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Scaling of Sea Ice Fracture—Part
I: Vertical Penetration
Based on the premise that large-scale failure of sea ice is governed by fracture mech
recently validated by Dempsey’s in situ tests of fracture specimens of a record-bre
size, this two-part study applies fracture mechanics and asymptotic approach to o
approximate explicit formulas for the size effect in two fundamental problems. In
present Part I, the load capacity of a floating ice plate subjected to vertical loa
determined, and in Part II, which follows, the horizontal force exerted by an ice p
moving against a fixed structure is analyzed in a similar manner. The resulting form
for vertical loading agree with previous sophisticated numerical fracture simulations
well with the limited field tests of vertical penetration that exist. The results contrast
the classical predictions of material strength or plasticity theories, which in gen
exhibit no size effect on the nominal strength of the structure.@DOI: 10.1115/1.1429932#
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1 Introduction
Predictions of load capacity and failure of floating sea ice

quire good understanding of the scaling properties and size ef
Because small-scale laboratory tests of sea ice show hardly
notch sensitivity and do not exhibit fracture mechanics behav
many studies from early to recent times have treated sea ice
ure according to either plasticity or elasticity theory with
strength limit~@1–8#!. Both theories exhibit no size effect. Whe
size effects were observed in tests, they were generally attrib
to randomness of material strength~e.g.,@9#!, captured by Weibull
@10# theory stemming from the qualitative idea of Mariotte@11#
and mathematically justified by extreme value statistics~@12#!, see
reviews in, e.g.,@13–15#. However, the statistical explanation o
size effect is, for the present problem, dubious because the m
mum load is not reached at the initiation of fracture but only af
large stable crack growth~in detail, see, e.g.,@14,15#!. In that case
a nonlocal generalization of Weibull theory is required~@16,17#!.
The nonlocal probabilistic analysis shows that the statistical
effect becomes significant only of for very large structures fail
at fracture initiation. Otherwise the energetic~deterministic! size
effect dominates.

Many studies document the brittleness of ice~e.g., @18,19#!.
Various recent experiments~@20–22#! especially the remarkable in
situ tests of Dempsey’s team made with record-size specim
~@23–26#!, indicate that on a scale exceeding about 0.5-m sea
does follow cohesive~quasi-brittle! fracture mechanics, with a
strong size effect, and on scales larger than about 10 m is
well described by linear elastic fracture mechanics~LEFM!. The
need for fracture mechanics approach and the presence of
effect is also suggested by the fact that the experimental lo
deflection diagrams~e.g., @8#! exhibit no yield plateau but a
gradual softening, i.e., a decrease of load with increasing de
tion after the peak load has been reached. Analysis of aco
observations, too, suggests a size effect~@27#!.

The analysis of failure and especially the size effect mu
therefore, be based on fracture mechanics. Many investiga
have been applying to sea ice fracture problems the linear el
fracture mechanics~LEFM! in which the fracture process zone
the crack tip is assumed to be infinitely small. However, as tr
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spired from the field fracture tests of size effect by Dempsey et
@23,24#, the length of the fracture process zone of sea ice is of
order of several meters for horizontal propagation, while for v
tical propagation it is roughly 25 cm. Therefore, the cohes
crack model or some of its approximations must be used. T
basic types of cohesive crack model need to be distinguished~a!
thebrittle-ductilemodel, in which the stress-displacement relati
has a long horizontal yield plateau, terminating by a sharp dro
a certain critical opening displacement, and~b! the quasi-brittle
model, in which the cohesive crack-bridging stress gradually
creases according to a fixed law as a function of the open
displacement. The former was developed long ago for metals,
the latter more recently for concrete~@15#!. It is the latter type
which appears more appropriate for sea ice.

In view of the quasi-brittle behavior, the deterministic~ener-
getic! size effects of quasi-brittle fracture~@14,15,28–32#! must
get manifested, and must be expected to be strong, in all
problems in which large cracks grow stably prior to reaching
maximum load~@33,34#!. This includes two fundamental problem
to be addressed in Parts I and II of this study:~1! the vertical load
capacity of floating ice plate~penetration fracture!, and ~2! the
maximum horizontal force exerted on a fixed structure by a m
ing ice plate.

The vertical penetration problem has been analyzed by frac
mechanics at various levels of sophistication in several rec
works. Bažant and Li@35,36# assumed that full-through bendin
cracks propagate radially from the loaded area, but this assu
tion now appears inapplicable except perhaps for very thin pla
in which the horizontal forces due to dome effect nearly vani
Dempsey with co-workers@37#, in an elegant analytical solution
of the problem, assumed that the radial cracks at maximum l
emanating from the loaded area reach through only a part of
ice thickness. To make an analytical solution feasible, they m
various simplifying assumptions, the main one being a unifo
crack depth.

The aforementioned simplifications were avoided in a num
cal simulation of penetration fracture in@38,39#, which confirmed
that indeed the cracks reach only through a part of the thickn
and propagate at the maximum load stage mainly vertically,
though the crack depth is not uniform. This numerical simulat
indicated that for larger ice thicknesses there is a strong size
fect, approaching the size effect of geometrically similar failur
governed by LEFM, for which the nominal strength is propo
tional to (ice thickness)21/2. This conclusion represents a sha
contrast with the classical solutions based on plasticity or elas
ity with a strength limit. Such solutions inevitably imply the ab
sence of any size effect.
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Analysis of another ice fracture problem, namely the large-sc
thermal bending fracture of floating ice~@40,41#!, also indicated a
strong size effect, obeying, however, a different law. In this ca
the critical temperature difference is not proportional
(ice thickness)21/2, as in LEFM, but to (ice thickness)23/8. The
reason is that, at large scale, the cracks must propagate hor
tally as bending cracks, rather than vertically across the thickn
A size effect following still another law was recently demo
strated for the fracture of ice subject to a line load~@42#!.

As typical for all quasi-brittle materials, the size effect is ve
difficult to analyze for the normal sizes of interest, but becom
much simpler asymptotically for very large sizes as well as v
small sizes~@14,15,43#!. The philosophy ofasymptotic matching
~@44#! can then be employed to ‘‘interpolate’’ between the opp
site asymptotic size effects. This furnishes an approximate s
tion for the size effect in the difficult intermediate range. Th
approach, pioneered and widely used in fluid mechanics~e.g.,
@45–47#!, has been successfully employed in many studies of c
crete and a more recently in studies of fiber composites and
~@14,15#!.

Static behavior until failure will be assumed in all of the prese
analysis. Situations in which the ice might acquire significant
netic energy during a temporarily unstable fracture fracture pro
gation will not be considered. The creep of ice will not be expl
itly considered and the elastic modulus of ice will be assumed
represent the effective modulus that approximately incorpor
the effect of creep for the prevalent loading rate.

The purpose of the present two-part study, based on a re
workshop article~@43#!, is to employ the asymptotic matchin
approach to deduce simple approximate formulas for the nom
strength of the ice plate as a function of the size as well as ge
etry. Such an approach helps intuitive understanding, clarifies
failure mechanism, facilitates optimization of engineering desi
elucidates the role of energy release as the main source of
effect, and readily reveals how the material and geometry par
eters control the size effect. Part I will deal with the vertical loa
and Part II which follows with the horizontal load.

2 Problem Formulation
An ice plate floating on water behaves exactly as a plate

Winkler elastic foundation~Fig. 1~a,b!!, with a foundation modu-
lus equal to the specific weight of water,r. Failure under a vertica
load is known to involve formation of radial bending cracks in

Fig. 1 Floating ice plate, its deflection under concentrated
load and crack pattern
12 Õ Vol. 69, JANUARY 2002
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star pattern~shown in a plan view in Fig. 1~c! for the case of six
cracks!. As transpired from a simplified analytical study of Dem
sey et al.@37# and from a detailed numerical simulation~@38,39#!,
these radial cracks do not reach through the full ice thickn
before the maximum load is reached. Rather, they penetrat
maximum load to an average depth of about 0.8h and maximum
depth 0.85h whereh is the ice thickness~Fig. 2a!. The maximum
load is reached when polygonal~circumferential! cracks, needed
to complete a failure mechanism, begin to form~dashed lines in
Fig. 1~c!!.

The nominal strength, which is a parameter of the maxim
vertical loadP, is defined for the vertical penetration problem a

sN5P/h2. (1)

In plasticity or any theory in which the material failure criterion
defined in terms of stresses and strains, the nominal strength~of a
nonrandom material! is size independent for geometrically simila
structures. The size effect in fracture and damage mechanics a
from the fact that the criterion of material failure~crack growth! is
expressed in terms of energy~or stress-displacement relation!.

Sea ice, unlike glacier ice, is not sufficiently confined to beha
plastically ~this is for example confirmed by the absence of yie
plateau from the measured load-deflection diagrams seen, e.
@8#. Sea ice is a brittle material, and so the failure must be a
lyzed by fracture mechanics~e.g.,@20–22,35,36,38–41,48#!. The
analysis must be based on the rate of energy dissipation a
crack front and the rate of energy release from the ice-water
tem. The energy release is associated with unloading, du
which the ice deforms elastically, with a certain Young’s modu
E ~which depends on temperature and other factors!.

The behavior of the ice plate may be described by the p
bending theory. Dimensional analysis, or transformation of
partial differential equation of a plate on Winkler foundation
dimensionless coordinates, shows that the behavior of the pla
fully characterized by the characteristic length

L5~D/r!1/4 (2)

whereD5Eh3/12(12n2)5cylindrical stiffness of the ice plate
n5Poisson ratio of ice.

3 Energy Release and Equilibrium of Fractured Ice
Plate

Superposing the expressions for the stress intensity factorKI of
the part-through radial bending crack of deptha ~Fig. 3b,d! pro-
duced by bending momentM and normal forceN ~per unit
length!, one has

KI5
Apa

h F6M

h
FM~a!1NFN~a!G (3)

where

FM~a!5A 2

pa
tan

pa

2 S cos
pa

2 D 21

3F0.92310.199S 12sin
pa

2 D 4G (4)

FN~a!5A 2

pa
tan

pa

2 S cos
pa

2 D 21

3F0.75212.02a10.37S 12sin
pa

2 D 3G (5)

~@15,49,50#! with an error less than 0.5 percent over the ent
rangeaP(0,1). According to Irwin’s relation, the energy releas
rate is

G5
KI

2

E8
5

N2

E8h
g~a! (6)
Transactions of the ASME
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Fig. 2 Analysis of vertical penetration fracture: „a… crack profile and „b – h …
forces acting on element 123401 in Fig. 1
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whereE85E/(12n2) andg is a dimensionless function,

g~a!5paF6e

h
FM~a!1FN~a!G2

~a5a/h!. (7)

e52M /N5eccentricity of the normal force resultant in the cro
section~positive whenN is above the midplane!.

To relateM and N to vertical loadP, let us consider elemen
12341 of the plate~Figs. 1~c! and 2~e,f,g!!, limited by a pair of
opposite radial cracks and the initiating polygonal cracks. T
depth to the polygonal cracks at maximum load is zero, as t
just initiate, and since the cracks must form at the location of
maximum radial bending moment, the vertical shear force on
planes of these cracks is zero. The distanceR of the polygonal
cracks from the vertical loadP may be expected to be propo
tional to the characteristic lengthL since this is the only length
constant in the differential equation governing the problem, and
we may setR5mRL where dimensionlessmR is assumed to be a
constant.

In each narrow radial sector, the resultant of the water pres
due to deflectionw ~Fig. 2~b,c!! is located at a certain distancer w
from loadP. Sincer w can be solved from the differential equatio
for w, and since the solution depends only on one parameter
chanics
ss

he
ey

the
the

-

so

ure

n
the

characteristic lengthL, r w must be proportional toL. Integration
over the area of a semi-circle of radiusr w yields the resultant of
water pressure acting on the whole element 12341. Again,
distance of this resultant, whose magnitude itP/2, from loadP
must be proportional toL, i.e., may be written as

Rw5mmL (8)

wheremw is a constant that can be solved from the different
equation of plate deflections. Of course,mw is a constant only as
long as the behavior is elastic, which is exactly true only if t
crack deptha is constant. Although the crack is growing, we w
assume that its rate of growth is small enough so thatmw would be
approximately constant.

For the sake of simplicity, we assume the normal forceN and
bending momentM on the planes of the radial cracks and t
polygonal cracks to be uniform. The condition of equilibrium
horizontal forces acting on element 12341 in the direction norm
to the radial cracks is then simple; it requires the normal forces
the planes of the polygonal cracks to be equal to the normal fo
N acting in the radial crack planes. The axial vectors of the m
mentsMc acting on the polygonal sides are shown in Fig. 2~e,g!
by double arrows. Summing the projections of these axial vec
JANUARY 2002, Vol. 69 Õ 13
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from all the polygonal sides of the element, one finds that th
moment resultant with axis in the direction 14 is 2RMc , regard-
less of the numbern of radial cracks. So, upon settingR5mRL,
the condition of equilibrium of the radial cracks with the momen
about axis 14~Fig. 2~b,c,e,g!! located at midthickness of the cros
section may be written as

2~mRL !M12~mRL !Mc2
1

2
P~mwL !50. (9)

Furthermore, we must take into account condition~6! of verti-
cal propagation of the radial bending cracks, which may be w
ten asG5Gf whereGf is the fracture energy of ice. Thus, th
critical value of normal force~compressive, with eccentricitye!
may be written as

N52AE8Gf h

g~a!
. (10)

Depending on the energy release rateg(a0) of the actual crack
of length a05a0D ~excluding the cohesive zone!, there are two
kinds of deterministic size effect:~a! the size effect due to energ
release of a large crack, characterized by a large value ofg(a0),
and ~b! the size effect at crack initiation (a050), characterized
by g(a0)50. They are governed by different law
~@14,15,30,32,51#!, and both must be expected to occur in i
penetration.

4 Size Effect on Flexural Strength at Initiation of Po-
lygonal Cracks

Consider first the initiation of the polygonal cracks. Sincea0
50 andg(a0)50, the initiation criterion is that the normal stres
s reaches the tensile strengthf t8 of the ice. However, the crack ca
begin to propagate only after a boundary layer of distributed
crocracking, representing the fracture process zone, forms a
top surface of ice~@14,15,30,51,52#!. The half-depth of this layer
denoted asDb , is a material constant~which should be roughly
equal to the fracture process zone lengthcf introduced later!. Note
that the boundary layerDb has been shown to explain the expe
mentally observed size effect on the modulus of rupture in
bending tests of concrete~@15,52#!.

Although the crack initiation can be handled by the ene
release function, it is simpler to consider the stress redistribu
in the cross section caused by softening in the boundary la
~@52#!. The easiest way to obtain a nominal strength formula t
is correct up to the first two terms of the expansion in terms
powers of 1/h is to write the condition that the elastically calcu
lated normal stressse should be equal to the tensile strength
ice, f t8 , at the middle of the boundary layer of thickness 2Db ,
rather than at ice surface. So the crack initiation criterion
se1N/h5 f t8 where, according to the bending stress formu
se5Mc(h/22Db/2)/(h3/12). This yields the crack initiation cri-
terion:

6Mc

h2 q~h!1
N

h
5 f t8 (11)

whereq(h)512Db /h. This form of the criterion, however, be
comes meaningless whenh,2Db , i.e., when the ice is thinne
than the cracking layer thickness. It can be correct only whenh is
sufficiently larger than 2Db , i.e., asymptotically forh/Db→`.
So it is desirable to modify functionq(h) so as to obtain a for-
mula approximately applicable through the entire size range. T
can be achieved by considering a range ofsN formulas that have
the same first two terms of the large-size asymptotic expansio
1/h as ~11!, and then choosing that which gives the correct va
of the small-size nominal strength. Such a kind of approach
known as asymptotic matching.

Whenh52Db , i.e., when the distributed cracking zone enco
passes essentially the whole depth of plate, the moment at fa
14 Õ Vol. 69, JANUARY 2002
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can be approximately determined as the plastic bending mom
M p . If f c8/ f t8 , with f c85compression strength of ice, is about
then the plastic stress distribution is symmetric bi-rectangular
M p /Me51.5, whereMe5elastically calculated bending momen
for which s5 f c8/ f t8 at ice surface. Iff c8/ f t8 were very large, then
the stress distribution would be a single rectangle balanced b
concentrated compression force at ice surface, and in that
M p /Me would be equal to 3. The real value must lie in betwee
but probably closer to 1.5. We will safely assume thatM p /Me
51.5. So we should seek a formula forq(h) that gives this ratio
for h5Db and has a large-size asymptotic expansion of the fo
12Db(1/h)1(•)(1/h)21 . . . . There are many such formula
but the simplest one is

q~h!5
11Db /h

112Db /h
. (12)

This is verified by the asymptotic expansion:

11Db /h

112Db /h
5S 11

Db

h D S 12
2Db

h
1

4Db
2

h2 2 . . . D
512

Db

h
1

~• !

h2 1
~• !

h3 1 . . . . (13)

5 Size Effect on Nominal Vertical Penetration
Strength

Aside from the stress redistribution at initiation of polygon
cracks~@52#!, there is another deterministic source of size effec
the energy release due to vertical propagation of the radial be
ing cracks~@28#!. The bending moment

M52Ne52Nmeh (14)

may be substituted into~9!; here the normal forceN is defined to
be positive when tensile, although the actual value ofN is nega-
tive ~compression!; and me5e/h5dimensionless paramete
whose value at maximum load may be assumed to be appr
mately constant. This assumption is indicated by the numer
simulations in@38,39#, from which it further transpires thatme
'0.45, as a consequence of the fact that the average crack d
a at maximum load is about 0.8h ~in any case,me,0.5, and so a
possible error inme cannot have a large effect!. The value 0.45
approximately corresponds to the correct number of cracks in
star pattern; if there were more cracks, the depth would
smaller, if fewer, larger.

After substituting~14!, we may expressMc from ~9! and sub-
stitute it into~11!. Then, taking into account~10!, we obtain after
rearrangements the equation:

sN5
2mR

3mw
F S 6me1

1

q~h! D A E8Gf

hg~a!
1

f t8

q~h!
G (15)

whereq(h) is given by~12!.
Now we need to decide how the values ofa at maximum load

should vary with ice thicknessh. To this end, note that ice is a
quasibrittle material. This is evidenced by the fact that at sm
laboratory scale it is notch-insensitive and exhibits no size ef
while at large scale it behaves according to LEFM~@20,24#!.
Therefore, at the tip of the vertically propagating radial cra
there must exist a finite fracture process zone~FPZ! of a certain
characteristic depth 2cf which is a material property. This zon
was modeled in the numerical simulations of Bazˇant and Kim
@38,39# as a yielding zone. The tip of the equivalent LEFM cra
lies approximately in the middle of the FPZ, i.e., at a distancecf
from the actual crack tip~@15#!, whose location is denoted asa0 .

If the locations of the center of the FPZ in structures of diffe
ent sizes were geometrically similar, i.e., ifa at maximum load
were the same for allh, then the size effect would be the same
in LEFM. Experience with testing of quasi-brittle materials~@15#!,
as well as with cohesive crack and nonlocal damage simulati
Transactions of the ASME
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shows the locations of the center of FPZ are usually not geom
cally similar. Rather, similar locations are those of the actual cr
tip. Thus the value ofa05a0 /h may be expected to be approx
mately constant when ice plates of different thicknessesh are
compared. Denotingg8(a0)5dg(a0)/da0 , one may introduce
the approximation

g~a!'g~a0!1g8~a0!~cf /D !. (16)

Substituting this into~15! and rearranging, one gets for the si
effect the formula

sN5
4mR

mw
S me1

1

6q~h! D A E8Gf

hg~a0!1cfg8~a0!
1

mR

3mw

f t8

q~h!
.

(17)

The results of numerical simulations in@39# were found to be
quite well represented by the simple classical size effect law w
large-size residual strengths r proposed in@53# which reads

sN5s0S 11
h

h0
D 21/2

1s r . (18)

Formula~17! is now seen to reduce to this law whenq(h)'1, i.e.,
whenDb is negligible, in which case then

s05
4mRme

mw
A E8Gf

cfg8~a0!
, h05cf

g8~a0!

g~a0!
, s r5

me

3mw
f t8 .

(19)

Furthermore, the numerical simulations in@39# indicated thats r

'0. This means that the contribution of the tensile strengthf t8
governing the initiation of the polygonal cracks must be neg
gible, which in turn implies a negligible role forq(h).

The terms in~17! containingDb anyway decrease with increas
ing h much more rapidly than~18!—they decrease with increasin
h as 1/h, compared to 1/Ah. Consequently, they must becom
negligible for not too largeh regardless of the value ofDb .

Same as~18!, formula ~17! plotted as logsN versus logh ap-
proaches for largeh a downward inclined asymptote of slop
21/2 ~Fig. 3~g!!. This characterizes the large-size asymptote
the size effect law in~17!.

How does the numbern of the radial cracks enter the solution
It does not appear in the present solution for the maximum lo
The reason is that the number of cracks is decided at the be
ning of loading, long before the maximum load is attained.

It is interesting to contrast the size effect obtained here with
deduced for large-scale thermal bending fracture of floating
which was shown to be~@40#!

DT}h23/8 (20)

whereDT is the temperature difference between the bottom
top of the ice plate, which is proportional to the maximum therm
stress before fracture. The large-size asymptotic size effect
fracture under vertical loads would have to follow also the23/8
power law if the cracks at maximum load penetrated through
full thickness of ice and forceN were negligible~@35,40,42,54#!.
But this turned out not to be the case~@37–39,55,56#!.

6 Comments on Plasticity Approach
In contrast to the brute-force numerical simulations conduc

before, the approximate analytical derivation of size effect is
tuitively instructive. It clarifies the reasons why there must be
deterministic size effect in penetration of floating ice. The s
effect could be absent only if the material behaved plastically

If the sea ice were a plastic material, the stress distributions
element 12341 would be as shown in Fig. 2~h!, where f t8 and f c8
denote the tensile and compressive yield strengths. Taking
moment equilibrium condition of this element, one can eas
show that the nominal strength would in that case be expresse
Journal of Applied Mechanics
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sN5
4mR

mw
~ f c8

211 f t8
21!21 (21)

which exhibits no size effect. Plasticity, however, requires that
material strength at all the points of the failure surface be mo
lized at the same time, which is impossible for a quasi-brit
~softening! material such as sea ice.

7 Closing of Part I
The simplified asymptotic analysis of size effect in vertical pe

etration of the ice plate confirms the inevitability of a strong s
effect for larger ice thicknesses, approaching the size effec
LEFM. This conclusion does not disagree with experiments an
supported by previous numerical studies summarized in the
pendix. Part II which follows will apply a similar approach to th
problem of an ice plate moving against a fixed structure. It will
seen that size effects must again be expected, but their natu
rather different.

Appendix

Review of Previous Numerical Fracture Analysis of Size Ef-
fect. To supplement the analytical approach, it may be usefu
review recent detailed numerical simulation of fracture of floati
ice caused by a vertical load~@38,39#!. The fracture pattern~for
the case of six radial cracks! is shown in Fig. 3~a!. The radial
cracks at maximum load penetrate through only a part of
thickness~@26,55#!; Fig. 3~b,c!. The radius of each crack is di
vided by nodes into vertical strips in each of which the vertic
crack growth obeys Rice and Levy’s@57# ‘‘nonlinear line-spring’’
model relating the normal forceN and bending momentM in the
cracked cross section to the relative displacementD and rotationu
~Fig. 3~b!!.

The analysis is based on a simplified version of the cohes
crack model in which the vertical crack growth in each vertic
strip is initiated according to a strength criterion. The cross sec
behavior is considered elastic-plastic until the yield envelope
the ~N, M! plane is crossed by the point~N, M! corresponding to
fracture mechanics. For ease of calculations, a nonassociated
tic flow rule corresponding to the vector (dD,du) based on frac-
ture mechanics is assumed.

The following ice characteristics have been used in calcu
tions: tensile strengthf t850.2 MPa, fracture toughnessKc
50.1 MPaAm, Poisson ration50.29, and Young’ modulusE
51.0 GPa, with the corresponding values: fracture energyGf

5Kc
2/E510 J/m2, and Irwin’s fracture characteristic lengthl 0

5(Kc / f t8)
250.25 m~this value happens to be about the same

for concrete!.
Figure 3~e! displays, with a strongly exaggerated vertical sca

the calculated crack profiles at subsequent loading stages.
3~f ! shows the numerically calculated plot of the radial cra
length a versus the ice thicknessh ~‘‘fracture length’’ means the
radial length of open crack, and ‘‘plastic length’’ the radial leng
up to the tip of plastic zone!. This plot reveals that, except for ver
thin ice, the radial crack lengtha'chh where ch'24 for the
typical ice properties assumed.

The data points in Fig. 3~g! show, in logarithmic scales, the
numerically obtained size effect plot of the normalized nomin
strengthsN5P/h2 versus the relative thickness of the ice~note
that according to plasticity or elasticity with strength criterion, th
plot would be a horizontal line!. The initial horizontal portion, for
which there is no size effect, corresponds to ice thinner than ab
20 cm.

Since the model in@38,39# includes plasticity, it can reproduc
the classical solutions with no size effect, depending on the in
values of ice characteristics. The ice thickness at the onset of
effect depends on the ratio of ice thickness to the fracture cha
teristic length,h/ l 0 . For realistic ice thicknessesh ranging from
0.1 m to 6 m, the computer program would yield perfectly plas
JANUARY 2002, Vol. 69 Õ 15



16 Õ Vol.
Fig. 3 Vertical penetration fracture problem analyzed by Baz ˇant and Kim †38,39‡ main numerical results,
and comparison with field tests of Frankenstein †59,60‡ and Lichtenberger †61‡
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response with no size effect if the fracture characteristic lengtl 0
were at least 1003 larger, i.e., at least 25 m. This would, fo
instance, happen if eitherf t8 were at least 103 smaller ~f t8
<0.01 MPa orKc at least 103 larger (Kc>10 MPaAm). The en-
tire diagram in Fig. 3~g! would then be horizontal.

Larger values ofl 0 are of course possible in view of statistic
scatter, but nothing like 1003 larger. For example, by fitting size
effect data~@23,24#! from in situ tests at Resolute, one getsKc

'2.1 MPaAm, and with f t8'2 MPa one has the fracture chara
teristic lengthl 05(Kc / f t8)

251 m. But this larger value would no
make much difference in the size effect plot in Fig. 3~g!. The
reason that these values were not used in the plot in Fig. 3~g! was
that they correspond to long-distance horizontal propagation
fracture, rather than vertical growth of fracture.

The curve in Fig. 3~g! is the optimum fit of the numerically
calculated data points by the generalized size effect law propo
69, JANUARY 2002
r

l

-

of

sed

in Bažant @58#. The final asymptote has slope21/2, which means
that the asymptotic size effect issN}h21/2, the same as for LEFM
with similar cracks, and noth23/8 as proposed by Slepya
@35,40,54#. The 23/8 power scaling would have to be true if th
radial cracks at maximum load were full-through bending crac
The21/2 power scaling may be explained by the fact that dur
failure the bending cracks are not full-through and propag
mainly vertically, which is supported by the calculated crack p
files in Fig. 3~e!.

By fitting of the data points in Fig. 3~g!, spanning over four
orders of magnitude of ice thicknessh, the following prediction
formula in the form of the generalized size effect law~@15,41#!
has been calibrated~see the curve in Fig. 3~g!!:

Pmax5sNh2, sN5B ft8@11~h/l0l 0!r #21/2r (22)
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with B51.214, l052.55, m51/2, r 51.55, andl 050.25 m ~f t8
50.2 MPa in Fig. 1~g!!.

Only very limited field test data exist. The data points in t
size effect plots in Fig. 1~h! represent the results of the field tes
by @59–61#, and the curves show the optimum fits with the si
effect formula verified by numerical calculations~note that if the
size effect were absent, these plots of nominal strength wo
have to be horizontal!. After optimizing the size effect law param
eters by fitting the data in the three plots in Fig. 3~h!, the data and
the optimum fit are combined in the dimensionless plot in F
3~i!.

Interesting discussions of~@38,39#! were published by Dempse
@62# and Sodhi@63# and rebutted. One objection raised by Sod
was the neglect of creep in Bazˇant and Kim’s analysis. Intuition
suggests that the influence of creep might be like that of plasti
which tends to increase the process zone size, thereby makin
response less brittle and the size effect weaker. But the oppos
true ~@15#!.

The influence of creep on scaling of brittle failures of concre
which is doubtless quite similar from the mechanics viewpo
~albeit different in physical origin!, was studied in depth at North
western University, along with the effect of the crack propagat
velocity; see, e.g.,@15,34,64# and especially@65,66#. The conclu-
sion from these studies, backed by extensive fracture testin
concrete and rock at very different rates, is that creep in the
terial always makes the size effect due to cracks stronger~unless
creep actually prevents crack initiation!. In the logarithmic size
effect plot of nominal strength versus structure size, it cause
shift to the right, toward the LEFM asymptote, which means t
the size effect is intensified by creep. The slower the loading~or
the longer its duration!, the closer to LEFM is the size effect in
cracked structure.

The physical reason, clarified by numerical solutions of str
profiles with a rate-dependent cohesive crack model~@66#!, is that
the highest stresses in the fracture process zone get relaxe
creep, which tends to reduce the effective length of the frac
process zone. The shorter the process zone, the higher is
brittleness of response and the stronger is the size effect.
explains why experiments on notched concrete specimens co
tently show the size effect to be more pronounced at a slo
loading ~@15#!. A similar behavior might be expected for ice.
thus transpires that, in order to take the influence of creep on
size effect approximately into account, it suffices to reduce
value of fracture energy~or fracture toughness! and decrease the
effective length of the fracture process zone.
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