for r = 1, is anchored to the asymptotic cases
on both sides, it represents an intermediate approximation of uniform applicability. This kind
of approximation is akin to the theory of intermediate asymptotics or matched asymptotics,
which has been enormously successful in many branches of physics, for example, the boundary
layer theory of fluid mechanics [4, 3].

We must be aware, however, of one limitation of the asymptotic matching as just performed.
Our way of arguing does not guarantee that the values of �P and D0 obtained from the two
asymptotic series in (29) and in (34) match each other. In fact, the values of �P and D0

obtained from these two series would surely be different if the former were determined by
fitting only large-size data and the latter by fitting only small-size data. In practice, however,
such fitting would hardly suffice, because of scatter. Normally one cannot determine these
values a priori but can do so only by fitting the matching formula in (36) to the full range of
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data. Our asymptotic matching only established the form of the size effect law but not the
parameter values, and this is the sense in which the asymptotic matching is performed here.

By fitting of test data, the optimum value of exponent r in (36) was found to be close to
r = 1 [33]. However, the optimum was weak and the scatter of the available test data for
concrete or rock was generally too high to make any definitive conclusion about the value of
r on the basis of tests.

By numerical calculations, e.g. with the cohesive crack model, it is possible to generate
numerical results ranging over several orders of magnitude of D. Such results can be fitted
into (36) very closely. However, it is found that the optimum value of exponent r strongly
depends on the specimen geometry. For three-point bend fracture specimens, the optimum
value of r in (36) for describing finite element results with the cohesive crack model for a size
range of several orders of magnitude of D [34] has been found to be between 0.42 and 0.46.
On the other hand, for a large panel with a small central crack, the optimum r-value exceeds
1.5. The optimum r-value also depends on the softening stress-displacement laws.

From the physical viewpoint, a value r < 1 has some questionable implications. Since the
large-size asymptotic form of (36) is �N = �P=[1+(�r=2r)], the extrapolation to infinite size
implies the effective fracture process zone length cf to be infinite when r < 1. Also, when the
R-curve is calculated from (36) as the envelope of fracture equilibrium curves for all sizes (e.g.
[26]), the final value is not reached for a finite crack length but is approached asymptotically.
This would in turn imply the softening stress-displacement curve in the cohesive (or fictitious)
crack model to have an infinite tail (i.e., the crack-bridging stress could not be reduced to 0).
These features do not seem realistic, which indicates that exponent r ought to be considered
as 1. (In practice, though, a value r 6= 1 might work best at the intermediate scale. A size
range of many orders of magnitude would hardly be tractable because of the lack of the test
data needed for calibration.)

The asymptotic approach is appropriate even if the transition to much larger sizes involves
a change of failure mechanism, as in the Brazilian split-cylinder test. What should be extrapo-
lated to infinite and zero sizes is the theory applicable to the size range considered, not the real
structure such as a reinforced concrete beam. The intermediate approximate solution must be
supported on the asymptotic cases of the theory for that range, not on a different theory that
may be required for a different range.

The fracture mechanism of failure may change at large size to some ductile mechanism. This
might happen, for instance, in compression tests and, probably, in split-cylinder (Brazilian)
tests. In that case, one of the following two generalizations of (36) with nonzero residual
nominal strength �r may be appropriate [32]

�N = �P (1 + �r)�(1=2r) + �r or �N = Max[�P (1 + �r)�(1=2r); �r]: (37a,b)

In the special case that the existence of residual stress �r in the size effect law is caused by
transmission of residual cohesive normal stress �r across the crack, rather than by a transition
to some completely different ductile failure mechanism, the following formulas result if �r is
assumed to be uniform along the crack

�N =

s
�2
P

1 + (D=D0)
+ �2

r or �N =

s
EGf + [
0(�0)cf + 
(�0)D]�2

y

g0(�0)cf + g(�0)D
: (38a,b)

Function
(�) is analogous to g(�) and defines the energy release rateGy(a) = (�2
y=E)D
(�)

which corresponds to a uniform closing pressure �r applied along the entire crack surface
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Figure 4. Similar structures with initiating cohesive cracks of length a and law of size effect for crack initiation
from a smooth surface (or for modulus of rupture).

up to the tip a = a0. Equation (38a) is derived by considering that the crack strip in Figure 2
transmits a nonzero residual normal stress �r and that, consequently, the strain energy density
in the shaded triangular areas is reduced from�2

N=2E to�2
r=2E rather than to 0. Equation (38b)

is derived similarly to our preceding derivation; the only difference is that the energy release
rate available to drive the fracture is G(a) � Gy(a), which must be equal to R, and that
�y = �r

p
g(�0)=
(�0).

In the size effect plot of log�N versus logD, (37a) and (38a, b) approach a horizontal
asymptote (�N = �r) for D!1. They also exhibit a positive curvature for larger D=D0

values. It appears that in some tests the value of D0 is so small that only such a positive
curvature is seen in the test results (Carpinteri fitted such data wih his MFSL law, but they can
be equally closely fitted with (37) or (38), as shown in Figure 4(c) of [1].

10. Size effect for failures at crack initiation from smooth surface

Consider now the failure of quasibrittle structures that have no notches and reach the maximum
load when a cohesive crack initiates from a smooth surface (Figure 4). This happens, for
example, when a plain concrete beam is used to test the flexural strength, called the modulus
of rupture, fr). One might at first think of applying the preceding solution in (25) with �0! 0.
But this is not possible because g(�0; 0) vanishes as the initial crack length a0 vanishes, i.e.
�0! 0. However, the total (cohesive) crack length a at failure, of course, is not zero; a� cf .
A continuous crack can form and start to propagate only after a microcracked boundary layer
grows to a certain depth, approximately equal to cf [19].

To treat failures at crack initiation, one might first try to center the Taylor series expansion
about the point (�0; �). However, then the effect of size D, embodied in �, would not get
separated. Therefore, the Taylor series expansion in (17) must be centered about point (�0; 0)
or (0; 0). But then the series cannot be truncated after the second term because the first term
vanishes. So, let us truncate the large-size asymptotic series after the third (quadratic) term.
Then, considering that r = 1, and noting that g(�0; 0) = 0 or g(�0) = 0, we obtain, instead
of (25)

�N =

vuut EGf

g0(0)cf + 1
2g
00(0)c2

fD
�1

= f1r

�
1� 2Db

D

�
�(1=2)

� f1r

�
1 +

Db

D

�
; (39)
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Figure 5. Fracture process zones at infinite structure size for cracked (or notched) structure and for crack initiation
from a smooth surface.

in which f1r and Db denote the following constants

f1r =

s
EGf

g0(0)cf
; Db =

h�g00(0)i
4g0(0)

�cf ; �cf = �cf : (40)

Subscript b refers to the thin boundary layer, in which the crack tip is located for failures
at crack initiation. The operator h :: i is the Macauley bracket, denoting the positive part of
the argument, i.e. hxi = Max(x; 0). The reason for introducing this operator is that g00(0)
can be negative, in which case fracture cannot initiate at the surface. Without taking only
the positive part of g00(0), (39) for small enough D could give for �N an imaginary value,
which would be meaningless. The symbol � in (39) refers to the asymptotic approximation
for � = Db=D � 1, obtained upon noting that, up to the first two terms of the Taylor series
expansion, (1� 2�)�(1=2) � 1 + �.

The cf value in (40) has been modified by the empirical constant factor � > 1 (but close
to 1), in order to reflect the fact that, for crack initiation, the size of the fracture process zone
at maximum load and for D!1 must be expected to be larger than it is for notched or
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precracked structures. This fact is clarified by Figure 5, which shows the body boundaries
relevant to the shape of the fracture process zone atD!1, along with the stress fields acting
on the fracture process zone at its boundary. Obviously, for D! 0, only the limiting shape
of the boundary infinitely close to the crack front controls the size (and shape) of the fracture
process zone. This limiting shape is the same for all notched or pre-cracked structures but
different for uncracked structures (Figure 5).

Equation (39) is only second-order accurate in D�1. It can be rearranged to another form
which is also second-order accurate, sharing the first two terms of the large-size asymptotic
series expansion, but has a more desirable behavior for D! 0, giving a finite rather than
infinite value for �N . To this end, we may apply an alternative second-order approximation
(1 � 2�)�(1=2) = 1 + � + 1:5�2 + � � � � 1 + [�=(1 + ��)] with an error of the order of �2

and notation � = Db=D where � is a positive empirical constant (which may be imagined to
control the size of initial fracture process zone at smooth surface). This approximation yields
the following preferable alternative to (39)

�N = f1r

�
1 +

Db

D + �Db

�
: (41)

In view of the dependence of the energy release rate function g(�) on the structure shape,
(40) and (41) seem, at first sight, to violate the obvious requirement that f1r , representing the
material strength in a very large structure (or the limiting value of the modulus of rupture, fr),
must be independent of the shape of the structure. Not so, however. The limiting value g0(0) is
shape-independent, provided the crack initiates from a smooth surface (and not from a sharp
corner tip). This can be inferred from Saint-Venant’s principle and can also be checked from
various LEFM solutions in handbooks; g0(0) = 1:122�.

Equation (39), or (41) for � = 0, identical to the formula in [19], was also derived in a
different manner [1] and was extensively validated by the available test data for the modulus
of rupture of concrete beams of various depths D. Equation (41) for � = 0 can be written as
a linear regression equation �N = A + CX with X = 1=D and f1r = A, Db = C=A, and
so the values of f1r and Db can be easily identified by linear regression of test data on the
modulus of rupture for various sizes D.

As for the value of �, the available test data exhibit too much random scatter for permitting
a meaningful determination of �. For the sake of simplicity, one may use � = 0. However, a
non-zero value of � makes the strength �N for D! 0 finite, which seems more reasonable.
Nevertheless, it must be admitted that the values of �N have no physical meaning for structure
sizes D that are too small (e.g., smaller than the aggregate size in concrete or the grain size
in rock). So, strictly speaking, an infinite limit value of �N for D! 0 (or � = 0) cannot be
declared as unacceptable.

Instead of the second-order approximation that led to (41), we could have more generally
used a whole range of approximations (1� 2�)�(1=2) � (1 + n�)1=n, with any n > 0. Again,
however, the proper value of n can hardly be clarified by experiments, because of their high
scatter. A clarification may nevertheless be found in the analysis according to the strength
theory. Aside from fracture mechanics, this theory (or plasticity) should apply as the opposite
asymptotic limit for a! 0 because, at crack initiation, no crack exists as yet and the energy
dissipation rate is still vanishing. The solution of the size effect on fr according to the strength
theory has been carried out [19], and it agrees with the present result in (41) if and only if
n = 1. This lends support to the value n = 1 implied in (41).
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The small-size asymptotic expansion can also be introduced for the case of failures at crack
initiation from smooth surface (�0� 0). In that case,  and @ =@� are positive. The first two
terms of the asymptotic series expansion (33) yield the initial trend �N / 1� (D=2cf ). This
expression, which can of course be valid only for very smallD, can be made tangent to (41) at
the pointD = 0. So we may observe that formula (41) represents asymptotic matching of the
large-size and small-size asymptotic expansions for failures at crack initiation from a smooth
surface. This makes it preferable to formula (39) which does not have this property, i.e., does
not match the aforementioned initial trend of the small size expansion.

11. Universal size effect law for cracked and uncracked structures

The simple size effect law in (21) [2] is obtained by truncating the large-size asymptotic
expansion (17) after the linear term, provided that g(�0) > 0. This restriction excludes the
case of notchless specimens, for which �0 = 0 or g(�0) = 0. To obtain a universal size effect
law valid for both cracked and uncracked structures, it is, in general, necessary to keep the
terms up to the quadratic term with �2 [20–22]. However, the quadratic term would engender
for unnotched specimens incorrect small-size asymptotic behavior at D! 0. In other words,
it would deprive (21) of its asymptotic matching character. Therefore, the quadratic term in
(17) must be modified so as to preserve the existence of a finite asymptotic value for D! 0.
To this end, we first rearrange (17) as follows

�N = �0

�
D

D0
+ 1� 2Db

D

�
�(1=2)

= �0

�
1 +

D

D0

�
�(1=2)

(1� 2
)�(1=2); (42)

where


 =
Db

D

�
1 +

D

D0

�
�1

; �0 =

s
EGf

cfg0
; D0 =

cfg
0

g
; Db = �cf

h�g00i
4g0

: (43)

For the sake of brevity only, we have made here the notations g = g(�0), g0 = g0(�0), and
g00 = g00(�0). Further we must ensure that

�cf = cf for �0 > cf ; �cf = �cf for �0 = 0: (44)

To achieve a correct small-size asymptotic limit for notched specimens while preserving
the first three terms of the large-size asymptotic expansion in (17), we may introduce into (42)
the same approximation as before, namely (1� 2
)�(1=2) = 1+ 
 + 1:5
2 + � � � � 1+ 
. In
this manner, (42) may be brought to the form

�N = �0

�
1 +

D

D0

�(
1 +

�
D

Db

�
1 +

D

D0

��
�1
)
: (45)

Furthermore, to obtain a finite limiting value of �N for D! 0, it is again desirable thatDb=D

in the expression for 
 in (43) be replaced with Db=(D + �Db) where � is an empirical
constant. This replacement is admissible because it does not alter the first three terms of the
large-size asymptotic series expansion in (17). For the sake of generality, one may further
insert here parameter r similar to (36), whose value has no effect on the first three terms of
the asymptotic series expansion. Moreover, empirical parameter �� = 1+� may be introduced
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Figure 6. Surface of universal size effect law amalgamating the size effects for structures with large cracks (or
notches) and structures failing at crack initiation from a smooth surface.

for the same reasons as pointed out for crack initiation. Also, another parameter s may be
introduced, for the sake of generality, in a manner that has no effect on the first three terms of
the asymptotic series expansion. With these adjustments, one gets

�N = �0

�
1 +

�
D

D0

�r ��(1=2r)
(

1 + s

��
�� +

D

Db

��
1 +

D

D0

��
�1
)1=s

: (46)

However, same as for r, the value s = 1 seems to be most appropriate.
Equation (46) represents the universal size effect law, applicable to both notched and

notchless structures. A three-dimensional plot of this equation for a typical three-point-bend
fracture specimen is shown in Figure 6. The preceding derivation guarantees that the asymp-
totic behaviors for:

(1) D � D0 and �0 > 0,
(2) D � D0 and �0 > 0, and
(3) D > Db and �0 = 0

are all correct. This means that (46) is a matched asymptotic for all the three relevant asymptotic
cases.

By expanding (46) into a Taylor series of powers of 1=D, one can directly prove that (46)
agrees with the first three terms of the asymptotic expansion (17), and that truncation after the
second term of the expansion yields the original Bažant’s size effect law in (21). Furthermore,
by expanding (46) into a Taylor series of powers of D one can prove that (46) agrees with
the first two terms of the asymptotic expansion for D � D0 and �0 > 0. If there is no notch
(�0 = 0, which implies g = 0 or D0 !1), then (46) (with �N = fr = modulus of rupture)
reduces to fr = f1r f1 + [Db=(D + �Db)]g which coincides with (41) and agrees with the
law of the size effect on the modulus of rupture fr in (41) up to the second (linear) term of
the expansion in 1=D as well as the expansion in D.
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12. Measurement of material fracture characteristics

The size effect law in (25) serves as the basis of the size effect method for measuring Gf ,
cf and other fracture characteristics [15, 35]. For this purpose, (25) is rearranged into a linear
plot and the values of Gf and cf are then easily obtained by linear regression, along with
their standard deviations. This method is simple to use because one needs to measure only the
maximum loads of notched fracture specimens of sufficiently different brittleness numbers �,
which can be achieved by using sufficiently different sizes (one does not need to measure the
crack tip location, notoriously ambiguous in materials such as concrete, nor to use a very stiff
testing frame with fast-feedback closed-loop control of displacement, as required for testing
post-peak softening response).

Recently, a more convenient version of the size effect method in which it suffices to test
notched specimens of only one size has been developed [19, 21, 22]. A sufficient range of the
brittleness number is achieved by methods of two kinds.

The first kind of method supplements the �N value of a notched specimen by the zero-
size limit of �N = �P calculated for a geometrically similar specimen of zero-size (D! 0)
according to plastic limit analysis (using, in the case of concrete, the Mohr–Coulomb yield
criterion). However, the proper value of the material tensile strength (yield limit) fy to be
used in this calculation is not the tensile strength f 0t of the material determined by standard
test. Rather, it depends on the specimen shape, particularly the value of �0. Upon equating
the zero-size limit �P = Bfy to [EGf=cf g

0(�0)]
1=2 where B = B(�0) = nominal strength

calculated according to plasticity for a unit value of material yield strength, one finds that
fy = [EGf=cfg

0(�0)]
1=2=B(�0); in more detail, see [19].

The second kind of method supplements the �N value of a notched specimen by the �N
value tested on an unnotched specimen of the same size (as in the modulus of rupture test).
For this kind of method, the universal size effect law, (46) is needed. Fitting it to the measured
�N values yields the values of Gf and cf ; in detail, see again [19].

13. Conclusions and general observations

The scaling problem for structures made of quasibrittle materials such as concrete, rock, ice,
tough ceramics and composites is a typical example of a problem that is very hard to solve
in the size range of practical interest, but becomes easier to solve for the asymptotic cases of
very small and very large structures which fall into the realm of either plasticity or LEFM. It
is known from physics (for example, the boundary layer theory in fluid mechanics), that the
most effective approach to such problems is to solve the simple asymptotic cases first, and
then find an intermediate approximation that matches these asymptotic cases (i.e., interpolates
between them). This is the approach of matched asymptotics, which generally leads to simple
solutions. Even if extremely large and extremely small structures are not of practical interest,
the knowledge of their solution is useful for the intermediate range that is of practical interest.

The approximate size effect law proposed by Bažant [6, 2] can be obtained as the matched
asymptotic on the basis of large-size and small-size asymptotic expansions. The size effect
law for failures at crack initiation in the boundary layer can be derived by asymptotic analysis
from the same energy expression as that used for large cracks. An approximate universal size
effect law applicable to both initially cracked and uncracked structures can be obtained by
matching the large-size and small-size asymptotic expansions for structures with large cracks
and with no cracks.
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Appendix I. Crack length at maximum load from cohesive crack model

Equation (11) which is crucial for obtaining the asymptotic expansion can be derived more
generally from the cohesive crack model. The necessary condition of static crack propagation
in the cohesive crack model reduces to the condition that the total stress intensity factor for
the tip of the cohesive crack must be zero. Assuming a linear softening relation between the
crack-bridging (cohesive) stress and the opening displacement, and using equation 9 of [37],
one can reduce this condition to the following homogeneous Fredholm integral equation

1
�

Z �m

�0

C(�0; �)v(�0) d�0 = 2v(�): (47)

Here � = cf=D and cf is defined according to (6); cf = EGf=(f
0

t)
2; C(�0; �) is the dimen-

sionless crack compliance function, which is independent of structure size; it characterizes
the structure geometry and represents the opening displacement at � caused by a unit load
applied on the crack faces at �0 (with � = x=D, x = coordinate of the crack line).

Equation (11) represents an eigenvalue problem, in which 1=� is the eigenvalue and v(�)
(having the meaning of the derivative of cohesive stress with respect to the crack length) is
the eigenfunction. The solution of this eigenvalue problem yields the �-value as a function of
�0 and �m. Inversion of this function then shows that �m is a function of �0 and �, as written
in (11). This is what we wanted to prove.

Appendix II. Second-order size effect law

The size effect law in (21) corresponds to the first two terms of the large-size or small-size
asymptotic series expansions. Including the third, quadratic terms of the large-size expansion
improves accuracy for large sizes but gives infinite �N for D! 0. However, the following
formula proposed by Bažant and Kazemi [36] gives finite �N for zero sizeD (Figure 3) and its
large-size asymptotic expansion can be made to coincide with that in (17) up to the quadratic
term

�N =

s
EGf

�c+ �D
; �c =

�D + cg
�D + cf

; (48)

where cg is an additional constant. Rearrangement of this equation can give

EGf

�2
N

= g0(�0)cf

�
1 +

cg
�D

��
1 +

cf
�D

�
�1

+ g(�0)D

= g0(�0)cf

�
1 +

cg
�D

��
1� cf

�D
+ � � �

�
+ g(�0)D: (49)

Comparing the terms of powersD1;D0 andD�1 with those in (17), we conclude that coinci-
dence with the first three terms of the large-size asymptotic expansion is obtained for

cg = cf

�
1 +

g(�0)g
00(�0)

2g0(�0)2

�
: (50)

However, this formulation gives no size effect for g(�0) = 0. Therefore, unlike the universal
size effect law, it cannot be used for crack initiation from the surface.
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