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Abstract. Considerable progress has been achieved in fractal characterization of the properties of crack surfaces
in quasibrittle materials such as concrete, rock, ice, ceramics and composites. Recently, fractality of cracks or
microcracks was proposed as the explanation of the observed size effect on the nominal strength of structures. This
explanation, though, has rested merely on intuitive anal ogy and geometric reasoning, and did not take into account
the mechanics of crack propagation. In this paper, the energy-based asymptotic analysis of scaling presented in
the preceding companion paper in thisissue [1] is extended to the effect of fractality on scaling. First, attention is
focused on the propagation of fractal crack curves (invasive fractals). The modifications of the scaling law caused
by crack fractality are derived, both for quasibrittle failures after large stable crack growth and for failures at the
initiation of afractal crack in the boundary layer near the surface. Second, attention is focused on discrete fractal
distribution of microcracks (lacunar fractals), which is shown to lead to an analogy with Weibull’s statistical theory
of size effect due to material strength randomness. The predictions ensuing from the fractal hypothesis, either
invasive or lacunar, disagree with the experimentally confirmed asymptotic characteristics of the size effect in
quasibrittle structures. It is aso pointed out that considering the crack curve as a self-similar fractal conflicts with
kinematics. This can be remedied by considering the crack to be an affine fractd. It is concluded that the fractal
characteristics of either the fracture surface or the microcracking at the fracture front cannot have a significant
influence on the law of scaling of failure loads, although they can affect the fracture characteristics.

Key words: Quasibrittle materials, scaling, size effect, fracture mechanics, fractal cracks, invasive fractals, lacunar
fractals, fracture energy release, asymptotic analysis.

1. Introduction

Observations have shown that, within a certain range of scales, the fracture surfaces in many
materials, especially brittle heterogeneous material ssuch asrock, concrete, ice, tough ceramics
and various composites, exhibit partly fractal characteristics. Considerable advances in the
study of the fractal aspects of crack morphology and energy dissipation by fractal cracks
have already been made, and a correlation between the fractal dimension of the crack surface
(observed over alimited range of scales) and the fracture energy or toughness of some brittle
materials has been detected [2-31, 52].

Recently, it has been suggested that the fractal nature of crack surfaces might be the cause
of the observed size effect on nominal strength of concrete structures [21, 24-30]. However,
the connection between the fractal nature of cracks on the microscale and the scaling law on
the macroscale has so far been based merely on intuitive analogy and geometric arguments. It
has not been solidly established in terms of mechanics. This connection ought to be deduced
by global energy release analysis and asymptotic matching [32, 33]. The general size effect of
fractal fracture on the nominal strength of geometrically similar structureswill be derived. An
aternative size effect formulation based on the hypothesisthat the microcrack array represents
lacunar fractals will also be derived and its connection to Weibull-type statistical theory of
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size effect will be demonstrated. Comparisons of the predictions resulting from the fractal
hypothesisto the typical experimentally observed size effect trendswill allow an appraisal of
the hypothesis.

Thepresent analysisbased onreport [ 34], variousaspects of which have been summarized at
three recent conferences[35-37], will use the asymptotic and energetic approaches devel oped
in the preceding companion paper [1]. The same notations will be used. For details of the
method and the background, as well as for references to the test results and the nonfractal
studies of the size effect, the preceding paper may be consulted.

A simplified fractal theory based on an approximate description of load sharing in athree-
dimensional stack of cubes has been proposed for fracture comminution, with application to
crushing of aseaice plate pressing on an oil platform [38]. Another fractal theory for crushing
of ice floes, based on a one-dimensional load-sharing model, was proposed by Bhat [39].
These simplified but practically useful theories are not based on fracture mechanics and are
beyond the scope of the present paper.

2. Invasive and lacunar fractals

Intwo-dimensional fracture analysis, acrack in the Euclidean spaceisone-dimensional, i.e., it
isacurve, which hasfractal dimension d; = 1 in aspace of Hausdorff dimension M = 1.1In
two-dimensional fracture analysis, the fractal generalization consistsin considering the crack
to be a (non-Euclidean) fractal curve having fractal dimensiond; # 1 in aspace of Hausdorff
dimension M # 1. In three-dimensional fracture analysis, a smooth crack in the Euclidean
space represents a two-dimensional surface, and its fractal generalization is a fractal surface
of fractal dimension d; # 2 in aspace of Hausdorff dimension M # 2. Our analysis will be
confined to the two-dimensional treatment of fracture propagation, although generalization to
three dimensions s possible without affecting the basic nature of the conclusions.

In previous studies, the fractal curve of a crack has been considered as a self-similar
fractal curve, arising from disturbances of line segments that are self-similar when the scale
isreduced. Such a curve has no finite length. The measured length of such afractal curve, as,
depends on the length §p of the ruler by which it is measured (Figure (1a)). For small enough
dp or large enough a4, the *smooth’ (or projected, Euclidean) length of the fractal curveis

as = do(a/do)¥ . (1)

Here we introduced &g as the lower limit of fractality of the crack curve, which isin practice
aways implied by the microstructure of the material and cannot be less than the atomic
spacing. The value of o need not be known for the practical analysis of size effects in
structures. Suffice to say, it may be avery small constant, much smaller then any crack length
of practical interest.

There are two types of fractals which could conceivably influence fracture scaling:

(1) the invasive (densifying) fractals, for which d; > 1 (Figure 1(a)), and (2) the lacunar
(rarefying) fractals, for which d; < 1 (Figure 1(d)).

The invasive fractals give a continuous curve (Figure 1(a)), whereas the lacunar fractals give
a discrete set (Cantor set) of line segments corresponding to a row of microcracks (Figure
1(d)). When the so-called ‘multifractal’ scaling law (MFSL) was first proposed [21], the
argument referred to the self-similar invasive fractals exemplified by the von Koch curve.
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Figure 1. (8) Von Koch curves as examples of continuous fractal cracks (invasive or densifying fractas), at
progressive refinement; (b) recession and spiraling which can be exhibited by fractal curves such asvon Koch's; (c)
continuous fractal crack forming in afracture process zone; (d) row of discrete microcracks as lacunar (rarefying)
fractals; (e) fractal curve created by displacements normal to overall fracture direction.

After the discussions at the 1994 IUTAM Symposium in Torino [35], the argument for MFSL
was changed to the lacunar fractals [30], although, curiously, the concept of invasive fractals
[29] has been retained for the explanation of the structure size effect on the apparent fracture
energy. The consequencesof the invasive fractal hypothesiswill be studied first, and those of
the lacunar fractal hypothesis second.

3. Dissipation of energy by a fractal crack

Dueto progressive self-similar refinementsor disturbances, the actual length of afractal curve
between two points a finite distance apart is infinite. This makes it impossible to use the
classical definition of fracture energy, which consists of afinite energy dissipation per actual
unit crack length and width and, therefore, would give an infinite energy dissipation by a
fractal crack connecting two points afinite distance apart. To avoid this problem and make the
fractal concept of crack propagation feasible, Mosolov and Borodich [17, 18] proposed a new
unconventional definition of fractal fracture energy with adifferent physical dimension. They
expressed the energy Wy dissipated by afractal crack in atwo-dimensional body of thickness
b asfollows: as

Wf/b = Gfladf, a < 51, (2)
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where G ¢ = fractal fracture energy, the metric dimension of whichisJ m~4s=1[17,18], and
constant 61 gives an upper limit of fractality. For 6, — oo, the range of fractality would be
unlimited. But this can never be the case in redlity, i.e., 1 is finite and represents the crack
length that is sufficiently larger than the maximum size d,, of material inhomogeneities (such
as the maximum aggregate size in concrete or the maximum grain size in rock or ceramic).
For larger scales, the energy dissipation is defined by the standard relation

Wf/b = Gfa, a > 01, 3

where Gy = standard (or macroscopic, large-scale) fracture energy (the dimension of which
isIm™2). Setting G o = G ya, wehave sy = (G /G )4

In contrast to nonfractal cracks, we avoid introducing the stress intensity factor and the
fracturetoughnessbecausethenear-tip stressfield of afractal crack isunknown and nonexistent
in the deterministic sense. The energy release rate and fracture energy, however, are concepts
that a sound fractal model must accept.

4. Energy analysis

We adopt the following three hypotheses, of which the first two have been standard in the
study of fractal cracks

(1) Within acertain range of sufficiently small scales, thefailure is caused by the propagation
of asingle crack representing a single fractal curve.

(2) Thefractal fracture energy, as defined by (2), is a material constant correctly describing
energy dissipation [17, 18].

(3) The material may (although need not) possess amaterial length, c;.

The rate of energy dissipation in the structure as a whole must be defined with respect to
the ‘smooth’ (or projected) crack length a. Differentiating (2) and (3) with respect to a, we
obtain the following dependence of the macroscopic energy dissipation rate G on the smooth
crack length a

10wy . _
gcr = EW = M|n(Gfldfadf 1, Gf) (4)
Setting both expressions in the parenthesis equal, we see that the transition from the first to

the second expression occurs at
ap = (Gy/Gudp)H =Y, ®)

which is different from §;. We accept this difference because G, as a function of a would
otherwise exhibit ajump at the transition from the fractal to the nonfractal regime (as shown
for a = §; in Figure 2). Such ajump is physically inadmissible.

To characterize the size effect in geometrically similar structures of different sizes D
(characteristic dimensions), we introduce, as in [1], the nominal stress oy = P/bD where
D = characterigtic size (dimension) of the structure, P = applied load (or load parameter),
and b = structure thickness in the third dimension (we restrict attention to two-dimensional
similarity, although generalization of the present analysis to three-dimensional similarity
would be easy). When P = P = maximum load, oy is called the nominal strength of the
structure. Theload is considered to be a dead load (i.e., independent of displacement).
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Figure 2. Variation of fractal and nonfractal energy dissipation rates at crack front.

According to Hypothesis 3 and similar to [1], we consider that in general there may be
amateria property having the dimension of length and called the material length c;. This
length governs the projected (smooth, Euclidean) size of the fractal fracture process zone.
The special case when there is no material length will, of course, be included in our analysis
as the limiting case for ¢; — 0. Based on the current understanding of the fracture process
in quasibrittle materials, we must admit that the tip of the fractal crack may be preceded by
microcracks and frictional dlip planes, which may be fractal (Figure 1(c)). However, because
of the way the energy dissipation is described in (2), the fractal fracture concept allows
considering only fractal microcracks that form along the future path of the fractal crack. The
fractal crack propagation concept cannot treat the casein which microcracks (whether fractal
or nonfractal) would also form on the side of the future fractal crack path.

Sameas[1], we havetwo basic variables, a and ¢, both having the dimension of Euclidean
length. They must appear in the energy release expression nondimensionally. We again choose
the dimensionless variables

a=a/D 0 =cs/D. (6)

According to Buckingham’s theorem of dimensional analysis, the complementary energy IT*
(representing, under isothermal conditions, the Gibbs free energy) must be afunction of these
dimensionless variables even for afractal crack. Similar to [1]

* UJZV 2
11° = Y402 (a0 0), U

inwhich f isadimensionless continuous function of « and 6.

As pointed out in [1], the material length c; need not be specified directly but is anyway
implied if the material breakup in the fracture process zone is assumed to be governed by
continuum damage mechanics. In that theory, the material failure is characterized in terms
of a critical damage energy release rate W, per unit volume of material. In fractal fracture
mechanics, by contrast, the material failureis characterized by critical energy dissipation G ;
per unit fractal surface area. A quasibrittle material possesses both characteristics. So, instead
of Hypothesis 3, one may assumethat failure is governed by both G 4, and W,;. However, such
ahypothesisis equivalent. Indeed, instead of (6), we may define

1 /G s\ Y (@2dy)
-3

but this can again be written as 6 = ¢;/D, where ¢y = (G s/ Wq)Y/(2=41). Thus, a material
length emergesin the formulation anyway.
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Nonlinear fracture mechanics, too, implies material length c;, as mentioned in [1]. In that
theory, fracture propagation is governed not only by fracture energy, taken here as G 4, but
also by tensile strength f/. Instead of (6), the dimensionless parameter & may then be defined
as

1/(2—dy)
9 — 1 EGfl . (9)
D\ f?

This can again bewritten as@ = c;/D where ¢y = (EG ;] f{2)Y/(2=4s),

Similar to [1], thefirst step isto impose the energy balance condition for crack propagation.
In this regard, a point to note is that the energy release from the structure as a whole must be
calculated on the basis of the ‘smooth’ (or projected, Euclidean) crack length rather than the
fractal crack length a;. Indeed, thisisthe length that matters for the elastic stressfield on the
macroscale. Therefore,

oIr* B oWy
[ Oa LN - Oda (10)
Upon substitution of (7) and differentiation,
ok
Here
_ 0f (e, )

where g is the dimensionless energy release rate function. For the special case ¢; — O,
the form of this function coincides with function g(«) of linear elastic fracture mechanics
(LEFM). Same as f, function g(«, 0) reflects the geometry of the structure, crack and load,
but is independent of D.

Same as in [1], we now need to introduce the crack length ¢ = a,, a the maximum
load, which represents the stability limit because we consider the loading under |oad control
conditions ([40], Chapter 10). If the fractal crack curve has a perfectly sharp tip and if we
restrict attention to the so-called positive structure geometries, whichistheusua casefor which
the energy release curve of 0I1* /Ja versusa at constant load isrising, then a,,, = ao = initial
traction-free crack length. For quasibrittle materials, however, a,, > ag because of the R-curve
behavior associated with the existence of alarge fracture process zone or material length, c;.
In (12) of the preceding companion paper [1], it was shown that the value of a,, = ay, /D is
afunction of ap and 0, i.e., a, = (o, ). This was deduced from the condition that, at
maximum load, the energy release curve must be tangent to the R-curve, and alternatively in
Appendix | also from the maximum load condition of the cohesive crack model. By analogy,
one could now introduce afractal generalization of the R-curve model or of the cohesive crack
model to show that for fractal fracture, too, the maximum load occurs at

@ = am(ao, 0). (13)

The corresponding crack length at maximum load, a,, = «,,D, increases with D at
constant g and for D — oo tends to a finite asymptotic value, lima,, = ao + ¢;. The case
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of fractal generalization of linear elastic fracture mechanics (LEFM), which appliesto fractal
crackswith aperfectly sharp tip and no microcracks ahead of thetip, isobtained for a,,, = ag.

Substituting (13) in (11), and replacing also G f; in (4) for G with an R-curve, one may
obtain from (11) a conclusion analogous to (14) of the preceding companion paper [1]

_ EGe
7 =\ Dilao.0) .

where a9 denotes the value of the relative length of the initial traction-free crack, and g is
a function of two variables. If the fractal crack displays no R-curve behavior, g(«o,6) =
glam (o, 0),0]. For D — oo, lim g(«o, 8) = g(ao, 0), which coincideswith the usual dimen-
sionless LEFM energy release rate g(«g) asafunction of one variable.

Because, same as in [1], §(«o, #) ought to be a smooth function, we may expand it into
Taylor series about the point («, 8) = («p, 0). Equation (11) thus furnishes

2

o .
fND G(0,0) + g1(0, 0)

1 2
° Z-g2(00,0) <C_f> 4.

D 2 D = gCl’ ) (15)

where g1 (o, 0) = 9g(ayp, 9)/39,92(@0, 0) = azﬁ(ao, 9)/392, ..., dl evaluated a § = O.
As in [1], we have thus acquired the large-size asymptotic series expansion of size effect.
To obtain a simplified approximation, we may truncate the series after the linear term. Then,
introducing the notations

g(ao,O) gl(aoao)
k= = 16
ao 7 CO CfOéo g(ao’ O) ? ( )
we get the equation
(0% /E)k(a + co) = Ger. (17)

Here we may substitute (4) and set ¢ = aD. Thus, solving this equation for o/, we conclude
that the law of the size effect of fractal fractureis

~1/2 ~1/2
on = Min {agvafl)/z (1+ 2) , By (1 + 2) } , (18)
Dy Dg

with the notations

co g91(c0,0)
Dyg=— =c¢¢= , 19
0= 20~ ¥ 3(00.0) (19
dr—1 dr—1
N kco crg1(ao,0)

EG EG
Bff=|—L = [ —"L 21
i kco cr91(co, 0) (1)
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It is obviously required that, for dy — 1, (18) must reduce to the nonfractal size effect
law deduced by Bazant [41,42], i.e, o = Bf{/v/1+ 3, 8 = D/Dyg. In other words, the
first expression in (18) must become identical to the second. Obviously, this requirement is
satisfied.

For the simple specimenin Figure 2 of [1], Equation (17) can again beintuitively explained
in terms of the stress relief zones, in the same manner as explained by Figure 2 of [1]. This
provides afurther justification of this equation.

5. Law of fractal size effect

To beableto apply (18), the a-value at maximum load must be known. Fracture test specimens
(of positive geometry) reach maximum load for ¢ = a — ag < ag Where ag isthelength of the
notch, and if the notches are geometrically similar the value of ag is constant (independent of
D). For brittlefailures of geometrically similar reinforced concrete structureswithout notches,
such as diagonal shear, punching of slabs, torsion, anchor pullout or bar pullout, extensive
laboratory evidence as well as finite element solutions [43, 44] show that the failure modes
are often approximately geometrically similar and «g ~ constant for a broad enough range
of D. Then k, cg, Do, a?v and Bf/ are also constant. In these typical cases, (18) describes
the dependence of oy on size D only, that is, the size effect. (Note, however, that geometric
similarity of failure mode is known to be violated for some cases, especialy if a very broad
Sizerangeis considered; e.g., for Brazilian split-cylinder tests of a size range exceeding 1:8).

Figure 3(a) shows the size effect plot of logoy versus log D at constant ag, obtained
according to the result in (18). Two size effect curves are shown

e thefractal one, which represents atransition from arising asymptote, corresponding to a
power law of exponent (d; — 1)/2, to adescending asymptote corresponding to a power
law of exponent (d;/2) — 1, and

e the nonfractal one, whichisthe sameasin Figure 3 of the preceding companion paper [1]
and represents atransition from a horizontal asymptote, corresponding to a power law of
exponent 0 (and to the strength theory), to a descending asymptote, corresponding to a
power law of exponent —1/2 (characteristic of LEFM).

For both the fractal and the nonfractal curves, D = Dy represents the point of intersection of
the left-side and right-side asymptotes, that is, the center of the transition from one power law
to another (Figure 3). Onthemicroscale, i.e.for D < Dy, theenergy releasefrom the structure
is negligible, and on the macroscale, i.e. for D > Dy, this energy release is dominant.

The special case when no material length existsis obtained asthe limit for ¢; — 0. In that
case, the fractal and nonfractal size effects consist of two power laws shown in the log-log
plot in Figure 3(b) by lines of slopes (d;/2) — 1 and —1/2. The latter slope corresponds to
LEFM. The transition from the first to the second power law, which representsin the log-log
plot arotation, is called the renormalization group transformation.

For finite materia length c;, there is also a transition from one power law to another for
the fractal regime alone, as well as for the nonfractal regime alone. These transitions have
nothing to do with fractality and are not caused by a change of fractal scales, asin multifractal
problems. Rather, they are a consequence of the effect that the existence of material length,
cy, has on the energy release — the fact that the energy release rate due to a unit ox-value
is, for large structure sizes (D > D), nearly proportional to D but for small structure sizes
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Figure 3. Size effect curves predicted for failures at geometrically similar continuous fractal cracks (invasive
fractals) and nonfractal cracks, for (a) finite or (b) zero size of the fracture process zone (cohesive zone).

(D < Do) is approximately constant. This transition is centered, for both the fractal and
nonfractal curves, at the value Do which we obtained by energy analysis.

When 6, is finite, we have a multifractal scaling problem, with two fractal scales, of
which the second is nonfractal, having fractal dimension d; = 1. In this case the fractal and
nonfractal size effect curves shown in Figure 3 intersect. The intersection point D (whose
value depends on structure geometry and on 4 or ¢y) representsthe transition from the fractal
to the nonfractal size effect. Same as already mentioned for ¢y = 0, thistransition isin the
fractal theory regarded as the renormalization group transformation. It is typical that this
transformation represents a rotation of the log-log plot, as seen in Figure 3.

6. Can size effect be explained by crack fractality?

One salient feature of our result isthat, for nonzero ¢, thefirst expressionfor oy in (18) isan
increasing function of D when D is not too large. Thisis a strange feature, not supported by
the available test results for quasibrittle materials. So it appearsthat, at very small scale, the
fractal nature of the crack surfaces cannot be the major cause of size effect (except perhapsif
cr = 0).

! Toreconcileour result with this conclusion, we must assumethat, for D < Dy, there ought
to be acut-off asindicated by the transition to ahorizontal line at the left end of the size effect
plot (Figure 3(a)). Constant D, correspondsto crack lengths a < dp where dg is the supposed
lower limit of crack surface fractality.

A second salient feature of our result is that the fractal size effect curve in the log-log plot
approachesan asymptote of aslope much lessthat —% (about —0.25to —0.4, according to the
d —values reported for concrete; Figure 3(a)). But there exist many test results for concrete
and rock which clearly exhibit a close approach to an asymptote of slope —%; as two among
many examples, see Figure 4(a) for data on diagonal shear failure of reinforced concrete
beams [45], and Figure 4(b) on double-punch compression failure of concrete cylinders [46].
From these comparisons, we must conclude that the size effect in these test data cannot be
caused by crack surface fractality.
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Figure 4. (a) Size effect test results for diagonal shear failure of longitudinally reinforced concrete beams without
stirrups (Bazant and Kazemi, [45]) (top left) and (b) for double punch compression failure of concrete cylinders
(Marti [46]) (top right), and (c) for Brazilian split-cylinder tests of Hasegawaet a. [50]. Thefirst two are compared
to Bazant's size effect law in Equation (21) of [1], and the third is compared to the extended size effect law in
Equation (37) of [1].

There also exist size effect test data that do not approach an asymptote of slope —% and
exhibit apositive overall curvature in the logarithmic plot, asemphasized in [21, 26, 30]. The
best examples are the Brazilian split-cylinder test data of a very broad size range (Hasegawa
et a.s data [51] of range 1:30, Figure 4(c); or Bazant et al.'s data of range 1:32, see [44]),
Thesedata suggest that, beyond a certain size range, the descending size effect curveof log oy
versuslog D might exhibit atransition to ahorizontal line, i.e., the size effect might disappear
for sufficiently large sizes.

However, inview of (18) it would be dubiousto ascribe this phenomenonto crack fractality.
There exist other, more plausible, explanations:

(1) achange of failure mechanism, or
(2) existence of aplastic mechanism providing residual strength.
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When that is the case, the test data may be closely fitted by (37) or (38) of the preceding
paper [1]. If the constant Dg in that equation is sufficiently small, the plot of o versuslog D
according to this equation exhibits a positive curvature. The fact that some test results show
such a positive curvature has been invoked in [21, 26, 30] to support of the MFSL law (see
Equation (39)). However, such test results can be equally well fitted by Equation (37) of [1].

Inthe Braziliantests of very large cylinders, the nominal stressto cause splitting becomesso
small that thefailureislikely to be controlled by plastic-frictional slip on wedgesthat develop
under the loading platens (this mechanism causes that the nominal strength is finite and not
very small when the cylinder is cut by a saw along the axis and the two disconnected halves
are then stacked together and loaded along the cut). Furthermore, for this or other reasons,
the effective crack length at maximum load of very large cylinders apparently ceases being
approximately proportional to the diameter D of the cylinder. A further cause of deviation in
some Brazilian tests may be that the loading conditions viol ated geometric similarity because
the loading strips under the platens were not scaled in proportion to D. Figure 4(c) documents
that the Brazilian tests of Hasegawa et al. [51] can be reasonably well described by the
extended size effect law with residual strength, given by (37) of the preceding paper [1]. So,
crack fractality appears neither necessary nor logical for explaining these test results.

Thereisanother objectionto the fractal explanation of size effect. If the fracture of concrete
developedin theform of asingle smooth, continuous crack, the following relation would have
to hold

Gf ~ 2")/, (22)

where « is the surface Gibbs free energy of the solid. The fractal tortuosity of a crack can
conceivably cause the effective G'; to be several times larger than 2+, but not much larger.
However, the value of G ; for concrete (about 30 to 100J m?) is several orders of magnitude
larger than the  value for the solids in concrete.

Therefore, the fracture front cannot consist of a single crack. Rather, the fracture process
zone must consist of aband of many energy dissipating defects such as microcracks (including
microcracks at mortar-aggregate interfaces) and plastic-frictional slips. They al must form
before the fracture front can propagate. Indeed, this is what has been established experimen-
tally, e.g. by locating the sound emissions from microcracks, or by unloading tests.

Some of the microcracks and slips eventually coalesce into a single continuous crack. But
most of the microcracks, except those on thefinal crack surface, close. Thefinal crack surface
may be to a large extent fractal, but this is irrelevant for the fracture propagation criterion
becausethe coal escenceof microcracksand plastic-frictional slipsoccursonly at theend of the
fracture process, in the wake of the fracture process zone. Most of the energy is dissipated in
the fracture process zone by microcracks and plastic-frictional slip planesthat do not become
part of the final crack surface and thus have nothing to do with its fractality.

Thedifficulty of correlating G, or fracturetoughness K. = /EG f, 10y isalso supported
by the observations of Cahn [6]. He found that while in chert and some ceramics K. increases

with d; (approximately, K. o Kgf, where Ky = constant), in some steels it decreases with
dy. He pointed out that this may be caused by plastic phenomenain the fracture process zone,
such asvoid growth. But thisof course meansthat the crack front does not advance asafractal
curve. Thefractal curve appears afterwards.

In view of the foregoing arguments, one must distinguish in the mechanics of fracture two
types of continuous crack fractality:
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(1) Fractaity of the final crack surface, which is doubtless a reasonable morphological
description of surface roughness for many materials (albeit applicable only for alimited
range of scales); and

(2) fractality of the fracture process, that is, the process that controls energy dissipation at
the fracture front.

Based on the present analysis, it islogical to conclude that the process of propagation of
continuous cracks in quasibrittle materials such as concrete or rock cannot be predominantly
fractal. The fractal nature of the crack surface is irrelevant for fracture propagation and for
the scaling of failure loads. The recent intuitive suggestions [21, 30] that the size effect in
concrete fracture may be caused by the fractal nature of crack surfaces are not defensible.

Thereisalso aproblemwith the assumption that the crack isaself-similar fractal curve such
asvon Koch’s, in which the fractality arisesfrom locally transverse disturbancesof aline. The
crack curve (unlike the popular example of the shoreline of England) must be kinematically
admissible, such that the zones of material adjacent to the crack can move apart as two rigid
bodies. But a self-similar fractal curve such as von Koch's can have recessive segments (i.e.
segments receding backward, against the overall direction of fracture propagation), and it can
evendevel op spiral segments; see Figure 1(b). For such geometries, separationiskinematically
impossible without additional fracturing around the fractal crack, but then the fracture would
not grow as a single fractal crack. Although the probability of occurrence of recessive and
spiral segments may be very low, they cannot be dismissed when the fundamental nature of
fractureis studied.

For thisreason, the self-similar (or locally transverse) fractality, i.e. fractality generated by
displacements normal to individual local line segments, asis the case for the von Koch curve
(Figure 1(a), is unrealistic. It should be replaced (as J. Planas pointed out at FraM CoS-2,
1995) by the hypothesis of self-affine fractality, i.e., fractality generated only by crack line
disturbances normal to the overall (global) crack direction, asillustrated in Figure 1(e).

7. Fractal size effect law in terms of material fracture parametersand
identification of G'f;

Similar to the preceding companion paper [1], ¢, can specifically beinterpreted asthe (Euclid-
ean) effective length of the fracture process zone in a specimen extrapolated to infinite size
(measured in the overall direction of propagation). Inthat case, § = c;/D = (a — ao)/D =
a — ap. This suggests that function g(«, ) can be approximated by a function of one vari-
able, g(«), representing the usual dimensionless energy release rate function of LEFM.
Also, g(ap,0) then reduces to g(ap), 9/06 = d/da, and g1(c,0) takes the meaning of
¢ () = dg(a)/da, with the prime denoting the derivatives. Instead of Equation (25) of
[1], one obtains from these relations the fractal size effect law in terms of material fracture
parameters

dr—1
E’Gfldfaof
oN = , 23
Y =\ glaoles + 9(a0)D 3)
in which
dr—1
EG fdrag’
09 — | ECndrag %0 (24)
crg'(ao)
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and, same asin [1], Do = crg'(aw)/g(ao) and Bf{ = \/EG/cpg' (o). If fracture prop-
agation in some materia were fractal, then Gy, c; and dy could be identified by optimum
least-squarefitting of thelast equation to maximum load data measured on notched specimens
of various brittleness numbers.

8. General large-size asymptotic expansion

The same consideration as in [1] suggests that more general dimensionless variables and
functions could be introduced as

f =0"= (Cf/D)ra h(aoaf) = [g(ao,e]r, (25)

with any » > 0. In the same manner as in [1], one can then obtain a more general fractal
asymptotic expansion of size effect

D\" D\ " D —2r D —3r
on=or|(55) +rra () () +ea(z) +

where k1, k2, . .. ae certain constants, Dy is given again by Equation (23) of [1], and

[EG; [0h(ap,0)] Y2
op = df(OéoD)df*l Cffl |: (ggv ):| ) (27)

9. Small-size asymptotic expansion and asymptotic matching

—1/2r
,  (26)

Similar to [1], one can introduce into the expression for complementary energy I1* instead
of " anew variabley = =" and anew function, 1(«o,n) = [g(ao,)/6]". Using the same
procedure, one can thus obtain the small-size asymptotic expansion for fractal fracture

D\" D\ D\ —=1/2r
ov=or [ () wee(5,) +m(gg) v @9)
inwhich b, bs, . . . are certain constants and
EGfldf(aoD)df_l |: 1 8¢(a0’0):|_1/7“
o \/ /(0,0 = a0 0) on 9

Equation (29) showsthat, for fractal fracture (d; > 1) insmall-size specimens, the nominal
strength o would have to increase with D proportionally to D% ~1. Such a size effect
contradicts experience. Therefore, the fractal hypothesisis untenable.

Thelarge-size and small-size asymptotic seriesexpansionsin (26) and (28) havein common
thefirst two terms. These two terms represent a simple asymptotic matching

on =op(1+3)"Y? (3= D/Dy). (30)

Thisisthe same expression as Equation (36) in [1], except that o p is different, depending on
fractal characteristics. Same as before, the value r ~ 1 appearsto be appropriate.
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10. Fractal size effect for surface crack initiation and universal law

As already explained in [1], to treat the crack initiation from a smooth surface, as in the
modulus of rupture (flexural strength) test, it is necessary to include the second (quadratic)
term of the large-size asymptotic expansion because the first term is zero (as g(0) = 0). By
the same procedure as in (15), the following law of the size effect for crack initiation may
then be deduced

oy = o DUr~D/2 (1+ %) , (31)

with the notation

ds—1
EGfldfaof 9”(0)
oo | ST T0 Dy = — . 2
NGO T a0 (32

Equation (31) is plotted in the logarithmic scales of D and o in Figure 5, for both the
fractal and nonfractal cases. For the nonfractal case, the plot has been discussedin[1]. For the
fractal case, the size effect predicted from the fractal hypothesisrepresentsatransition from a
declining to arising asymptote. Such behavior is contradicted by the experimentally observed
trend (Figure 6). So we have another reason to conclude that the hypothesis of afractal source
of size effect is not defensible.

Notethat, for c; = 0,037 can befinite only if the crack isfractal (d; > 1), and Dy —=0
(which meansthe size effect disappears). This observation, of course, isnot surprising because
crack initiation from asmooth surfaceis, according to LEFM, impossible. Thusthe size effect
observed in modulus of rupture testsimplies that c; > O.

Also note that (31) can be written as a linear regression equation oy = A + CX where
A = o¥DW=V/2 ¢ = AD, and X = 1/D. Thus, for given d;, one could identify the
values of A and C by linear regression of test data on the modulus of rupture for various D.
To identify d; and G'f;, one could then repeat this analysis for various d; and pick the case
with the smallest sum of squared deviations from the regression line.

11. DoesWeibull-type statistical theory apply to quasibrittle fracture?

Before discussing the possible effect of lacunar fractality, it is useful to make a digression
to the statistical theory of size effect. Until about a decade ago, the size effect observed in
concrete structures had been universally explained by randomness of strength and calculated
according to Weibull statistical theory. Recently, however, it was shown [48,49] that this
theory cannot describe failure when large stable fractures can grow in a stable manner prior
to maximum load, asistypical of quasibrittle fracture.

The basic hypotheses of Weibull-type theories are

(1) Thestructure behavesasasystem of small material elementsof random strength and fails
as soon as the stress in one small element attains the strength limit.

(2) Stressredistribution and the associated release of stored energy caused by stable macro-
scopic crack growth before failure is negligible.
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Figure 5. Size effect predicted for failures at initial of continuous (invasive) fractal crack or nonfractal crack in
boundary layer.
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Figure 6. Test data for the dependence of modulus of rupture f,. of unreinforced concrete beams on beam depth
D, and their fit by the nonfractal formula (31); f{ = direct tensile strength, h = D = beam depth, I; = constant
(after Bazant and Li, ref. [18] in[1]).

The proper tail distribution of failure probability P; of a small representative element of the
material isthe Weibull distribution [47], i.e.,

Py = (o) = <"_"“>m, (33)

00
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in which ¢ = function giving P, m = Weibull modulus (approximately 12 for concrete),
oo = scae parameter (material constant), o, = threshold (a material constant which
can normaly be assumed as 0), and (z) = max(z,0) = positive part of = (Macauley
bracket).

The failure condition that can be deduced from these hypotheses for the continuum limit
of astructure consisting of many small elements having very small failure probability P may
be written (for o, = 0) in the form (e.g., [48, 49])

~In =) = [ plo(@)dv @)V, (3

where P; = failure probability of the structure, x = coordinate vectors, V' = structure
volume, V. = representative volume of the material on which the strength probability is
defined, which can betaken as V, = ct where n = number of dimensions of the structure.
One may set o(x) = onS(z) and introduce the scaling transformation of the coordinates
(i.e, affinity) as ' = «D/D’, which transforms a structure of size D to a geometrically
similar structure of size D'. One can then easily show [e.g., 48] that the size effect on nominal
strength o with any given probability cutoff P (as well as on the mean of o) is a power
law of the form

on =k, VY™ = kD™, (35)

where n = number of dimensions of the structure; V' oc D"; and k,,, ko = constants.

The aforementioned hypotheses are strictly satisfied only for along chain, as described
by the weakest link model. But they also work well for brittle homogeneous structures that
either fail or may be considered to fail as soon as a crack ceases to be microscopic compared
to structure dimensions. This is the case for metallic structures embrittled by fatigue. In that
case, the stress intensity factor of a microcrack in the small element in Figure 7(a) depends,
at impending failure, only on the local stress o calculated asif no cracks existed.

Even though (34) is an integral over the local stresses o (), fracture mechanics has been
introduced by evaluating the local failure probability from the statistical distribution of sizes
of microcracks (or flaws). Validity of the formulation requires that the critical microcracks be
so small that the remote stress field surrounding these microcracks be well approximated as a
field of uniform stress that is equal to the local stress calculated for the same structure under
the assumption that there are no cracks. The stress intensity factor of the microcrack is then
simply approximated by the formula for a crack in an infinite solid subjected to a uniform
stress at infinity. But it is important to note that this approach involves fracture mechanics
only on the microscale (i.e. for avery small material element) rather than on the macroscale
(i.e. for the structure as a whole). Obviously, with this approach, the energy release from the
structure as awhole is negligible. Such asimplification is quite acceptable for steel structures
but not for concrete or other quasibrittle structures.

Modest stress redistributions caused in structures in which a few material elements must
fail before the structure can fail have been taken into account in early studies by means of
various simple hypotheses about load sharing between the elements of the system. However,
such phenomenologica hypothesesignore elasticity theory, and particularly the effect of the
geometry of the structure and of the crack growth on the overall elastic stressfield. They are
normally insufficient for quasibrittle structures failing after large stable crack growth [48, 49],
which typically occurs in reinforced concrete structures, as well as in penetration fracture or
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Figure 7. Basic hypothesis of Weibull theory: failure precipitated by a critical microcrack in microscopic zone A
(marked by acircle), with K proportional to the local stress o calculated for uncracked structure.

compression fracture of seaiceplate, or in fracture of adam. The growth of large cracks before
failure causeslarge stressredistributionswith strain localization. Thisengendersalargerelease
of stored energy and is, in itself, the cause of a major deterministic size effect. Because of
ignoring it, the classical Weibull-type theory does not apply to quasibrittle structures[48, 49].
At present, extensive studies of the micromechanics of fracture are under way at several
universities to overcome the aforementioned limitations of the classical Weibull theory. But
they are based on large-scale numerical simulations which normally do not lead to easily
interpretable analytical solutions.

It might seem that a ssmple way to take the stress redistribution due to a large crack into
account would be to substitute the LEFM stress field with crack tip singularity into (34).
However, thisisincorrect for two reasons:

(1) Stresses approaching infinity are unacceptable for the Weibull distribution; and

(2) for the values of Weibull modulus m typical of most materias, the Weibull-type proba-
bility integral over the structure diverges.

A realistic approximation requires taking into account the blunting of sharp stress peak in
the fracture process zone. This can be approximately done by assuming the failure probability
P; of asmall material element to depend on the nonlocal strain £ rather than the local stress
o at the same point, i.e., by replacing (34) with

—In(L=Pp) =k [ elBE(@)]dV (@)/Vr, (36)

where £ can be most simply defined as the weighted average of strains ¢ within a certain
characteristic neighborhood of agiven point [48, 49]. Regarding the tensorial nature of strain,
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¢ ismost simply interpreted as the maximum principal strain. Asymptotic matching based on
(36), along with Weibull distribution, was shown to lead to the following law of size effect

o op 3 D
N= —r/—/—— = 75
/IGZn/m_i_ﬁ Do

where o p and Dy are constants. For m — oo, which givesthe deterministic limit, thisformula
approachesthe original BaZant's size effect law, oy = op(1 + 8)~¥? (Equation (14) of [1].
For normal m-values, numerical studies[49] have shown that in practice (37) differsfrom this
law only negligibly. For concrete, the difference was found to have no practical significance.
The difference becomes appreciable only for mathematical extrapolation to structures smaller
than the maximum aggregate size, which has no physical meaning.

For D — 0, Equation (37) asymptotically approachesthe classical Weibull size effect law
in (35). Thereasonis that, for avery small structure, the nonlocal averaging operator in (36)
represents averaging over the whole structure, and the average stress follows the Weibull-type
size effect in (35).

An interesting feature is that, for D — oo, the statistical influence on the size effect
disappears. Equation (37) asymptotically approachesthe LEFM asymptote of slope — % inthe
log-log plot. The reason is the redistribution of stresses caused by stable fracture growth prior
to maximum load, which may be intuitively understood as follows.

If the Weibull probability integral is applied to the redistributed stress field, the dominant
contribution to itsvalue comesfrom the fracture process zonewhose sizeis nearly independent
of structure size D. The contribution from the rest of the structure nearly vanishes (reflecting
the fact that the fracture cannot occur outside the process zone). Because, for specimens
of very different sizes, this zone has about the same size, there can be no statistical size
effect.

For quasibrittle materials, the Weibull-type size effect may operate only in very large
structures that fail right at crack initiation — for example, in very deep unnotched plain
concrete beams. In connection with the cohesive (fictitious) crack model, such a size effect
has been studied under certain simplifying assumptions by Petersson [50]. He approached the
problem numerically, by finite elements.

To obtain a formula, the deterministic size effect law for crack initiation at body sur-
face, given by Equation (36) of [1], may be extended by asymptotic reasoning. The following
generaization of the fractal formula (31), in which D, k, are constants, matches the
asymptotic properties

n/m
oN = kD4 -D/2 l(&) LD

(37)

- = (38)

Even for beam depths such as D = 10Dy, the stress redistribution in the boundary
layer, underlying (31), causes a significant deterministic size effect. Therefore, the beam
depth beyond which the Weibull-type size effect could be dominant apparently needs to
exceed D = 100D,. Hardly any case satisfying this condition exists in concrete practice.
Besides, the way to produce good, tough quasibrittle materials is to achieve that c; be as
large as possible. But this prevents the material from failing right at the crack initiation.
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After discussing the Weibull-type statistical size effect, we are now ready to examine the
possiblerole of lacunar fractals.

12. Lacunar fractality of microcracks

Another recently proposed law for size effect in quasibrittle fracture is[21]

B
aN:,/A+5, (39)

where A and B are empirical constants. Thislaw hasasimilar plot as the nonfractal curvein
Figure5. It was called in [21] the ‘multifractal scaling law’, or MFSL. But it is unclear how it
could be claimed to represent a consequence of fractality because the argument for Equation
(39) stated in [21] completely lacked mechanics.

Initialy [21,26], the argument for the law in (39) referred to fractal crack curves, for
which the von Koch curve was used as an illustration. However, from the preceding analysis
(presented at IUTAM Symposium, Torino 1994 [35]) it transpires that the hypothesis of
fractality of the crack curves must lead to a different scaling law than the law in (39). Later
[29] the fractal hypothesis for this law was modified to a lacunar fractality of microcrack
distribution, but curiously the invasive fractality wasretained [30] for explaining the variation
of material fracture energy.

Microcracks with the geometry of lacunar fractals (Figure 1(€)) do not represent a con-
tinuous break of the material. So there can be no macroscopic stress redistribution and no
global energy release causing size effect. Such microcracks can affect only the initiation of a
macrocrack. Consequently, the argument for size effect must be made through some sort of
Weibull theory.

This is what was proposed in [30]. The statistical distribution of microcrack sizes a was
assumed to be the beta distribution with shape parameter « (Equation (4) in [30]), and the
local stress o required for microcrack propagation was assumed to follow the LEFM relation
o/ow = v/ap/a where o, and a,; are material constants (Equation (6) in [30]). Then the
failure probability Py was assumed (in Equation (6) of [30]) to depend according to Weibull
distribution on the local stress o (calculated as if no crack existed).

Up to that point, the argument in [30] was the same as in the Weibull-type theory, and
the same objections as before could be raised. After that, to justify the law in (39), a merely
verbal argument was offered [30, p. 568], in which it was simply stated that the differencein
physical fractal dimensions on the local scale of fracture and the global scale of the structure

! The argument for Equation (39) was stated on pages 196-197 of [21] asfollows: ‘the effect of microstructural
disorder on the mechanical behavior becomes progressively less important at larger scales, whereas it represents
a fundamental feature at small scales. ... the disordered (damaged) microstructure is somehow homogenized,
that is, it behaves macroscopicaly as an ordered microstructure. Therefore, the scale effect should vanish in
the limit of structura size D tending to infinite, where an asymptotic finite strength can be determined. On the
other hand, for small specimens (i.e. small compared to the microstructural characteristic size), the effect of the
disordered microstructure becomes progressively less important, and the strength increases with decreasing size,
ideally tending to infinite as the size tends to zero. In the bilogarithmic diagram [log o v versus log D], the ope
represents the fractal decrement of the ligament physical dimensions, which can be assumed as a measure of
disorder on the mechanical behavior. Two limit conditions have to be satisfied: slope — 0 for large structures
(homogenized microstructural effects), and slope — 0.5 for small structures. The last situation corresponds to the
highest degree of disorder, which isatheoretical limit’.
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Figure 8. Large and small structures (a) and (b) subdivided into small material elements of same size and same
failure characteristics, and large structures (b) and (c) subdivided into small and large material elements of different
failure characteristics (considered for Weibull theory and for Carpinteri—Chiaia—Ferro MFSL law).

causes the nominal strength to depend on the structure size.?

In the consideration of ‘two different fractal dimensions’ (local and global) for the lacunar
microcracks, i.e., different material characteristics, it was tacitly assumed that the size of
the representative material element on which the material strength is defined increases with
structure size D (Figure 8(a,b)). But this is not possible for structures made of the same
material. If the size of the representative material element is not the same, the material is not
the same. Let us now clarify these considerations by trying to formulate them mathematically.

For microcracks with lacunar fractal characteristics (see Figure 1(d)), Equation (1) is
again valid but the fractal dimension d; < 1. Because the microcracks are discontinuous,
the continuum mechanics treatment must be based on damage mechanics rather than fracture
mechanics. In the prototype one-dimensional form of continuum damage mechanicsinitiated
by Kachanov, the effect of damage dueto themicrocracksiscaptured by therelationse = 7/E
and 7 = 0/(1 — w) where E is the Young's modulus, ¢ is the macroscopic strain, o is
the macroscopic stress (force per unit area of the continuum), 7 is the true stress, and w
is the damage which is interpreted as the area fraction occupied by the microcracks. For
a two-dimensional body, in which the fractal microcracks are one-dimensional, we have,
according to Equation (1), w = ag/a = (Jo/a) ™% where a; is the combined length of all
the microcracks within a cross section of material of Euclidean length a, measured by aruler
of length do. Because the ratio a/dg is dimensionless, damage w remains dimensionless. So
we must conclude that, in contrast to cracks as invasive fractals, the dimensions of all the
state variables and material constants remain the same. Hence, unlike fracture mechanics, the
basic dimensional form of the continuum damage mechanics cannot be affected by fractality.

2 On p. 568 of [30] the argument is stated as follows: The ‘trend [of size effect] is correlated ... with the
hypothesis of self-affinity for the material ligament. In other words, the physical dimension of the reacting [cross]
section [of structure] at the peak load can be identified by two different values of fractal dimension: alocal fractal
dimension, inthelimit of scalestending to zero, and aglobal fractal dimension, corresponding to the largest scales,
strictly equal to the (integer) topologica dimension. In consequence of this, the nominal tensile strength is constant
for relatively large sizes, whereas it decreases with the size for relatively small sizes'.
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A difference may nevertheless appear in the statistical properties of material strength, in the
sense of Weibull, as proposed in [30].

The stressesin geometrically similar structures of different sizesmay bewrittenaso(x) =
onS (&) where¢ = x/D = dimensionless (relative) coordinates. In view of (1) for thefractal
curvelength as, the Weibull-type failure probability of asmall representative material element
V,- needsto be redefined fractaly, i.e.

P1=<6‘6“>m, (40)

00

where the hats " label lacunar fractal stress, 6 = acjfdf (whered; < landcy o V™), and
similar fractal generalizations of Weibull stress parameters.

In Weibull type theories, every structure can be made mathematically equivalent to a ten-
sioned bar of variable cross section [48] (Figure 8). Since different lacunar fractal dimensions
d ¢ associated with different structure scalesare evoked in [30], one must consider subdivisions
of the structure into sufficiently small elements of different sizes AV4 or AV associated
with different dominant lacunar fractal dimensionsd; 4 and d; s, as depicted in Figure 8 for
geometrically similar structures of two sizes. The discussionin [30] implies different Weibull
material strength distributions for different scales, which we label by subscripts 4 and g

p(o(x);dra) = <UNS(£)C%_CIM — 6”A>m, (41)
00A
o e LI
o(o(@);dsp) =< w5E) L “B> : (42)
00B

Now, if the material isthe same, each material element of size AVg;, (j = 1,... M) may
further be subdividedinto smaller material elementsof sizesAVy;;, (1 = 1,... N). According
to the hypothesisin [30], the corresponding prevailing lacunar fractal dimensions, dyz and
dya, aredifferent (Figure 8). So, the Weibull failure probabilities Py ; of element V3 and the
structural failure probability Py are given by

—In(1-Pf) = Zgo(oNSBj;de)AVBj/Vra (43)
J

—In(1— Prp;) = > o(onSaijidra) AVaij [ Vi (44)
:

Now, for theformulation to be objective, the structural failure probability cal culated directly
on the basis of the smaller elements AV;; must be the same, i.e.

—In(1—Ps) = =>"In(1 = Psp;j) = > o(onSaijidra) AVaij/ V. (45)
J j ot

Equating this to (43), we must conclude that, in order to meet the requirement of objectivity,
the Weibull characteristics on very different scales, with different prevailing lacunar fractal
dimensions, must be different and must be related as

o(onSpj:dsp) = AV;{,-l > p(onSaijidra) AVag;. (46)
i
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Figure 9. Load-deflection diagram of elastic structure in which a macroscopic crack (a) does not or (b) does grow
in a stable manner before the maximum load.

Because of thetransitive property of subsequent element subdivisions(Figure 8), expressed
by (46) and (45), we must conclude that the consideration of different scales cannot yield
different scaling laws, contrary to the hypothesis in [30]. In the case of a zero Weibull
threshold, the same power law must result from the hypothesis of fractality of microcrack
distribution, regardless of the scale considered. The scaling law is inevitably identical to the
Weibull-type theory of failure. The only difference from the usual Weibull-type theory is that
lacunar fractality can affect the values of Weibull material parameters.

Another objection against the argument advanced for the law in (39) isthat, in quasibrittle
structures, large cracks grow stably prior to reaching the maximum load. This is manifested
by significant curvature of the |oad-defl ection diagram before reaching the peak load (Figure
9(b)), which is typical of failures of reinforced concrete and other quasibrittle structures (if
the diagram were straight up to the peak load, Figure 9(a), it would imply that the structure
must be failing already when the critical crack is still microscopic). Due to the associated
release of stored energy, the stable crack growth per seisasource of amajor deterministic size
effect, which may not be disregarded. Statistics of random crack roughness and of random
microcrack distribution, possibly with partially fractal features, might of course have some
additional effect. But that effect, eveniif it is not negligible, cannot stand alone. It would have
to be appended to the size effect engendered by large stable crack growth. This contrasts with
the classical applications of Weibull theory to brittle metals, in which the effect of energy
releaseis on the macroscale negligible.

The property that the law in (39) approachesfor large sizes a horizontal asymptote agrees
with some size effect test data (e.g., for the Brazilian split-cylinder test). But there exist two
other more realistic explanations:

(1) Thereis atransition to aresidua plastic-frictional mechanism, as aready embodied in
Equations (32-33) of the preceding paper [1]; or
(2) the crack at maximum load ceasesto increase in proportion to D but remains constant.

Such a situation can of course be described by the generalized size effect law in (19) of the
preceding paper [1], with the shape effect embedded in function g(«); see Figure 4(c).
13. Conclusions

(1) Although the roughness of the crack surfaces in concrete, rock, ceramics or ice as well
as the distribution of microcracks can be to a certain extent described as fractal, the fractal
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characteristics do not cause a size effect on the nominal strength of structures. The arguments
for such a size effect have not been based on mechanics. They have been purely geometric in
nature, but thisis insufficient. The stress redistribution and energy release caused by afractal
crack need to be taken into account.

(2) Asymptotic analysisshowsthat if thefailureiscaused by the propagation of acontinuous
fractal crack of fractal dimensiond, then thescaling law for nominal strength of geometrically
similar structures of sizes D containing large similar cracks can be described by a matched
asymptotic that approximately describes a smooth transition from the power law D(d7—1)/2
to the power law D(4r/2~1 Thesize Dy at which the transition is centered is proportional to
the material length c; governing the size of the fractal fracture process zone and depends also
on the geometry of the structure. The nonfractal size effect law derived by Bazant [41, 42]
represents the limiting case for d; — 1. For quasibrittle structures that fail at crack initiation
in the boundary layer (asin bending of unreinforced concrete beams), the fractal scaling law
represents a smooth transition from power law D(% —3)/2 to power law D4 —/2,

(3) There are two objections to the hypothesisthat the fractal nature of the crack surfaceis
the cause of the observed size effect:

(@) If d; is appreciably larger than 1, the large-size and small-size asymptotes of the fractal
size effect for large cracks as well as for fracture initiation contradict the available
experimental results on the size effect in concrete and other quasibrittle materials.

(b) The energy dissipated by the creation of the final crack surface, which may be fractal,
is only a minute portion of the energy dissipated in the fracture process zone by the
microcracks and frictional slipsthat lie away from the crack path.

(4) Self-similar fractal curves such as von Koch's are not acceptable for describing cracks
becausethey exhibit recessiveand spiraling segmentswhich kinematically preclude separation
of surfacesin asolid. The fractal crack curves can be considered only as affine fractals.

(5) The size effect law for the nominal strength of structures can be expressed in terms
of the fractal fracture energy and other material parameters. If the fracture process of some
material were fractal, these parameters as well as the fractal dimension of the propagating
crack could be identified by the size effect method from the measured maximum loads of
specimens of different sizes.

(6) The aternative hypothesis that the cause of the size effect is a lacunar (discrete)
fractal distribution of microcracks in the fracture process zone rather than the fractal nature
of the crack surface is also not a viable explanation of the size effect. Except for a possible
influence of lacunar fractality on the Weibull material parameters, the predicted scaling law
isidentical to that in Weibull theory. Same as the Weibull theory, the hypothesis of lacunar
fractal microcracks cannot explain the size effect in quasibrittle fracture becauseit ignoresthe
stress redistribution and energy release due to large stable growth of cracks.
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