Scaling of Sea Ice Fracture—Part
I: Vertical Penetration

Based on the premise that large-scale failure of sea ice is governed by fracture mechanics,
recently validated by Dempsey’s in situ tests of fracture specimens of a record-breaking
size, this two-part study applies fracture mechanics and asymptotic approach to obtain
approximate explicit formulas for the size effect in two fundamental problems. In the
present Part |, the load capacity of a floating ice plate subjected to vertical load is
determined, and in Part Il, which follows, the horizontal force exerted by an ice plate
moving against a fixed structure is analyzed in a similar manner. The resulting formulas
for vertical loading agree with previous sophisticated numerical fracture simulations as
well with the limited field tests of vertical penetration that exist. The results contrast with
the classical predictions of material strength or plasticity theories, which in general
exhibit no size effect on the nominal strength of the strucfb®I: 10.1115/1.1429932
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1 Introduction spired from the field fracture tests of size effect by Dempsey et al.

Predictions of load capacity and failure of floating sea ice ré-23’24’ the length of the fracturg process zone pf sea ice Is of the
der of several meters for horizontal propagation, while for ver-

quire good understanding of the scaling properties and size effi%rt. | propagation it is roughly 25 cm. Therefore, the cohesive

Because small-scale laboratory tests of sea ice show hardl . . .
y y%r: ck model or some of its approximations must be used. Two

notch sensitivity and do not exhibit fracture mechanics behavi {a_sic types of cohesive crack model need to be distinguishid:

many studies from early to recent times have treated sea ice f . . . h X .
ure according to either plasticity or elasticity theory with Z%]ebrlttle-ductllemodel, in which the stress-displacement relation

strength limit((1—8]). Both theories exhibit no size effect. When'@S & long horizontal yield plateau, terminating by a sharp drop at
size effects were observed in tests, they were generally attribufe@e'tain critical opening displacement, iyl the quasi-brittle
to randomness of material strengéhg.,[9]), captured by Weibull model, in wh|ch_ the cohe_swe crack-bridging s}ress gradually qle-
[10] theory stemming from the qualitative idea of Marioftel] ~ Creases according to a fixed law as a function of the opening
and mathematically justified by extreme value statisfitg]), see displacement. The former was developed Iong ago for metals, and
reviews in, e.9.[13—15. However, the statistical explanation ofthe latter more recently for concretgl5)). It is the latter type
size effect is, for the present problem, dubious because the maiflich appears more appropriate for sea ice. o
mum load is not reached at the initiation of fracture but only after In view of the quasi-brittle behavior, the deterministener-
large stable crack growtfin detail, see, e.g[14,15)). In that case 9etio size effects of quasi-brittle fractur¢14,15,28-3D must
a nonlocal generalization of Weibull theory is requir@tis,17). 9et manifested, and must be expected to be strong, in all the
The nonlocal probabilistic analysis shows that the statistical sipgoblems in which large cracks grow stably prior to reaching the
effect becomes significant only of for very large structures failingiaximum load[33,34)). This includes two fundamental problems
at fracture initiation. Otherwise the energefiteterministi¢ size to be addressed in Parts | and Il of this study:the vertical load
effect dominates. capacity of floating ice platépenetration fractuse and (2) the
Many studies document the brittleness of i@eg.,[18,19). maximum horizontal force exerted on a fixed structure by a mov-
Various recent experiment®20—-22) especially the remarkable in ing ice plate.
situ tests of Dempsey’s team made with record-size specimenshe vertical penetration problem has been analyzed by fracture
([23-26), indicate that on a scale exceeding about 0.5-m sea iggechanics at various levels of sophistication in several recent
does follow cohesivequasi-brittle fracture mechanics, with a works. Baant and Li[35,36 assumed that full-through bending
strong size effect, and on scales larger than about 10 m is venacks propagate radially from the loaded area, but this assump-
well described by linear elastic fracture mechar(icEFM). The tion now appears inapplicable except perhaps for very thin plates
need for fracture mechanics approach and the presence of sizgvhich the horizontal forces due to dome effect nearly vanish.
effect is also suggested by the fact that the experimental logblempsey with co-workerg37], in an elegant analytical solution
deflection diagramgle.g., [8]) exhibit no yield plateau but a of the problem, assumed that the radial cracks at maximum load
gradual softening, i.e., a decrease of load with increasing deflegnanating from the loaded area reach through only a part of the
tion after the peak load has been reached. Analysis of acouste thickness. To make an analytical solution feasible, they made
observations, too, suggests a size efté27]). various simplifying assumptions, the main one being a uniform
The analysis of failure and especially the size effect musgrack depth.
therefore, be based on fracture mechanics. Many investigatorsthe aforementioned simplifications were avoided in a numeri-
have been applying to sea ice fracture problems the linear elaglig simulation of penetration fracture 88,39, which confirmed
fracture mechanice.EFM) in which the fracture process zone alhat indeed the cracks reach only through a part of the thickness
the crack tip is assumed to be infinitely small. However, as tragng propagate at the maximum load stage mainly vertically, al-
- though the crack depth is not uniform. This numerical simulation
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF indicated that for larger ice thicknesses there is a strong size ef-
MECHANICAL EN)(IBINEERpSpfor publication in the ASME QURNAL OF APPLIED ME- fect, approaching the size effect of geometrically similar failures
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 79overned by LEFM, for which the nominal strength is propor-
2000; final revision, July 19, 2001. Associate Editor: A. Needleman. Discussion ¢jpnal to (ice thickness‘)l/z_ This conclusion represents a sharp

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; ; ; i i~
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, a;%ﬁtraSt with the classical solutions based on plasticity or elastic

will be accepted until four months after final publication of the paper itself in th&Y with a Stren_gth limit. Such solutions inevitably imply the ab-
ASME JOURNAL OF APPLIED MECHANICS. sence of any size effect.
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(a) star patterr(shown in a plan view in Fig. (t) for the case of six
¥ cracks. As transpired from a simplified analytical study of Demp-

- .- —— = = - = = = =i sey et al[37] and from a detailed numerical simulati¢i38,39),
these radial cracks do not reach through the full ice thickness
before the maximum load is reached. Rather, they penetrate at
maximum load to an average depth of abouthGa®id maximum
depth 0.85 whereh is the ice thicknes§Fig. 2a). The maximum
load is reached when polygon@ircumferential cracks, needed
to complete a failure mechanism, begin to fofdashed lines in
Fig. 1(c)).

The nominal strength, which is a parameter of the maximum
vertical loadP, is defined for the vertical penetration problem as

on=P/h?, 1)

In plasticity or any theory in which the material failure criterion is
defined in terms of stresses and strains, the nominal stréofyéh
nonrandom materigis size independent for geometrically similar
structures. The size effect in fracture and damage mechanics arises
from the fact that the criterion of material failu¢erack growth is
expressed in terms of energyr stress-displacement relatjon

Sea ice, unlike glacier ice, is not sufficiently confined to behave
plastically (this is for example confirmed by the absence of yield
Fig. 1 Floating ice plate, its deflection under concentrated plateau from the measured load-deflection diagrams seen, e.g., in
load and crack pattern [8]. Sea ice is a brittle material, and so the failure must be ana-
lyzed by fracture mechanidg.g.,[20-22,35,36,38—41,48 The
analysis must be based on the rate of energy dissipation at the

Analysis of another ice fracture problem, namely the large-scfgack front and the rate of energy release from the ice-water sys-
thermal bending fracture of floating i¢g40,41), also indicated a €mM. The energy release is associated with unloading, during
strong size effect, obeying, however, a different law. In this cas¢hich the ice deforms elastically, with a certain Young's modulus
the critical temperature difference is not proportional t& (Which depends on temperature and other fagtors
(ice thickness) 2, as in LEFM, but to (ice thickness§®. The Th(_a behavior of_ the ice plate may be described by the plate
reason is that, at large scale, the cracks must propagate horiZf2ding theory. Dimensional analysis, or transformation of the
tally as bending cracks, rather than vertically across the thickneR&rtial differential equation of a plate on Winkler foundation to
A size effect following still another law was recently demondimensionless coordinates, shows that the behavior of the plate is
strated for the fracture of ice subject to a line lag42]). fully characterized by the characteristic length

As typical for all quasi-brittle materials, the size effect is very L=(D/p)Y4 2
difficult to analyze for the normal sizes of interest, but becomes
much simpler asymptotically for very large sizes as well as veiyhereD=Eh*12(1—»?)=cylindrical stiffness of the ice plate;
small sizes([14,15,43). The philosophy ofisymptotic matching »= Poisson ratio of ice.

([44]) can then be employed to “interpolate” between the oppo- o

site asymptotic size effects. This furnishes an approximate soi- Energy Release and Equilibrium of Fractured Ice
tion for the size effect in the difficult intermediate range. Thi®late

approach, pioneered and widely used in fluid mechatécg., Superposing the expressions for the stress intensity f&gtof

[45-47), has been successfully employed in many studies of cop- ) ; . : )
crete and a more recently in studies of fiber composites and ro{d%'\}a part-through radial bending crack of deptitig. 3,d) pro

ced by bending momer¥l and normal forceN (per unit

([14,19).
Static behavior until failure will be assumed in all of the preser%?ngth’ one has
analysis. Situations in which the ice might acquire significant ki- \/E 6M
netic energy during a temporarily unstable fracture fracture propa- K=" 15 Fu(a)+NFy(a) (3)
gation will not be considered. The creep of ice will not be explic-
itly considered and the elastic modulus of ice will be assumed where
represent the effective modulus that approximately incorporates > 1
the effect of creep for the prevalent loading rate. Fu(a)= 1 /—tanﬂ(cosﬂ)
The purpose of the present two-part study, based on a recent Ta 2 2
workshop article([43]), is to employ the asymptotic matching 4
approach to deduce simple approximate formulas for the nominal %|0.923¢ 0_19% 1—sin2) } (4)
strength of the ice plate as a function of the size as well as geom- 2
etry. Such an approach helps intuitive understanding, clarifies the .
failure mechanism, facilitates optimization of engineering design, Fr(a)= /itanﬂ(cosﬂ)
elucidates the role of energy release as the main source of size N Ta 2 2
effect, and readily reveals how the material and geometry param- 3
eters control the size effect. Part | will deal with the vertical load, T
and Part Il which follows with the horizontal load. x| 0752+ 2'02a+0'37( 1=sin 2 ) ®)

. ([15,49,5Q) with an error less than 0.5 percent over the entire

2 Problem Formulation rangea € (0,1). According to Irwin’s relation, the energy release
An ice plate floating on water behaves exactly as a plate oate is

Winkler elastic foundatioriFig. 1(a,b)), with a foundation modu-

lus equal to the specific weight of water,Failure under a vertical

load is known to involve formation of radial bending cracks in a

B K,Z_ N2
9=z =gp9a (6)
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Fig. 2 Analysis of vertical penetration fracture: (a) crack profile and (b-h)
forces acting on element 123401 in Fig. 1

whereE'=E/(1—v?) andg is a dimensionless function, characteristic length., r,, must be proportional th. Integration
6o 5 over the area of a semi-circle of radiug yields the resultant of
_ bt _ water pressure acting on the whole element 12341. Again, the
9(a)=ma h Fu(a)+Fn(a) (a=alh). ) distance of this resultant, whose magnitudéi2, from load P
e=—M/N=eccentricity of the normal force resultant in the crosgnUSt be proportional t, i.e., may be written as
section(positive whenN is above the midplane Ry= sl (8)

To relateM and N to vertical loadP, let us consider element
12341 of the platéFigs. 1c) and Ze,f,9), limited by a pair of where u,, is a constant that can be solved from the differential
opposite radial cracks and the initiating polygonal cracks. Thegjuation of plate deflections. Of courge, is a constant only as
depth to the polygonal cracks at maximum load is zero, as thing as the behavior is elastic, which is exactly true only if the
just initiate, and since the cracks must form at the location of tleeack deptha is constant. Although the crack is growing, we will
maximum radial bending moment, the vertical shear force on tlagsume that its rate of growth is small enough so thatvould be
planes of these cracks is zero. The distaRcef the polygonal approximately constant.
cracks from the vertical loa® may be expected to be propor- For the sake of simplicity, we assume the normal faxcand
tional to the characteristic length since this is the only length bending momentM on the planes of the radial cracks and the
constant in the differential equation governing the problem, and polygonal cracks to be uniform. The condition of equilibrium of
we may seR= ugrL where dimensionlesag is assumed to be a horizontal forces acting on element 12341 in the direction normal
constant. to the radial cracks is then simple; it requires the normal forces on
In each narrow radial sector, the resultant of the water presstine planes of the polygonal cracks to be equal to the normal force
due to deflectionw (Fig. 2(b,0)) is located at a certain distancg N acting in the radial crack planes. The axial vectors of the mo-
from loadP. Sincer,, can be solved from the differential equationmentsM, acting on the polygonal sides are shown in Fite,9
for w, and since the solution depends only on one parameter, tiedouble arrows. Summing the projections of these axial vectors
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from all the polygonal sides of the element, one finds that theian be approximately determined as the plastic bending moment
moment resultant with axis in the direction 14 iR, regard- M. If f;/f;, with f;=compression strength of ice, is about 1,
less of the numben of radial cracks. So, upon settiig=purL, then the plastic stress distribution is symmetric bi-rectangular and
the condition of equilibrium of the radial cracks with the momentmp/Me: 1.5, whereM .= elastically calculated bending moment
about axis 14Fig. 2(b,c,e,qg) located at midthickness of the crossfor which o= f//f; at ice surface. If./f! were very large, then

section may be written as the stress distribution would be a single rectangle balanced by a
1 concentrated compression force at ice surface, and in that case
2(ugl)M +2(ugl)M— > P(unL)=0. (9) My/M, would be equal to 3. The real value must lie in between,
but probably closer to 1.5. We will safely assume thWgf/M,
Furthermore, we must take into account conditinof verti- =1.5. So we should seek a formula fgth) that gives this ratio
cal propagation of the radial bending cracks, which may be writer h=D, and has a large-size asymptotic expansion of the form
ten asG=G; whereG; is the fracture energy of ice. Thus, thel—D,(1/h)+(-)(1/h)?+ ... . There are many such formulas

critical value of normal forcécompressive, with eccentricitg)  but the simplest one is

may be written as 14+Dy/h

E G h ah)= ———5=—-- 12)
N=— ifh (10) 1+2Db/h
9(a)

This is verified by the asymptotic expansion:
Depending on the energy release rgfe) of the actual crack

2
of lengthay= a¢D (excluding the cohesive zophehere are two M ( %)( — % 4Dp

; )= A=A ; = + Tz
kinds of deterministic size effecta) the size effect due to energy 1+2Dp/h h h h
release of a large crack, characterized by a large valug @), D
and (b) the size effect at crack initiationa,=0), characterized —1-—24 S + Q+ o (13)
by d(ag)=0. They are governed by different laws h h* h
([14,15,30,32,51, and both must be expected to occur in ice ) ) ) )
penetration. 5 Size Effect on Nominal Vertical Penetration
Strength
4 Size Effect on Flexural Strength at Initiation of Po- Aside from the stress redistribution at initiation of polygonal
lygonal Cracks cracks([52]), there is another deterministic source of size effect—

. ) s . the energy release due to vertical propagation of the radial bend-
Consider first the initiation of the polygonal cracks. Sinegg ing cracks([28]). The bending moment
=0 andg(ap) =0, the initiation criterion is that the normal stress

o reaches the tensile strendthof the ice. However, the crack can M=—Ne=—Nguch (14)

begin to propagate only after a boundary layer of distributed Miay pe substituted int); here the normal forcdl is defined to
crocracking, representing the fracture process zone, forms at H?ﬂ.epositive when tensile, although the actual valudldé nega-
top surface of icé[14,15,30,51,58. The half-depth of this layer, tjye (compressio) and u.=e/h=dimensionless parameter
denoted ady,, is a material constar(wh.ich should be roughly \yhose value at maximum load may be assumed to be approxi-
equal to the fracture process zone lenggtintroduced later Note  mately constant. This assumption is indicated by the numerical
that the boundary layeD,, has been shown to explain the experisimylations in[38,39, from which it further transpires thate
mentally observed size effect on the modulus of rupture in theg 45, as a consequence of the fact that the average crack depth
bending tests of concretgl5,52). a at maximum load is about (hg(in any caseu,<0.5, and so a
Although the crack initiation can be handled by the energysssible error inue cannot have a large effécfThe value 0.45
release function, it is simpler to consider the stress redis”ibUti%fbproximately corresponds to the correct number of cracks in the
in the cross section caused by softening in the boundary laygg, pattern; if there were more cracks, the depth would be
([52]). The easiest way to obtain a nominal strength formula th§FnaIIer, if fewer, larger.
is correct up to the first two terms of the expansion in terms of afer substituting(14), we may expres# . from (9) and sub-

powers of 1 is to write the condition that the elastically calcu-gjtyte it into(11). Then, taking into accourti.0), we obtain after
lated normal strese, should be equal to the tensile strength ofaarrangements the equation:

ice, f; , at the middle of the boundary layer of thicknesd 2

rather than at ice surface. So the crack initiation criterion is _ 2R (6 Lt [E'Gy  f (15)
o+ N/h=f{ where, according to the bending stress formula, IN 3w fe q(h) hg(a) q(h)
go=M(h/2—Dy/2)/(h%12). This yields the crack initiation cri-

whereq(h) is given by(12).

terion: Now we need to decide how the valuesmft maximum load
6M, N should vary with ice thicknesk. To this end, note that ice is a
Vq(h)Jr N =f, (11) quasibrittle material. This is evidenced by the fact that at small

laboratory scale it is notch-insensitive and exhibits no size effect

whereq(h)=1—-D,/h. This form of the criterion, however, be- while at large scale it behaves according to LERN0,24).
comes meaningless whdn<2D,,, i.e., when the ice is thinner Therefore, at the tip of the vertically propagating radial crack,
than the cracking layer thickness. It can be correct only whisn there must exist a finite fracture process z6RB2) of a certain
sufficiently larger than B, i.e., asymptotically foh/Dy,—o. characteristic depth@ which is a material property. This zone
So it is desirable to modify functiog(h) so as to obtain a for- was modeled in the numerical simulations of ‘Baz and Kim
mula approximately applicable through the entire size range. TH&8,39 as a yielding zone. The tip of the equivalent LEFM crack
can be achieved by considering a rangerQfformulas that have lies approximately in the middle of the FPZ, i.e., at a distatce
the same first two terms of the large-size asymptotic expansionfiom the actual crack tif 15]), whose location is denoted ag.
1/h as(11), and then choosing that which gives the correct value If the locations of the center of the FPZ in structures of differ-
of the small-size nominal strength. Such a kind of approach ént sizes were geometrically similar, i.e.,dfat maximum load
known as asymptotic matching. were the same for ali, then the size effect would be the same as

Whenh=2D,,, i.e., when the distributed cracking zone encomin LEFM. Experience with testing of quasi-brittle materigl$5]),
passes essentially the whole depth of plate, the moment at failaewell as with cohesive crack and nonlocal damage simulations,
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shows the locations of the center of FPZ are usually not geometri- 1R

cally similar. Rather, similar locations are those of the actual crack 0N=—(fé*l+ ft’*l)’l (21)

tip. Thus the value ofry=ay/h may be expected to be approxi- Hw

mately constant when ice plates of different thicknedsemre which exhibits no size effect. Plasticity, however, requires that the
compared. Denotingy’ (ao)=dg(ag)/dagy, one may introduce material strength at all the points of the failure surface be mobi-
the approximation lized at the same time, which is impossible for a quasi-brittle

, (softening material such as sea ice.
9(a)~9g(ao)+g'(ao)(ci/D). (16)

Substituting this inta15) and rearranging, one gets for the siz& Closing of Part |
effect the formula The simplified asymptotic analysis of size effect in vertical pen-

7 ’ etration of the ice plate confirms the inevitability of a strong size
4/LR 1 E Gf MR ft . . . .
oN=—| et h h y + 3 o effect for larger ice thicknesses, approaching the size effect of
Hw 6a(h) 9(ao) +¢1g" (@) 3uw Al )(17) LEFM. This conclusion does not disagree with experiments and is

supported by previous numerical studies summarized in the Ap-
The results of numerical simulations [i89] were found to be pendix. Part Il which follows will apply a similar approach to the

quite well represented by the simple classical size effect law wititoblem of an ice plate moving against a fixed structure. It will be
large-size residual strength proposed if53] which reads seen that size effects must again be expected, but their nature is
_12 rather different.
h

oN= 0'0( 1+ —) +o,. (18)

ho

Formula(17) is now seen to reduce to this law wheth)~1, i.e.,
whenDy, is negligible, in which case then

Appendix

Review of Previous Numerical Fracture Analysis of Size Ef-
fect. To supplement the analytical approach, it may be useful to

Bpuppie E'G, 9’ (@) e . review recent detalleq numerical simulation of fracture of floating
0o= - , 0=Ci———, o= fi. ice caused by a vertical loai38,39). The fracture patterifor
Hw ¢t9'(ao) 9(ao) 3w the case of six radial crackss shown in Fig. 8a). The radial

(19)  cracks at maximum load penetrate through only a part of ice
Furthermore, the numerical simulations[i9] indicated thato,  thickness([26,55); Fig. 3(b,c). The radius of each crack is di-
~0. This means that the contribution of the tensile strerfgth vided by nodes into vertical strips in each of which the vertical
governing the initiation of the polygonal cracks must be neglFrack growth obeys Rice and LevyS7] “nonlinear line-spring”
gible, which in turn implies a negligible role fay(h). model relating the normal fordd and bending momern¥! in the

The terms in(17) containingD,, anyway decrease with increas-cracked cross section to the relative displacemteand rotation¢
ing h much more rapidly thafl8)—they decrease with increasing(Fig. 3(b)).

h as 1h, compared to 1/i. Consequently, they must become The analysis is based on a simplified version of the cohesive
neg||g|b|e for not too |argé‘| regarc”ess of the value (ﬁjb i crack model in which the vertical crack grOWth in each vertical

Same ag18), formula (17) plotted as logry versus logh ap- Strip is initiated according to a strength criterion. The cross section
proaches for |argd‘] a downward inclined asymptote of s|opebehaVi0r is considered elastic-plastic until the yleld envelope in
—1/2 (Fig. 3(g)). This characterizes the large-size asymptote dfie (N, M) plane is crossed by the poi(i, M) corresponding to
the size effect law ir(17). fracture mechanics. For ease of calculations, a nonassociated plas-

How does the numbar of the radial cracks enter the solution?tic flow rule corresponding to the vectod4,d¢) based on frac-

It does not appear in the present solution for the maximum lodgire mechanics is assumed.
The reason is that the number of cracks is decided at the beginThe following ice characteristics have been used in calcula-
ning of loading, long before the maximum load is attained. tions: tensile strengthf/=0.2MPa, fracture toughnes¥,

It is interesting to contrast the size effect obtained here with that0.1 MPa/m, Poisson ratiov=0.29, and Young’ modulu€
deduced for large-scale thermal bending fracture of floating ice,1.0 GPa, with the corresponding values: fracture eneegy
which was shown to b§40]) =K§/ E=10J/nf, and Irwin's fracture characteristic lengh

ATxh 38 (20) =(K./f{)?=0.25 m(this value happens to be about the same as

for concrete.

whereAT is the temperature difference between the bottom andrigure 3e) displays, with a strongly exaggerated vertical scale,
top of the ice plate, which is proportional to the maximum thermahe calculated crack profiles at subsequent loading stages. Fig.
stress before fracture. The large-size asymptotic size effect #f) shows the numerically calculated plot of the radial crack
fracture under vertical loads would have to follow also th8/8 |engtha versus the ice thickneds (“fracture length” means the
power law if the cracks at maximum load penetrated through thgdial length of open crack, and “plastic length” the radial length
full thickness of ice and forc&l were negligible([35,40,42,59.  up to the tip of plastic zoneThis plot reveals that, except for very
But this turned out not to be the ca§&7-39,55,59. thin ice, the radial crack lengta~c,h where c,~24 for the
typical ice properties assumed.

The data points in Fig. (8) show, in logarithmic scales, the
. numerically obtained size effect plot of the normalized nominal
6 Comments on Plasticity Approach strengthoy=P/h? versus the relative thickness of the igete

In contrast to the brute-force numerical simulations conductefat according to plasticity or elasticity with strength criterion, this
before, the approximate analytical derivation of size effect is irblot would be a horizontal line The initial horizontal portion, for
tuitively instructive. It clarifies the reasons why there must be which there is no size effect, corresponds to ice thinner than about
deterministic size effect in penetration of floating ice. The sizgg cm.
effect could be absent only if the material behaved plastically.  Since the model if38,39 includes plasticity, it can reproduce

If the sea ice were a plastic material, the stress distributions g classical solutions with no size effect, depending on the input
element 12341 would be as shown in Figh)2 wheref; andf. values of ice characteristics. The ice thickness at the onset of size
denote the tensile and compressive yield strengths. Taking #fect depends on the ratio of ice thickness to the fracture charac-
moment equilibrium condition of this element, one can easilteristic length,h/l,. For realistic ice thicknessdsranging from
show that the nominal strength would in that case be expressedasm to 6 m, the computer program would yield perfectly plastic
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Fig. 3 Vertical penetration fracture problem analyzed by Baz  “ant and Kim [38,39] main numerical results,
and comparison with field tests of Frankenstein [59,60] and Lichtenberger [61]

response with no size effect if the fracture characteristic lehgthin Bazant[58]. The final asymptote has slopel/2, which means
were at least 108 larger, i.e., at least 25 m. This would, forthat the asymptotic size effectigych~*2 the same as for LEFM
instance, happen if eithef, were at least 18 smaller (f;  with similar cracks, and noh~® as proposed by Slepyan
<0.01 MPa oK, at least 1& larger (K.=10 MPa/m). The en- [35,40,54. The —3/8 power scaling would have to be true if the
tire diagram in Fig. 8) would then be horizontal. radial cracks at maximum load were full-through bending cracks.
Larger values of, are of course possible in view of statisticalThe —1/2 power scaling may be explained by the fact that during
scatter, but nothing like 100 larger. For example, by fitting size failure the bending cracks are not full-through and propagate
effect data([23,24]) from in situ tests at Resolute, one gé&ts mainly vertically, which is supported by the calculated crack pro-
~2.1MPa/m, and withf{ ~2 MPa one has the fracture characfiles in Fig. 3e). o _
teristic lengthl = (K. /f/)2=1 m. But this larger value would not  BY fitting of the data points in Fig.(8), spanning over four
make much difference in the size effect plot in Figg)3 The orders o_f magnitude of ice thlckne_hs the_followmg prediction
reason that these values were not used in the plot in Figvgas formula in the form of the generalized size effect l&g5,41)
that they correspond to long-distance horizontal propagation S been calibrateee the curve in Fig.(8)):
fracture, rather than vertical growth of fracture.
The curve in Fig. &) is the optimum fit of the numerically ) . .
calculated data points by the generalized size effect law proposed Pmax=onh®  on=Bf[1+(h/\glo)'] (22)
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with B=1.214,\y=2.55, m=1/2, r=1.55, andl,=0.25m (ft, bDriiSJSEUSr?i?ogf g:)eclz_zr%?)stlz;r(l)d_lsgrgallest Member of a Sample,” Proc. Cam-

=0.2MPa in Fig. 19)). , _ [13]Kittl, P, and Diaz, G., 1988, “Weibull's Fracture Statistics, or Probabilistic
Only very limited field test data exist. The data points in the  swength of Materials: State of the Art,” Res. MecB4, pp. 99—207.

size effect plots in Fig. (h) represent the results of the field tests[14] Baznt, Z. P, and Chen, E.-P.,, 1997, “Scaling of Structural Failure,” Appl.
by [59_6]]’ and the curves show the optimum fits with the SiZe[15] g;;amtRZevﬁsoérﬁlg.PllgﬁggJsgslgggzi;:ture and Size Effect in Concrete and
e_ffect formula verified by numerical calculatlo_mote that if the Other buasit’;rime MaterialsCRC Press, Boca Raton, FL.
size effect were absent, these plots of nominal strength woulds| Baznt, z. P., and Xi, Y., 1991, “Statistical Size Effect in Quasi-Brittle Struc-
have to be horizontal After optimizing the size effect law param- tures: 1. Nonlocal Theory,” J. Eng. MechL17, No. 11, pp. 2623-2640.
eters by fitting the data in the three plots in Figh)3the data and [17] Baznt, Z. P., and Nola D., 2000, *Probabilistic Nonlocal Theory for Qua-
the optimum fit are combined in the dimensionless p|0t in Fig sibrittle Fracture Initiation and Size Effect. I. Theory,” J. Eng. Med26, No.
; * 2, pp. 166-174.
3(')- ) . . . [18] Weeks, W. F., and Mellor, M., 1984, “Mechanical Properties of Ice in the
Interesting discussions ¢f38,39)) were published by Dempsey Arctic Seas,” Arctic Technology & Policyl. Dyer and C. Chryssostomidis,
[62] and Sodh{63] and rebutted. One objection raised by Sodhi  eds., Hemisphere, Washington, D.C., pp. 235-259.

was the neglect of creep in Eﬂﬂt and Kim's analysis Intuition [19] Weeks, W. F., and Assur, A., 1972, “Fracture of Lake and Sea Ice,” Fracture,
. . . . . H. Liebowitz, ed. Il , pp. 879-978.
suggests that the influence of creep might be like that of plastiCitysq) pempsey, J. P., 1991, “The Fracture Toughness of ltee"Structure Interac-

which tends to increase the process zone size, thereby making the tion, S. J. Jones, R. F. McKenna, J. Tilotson, and 1. J. Jordaan, eds., Springer-

response less brittle and the size effect weaker. But the opposite is Verlag, Berlin, pp. 109-145.
true ([15]) [21] DeFranco, S. J., and Dempsey, J. P., 1994, “Crack Propagation and Fracture

The infl f l f brittle fail £ t Resistance in Saline Ice,” J. Glacio#ip, pp. 451-462.
€ Intluence or creep on scaling or brittie Taliures ot concre egzz] DeFranco, S. J., Wei, Y., and Dempsey, J. P., 1991, “Notch Acuity Effects on

which is doubtless quite similar from the mechanics viewpoint = Fracture of Saline Ice,” Ann. Glaciol15, pp. 230—235.
(albeit different in physical origin was studied in depth at North- [23] Dempsey, J. P., DeFranco, S. J., Adamson, R. M., and Mulmule, S. V., 1999,
western University, along with the effect of the crack propagation “Scale Effects on the in situ Tensile Strength and Fracture of Ice: Part I: Large
velocity; see, e.ng5,34,64 and especiall)[65,6(ﬂ. The conclu- Sg.aggsd_lgfshwater Ice at Spray Lakes Reservoir, Alberta,” Int. J. FEgt.,
sion from these studies, ba_Cked by eXter_]3|Ve fracture_ testing iy Dempsey, J. P., Adamson, R. M., and Mulmule, S. V., 1999, “Scale Effects on
concrete and rock at very different rates, is that creep in the ma- the in situ Tensile Strength and Fracture of Ice: Part II: First-Year Sea Ice at
terial always makes the size effect due to cracks stroigdess (25 'l\?/lelsolulte, 2‘ y E Int. J. FfJaCL%u Pg- 235—378- R ML 1095 “Large.Seal
A . h R uimule, 5. V., Dempsey, J. P., an amson, . o y arge-scale
creep aCtua”y pre_vents crack |n|t|atDor1n the Ioga_rlthmlc size in-situ Ice Fracture Experiments—Part II: Modeling Effortécé Mechanics—
effect plot of nominal strength versus structure size, it causes a 1995,vol. AMD-MD-1995, ASME, New York.

shift to the right, toward the LEFM asymptote, which means tha26] Dempsey, J. P., Adamson, R. M., and Mulmule, S. V., 1995, “Large-Scale

the size effect is intensified by creep. The slower the loadimg s Fracture of Ice, Proceedings of FRAMCOSE. H. Witmann, ed.,
. . - . . ublishers, Freiburg, Germany.
the Ionger its duratloh the closer to LEFM is the size effect in a [27] Li, Z., and Baant, Z. P., 1998, “Acoustic Emissions in Fracturing Sea Ice
cracked structure. - _ _ Plate Simulated by Particle System,”J. Eng. Med24 No. 1, pp. 69-79.
The physical reason, clarified by numerical solutions of stres®8] Bazant, z. P., 1984, “Size Effect in Blunt Fracture: Concrete, Rock, and
profiles with a rate-dependent cohesive crack mdd]), is that Metal,” J. Eng. Mech. 110, pp. 518-535.

the highest stresses in the fracture process zone get relaxed By ?féapfo Zg' %bliggé_sl%ﬂfg Laws in Mechanics of Failure,” J. Eng. Mech.,

creep, which tends to reduce the effective length of the fra(_:tu@o] Bazant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Asymptotic Analysis,”

process zone. The shorter the process zone, the higher is the Int. J. Fract.83, No. 1, pp. 19-40.

brittleness of response and the stronger is the size effect. THi&ll Bazant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Hypotheses of Invasive

explains why experiments on notched concrete specimens consis- ang": C;“SE, Fﬁité“;y' Their Critique and Weibull Connection,” Int. J. Fract.

tently show the size effect tO. be more pronounced at a slowes) Baznt, z. P., 1999, “Size Effect on Structural Strength: A Review,” Arch. of

loading ([15]). A similar behavior might be expected for ice. It Applied Mechanics9, pp. 703-725.

thus transpires that, in order to take the influence of creep on tha3l Eaﬁmm Z-t P, |an3v It(r:m,& J-l-_K-1t_198t5- ‘I‘Fffi"gure TAhSengy ,Lort Ngnh?mog(e:nefus
H B : : . rittle Materials | pplication to Ice, Proc. at. cont. on Civi

size effect apprOX|mater into account, it suffices to reduce the Engineering in the Arctic Offshore—ARCTIC,85 F. Bennett ed., San Fran-

value of fracture energyor fracture toughne$sand decrease the cisco, CA, ASCE, Reston, VA, pp. 917-930.

effective length of the fracture process zone. [34] Bazant, Z. P., and Gettu, R., 1991, “Size Effects in the Fracture of Quasi-
Brittle Materials,” Cold Regions Engineering, (Proc., 6th ASCE International
Specialty Conferencep. S. Sodhi, ed., Hanover, NH, Feb., ASCE, Reston,

VA, pp. 595-604.
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