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Abstract

We design and implement a Distributed Oblivious Random Access
Memory (DORAM) data structure that is optimized for use in two-party
secure computation protocols. We improve upon the access time of pre-
vious constructions by a factor of up to ten, their memory overhead by a
factor of one hundred or more, and their initialization time by a factor of
thousands. We are able to instantiate ORAMs that hold 234 bytes, and
perform operations on them in seconds, which was not previously feasible
with any implemented scheme.

Unlike prior ORAM constructions based on hierarchical hashing [21],
permutation [21], or trees [40], our Distributed ORAM is derived from
the new Function Secret Sharing scheme introduced by Boyle, Gilboa and
Ishai [11, 12]. This significantly reduces the amount of secure computation
required to implement an ORAM access, albeit at the cost of O(n) efficient
local memory operations.

We implement our construction and find that, despite its poor O(n)
asymptotic complexity, it still outperforms the fastest previously known
constructions, Circuit ORAM [43] and Square-root ORAM [56], for datasets
that are 32 KiB or larger, and outperforms prior work on applications such
as stable matching [16] or binary search [25] by factors of two to ten.

1 Introduction

In spite of the substantial improvements to the efficiency of two-party secure
computation protocols, they still encounter major obstacles when evaluating
many types of functions. In particular, functions that make data-dependent

accesses to memory remain difficult cases. A data-dependent memory access
is an access to an element within an array, at an index i that is computed
from some secret input. A secure computation protocol must guarantee that
no information about its inputs is leaked to either party, even via intermediate
computations, and thus it must be able to execute such memory accesses without
leaking any bits of i.
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Data-dependent memory accesses are common even in textbook algorithms;
they are required by, for example, binary search, most graph algorithms, sparse
matrix methods, greedy algorithms, and dynamic programming algorithms.
More generally, they are required by any program that is written in the RAM
model of computation. Any attempt to evaluate such an algorithm in a se-
cure context upon a large dataset certainly requires an efficient data-dependent
memory access mechanism.

The simplest solution to this problem is the linear scan technique, which
hides the index of an accessed element by touching every element in the mem-
ory and using multiplexers to ensure that only the desired element is actually
read or written. This effectively ensures data-obliviousness, but it requires an
expensive secure computation involving O(n) gates for each individual memory
access. With accesses incurring overhead linear in the size of the entire memory,
scanning is impractical for all but the smallest amounts of data.

Another solution is Oblivious Random Access Memory (ORAM). Intuitively,
ORAM is a technique to transform a memory access to a secret index i into a
sequence of memory accesses that can be revealed to an adversary, the indices
of which appear independent of i. ORAM was first proposed by Goldreich
and Ostrovsky in their seminal paper [21], which studied the general context of
client-server memory outsourcing. In this setting, a client wishes to perform a
computation on a database of size n, which is held by some untrusted server,
but does not want the server to learn the semantic pattern of accesses to the
database. Goldreich and Ostrovsky proposed two schemes to solve this problem,
the second of which requires that the client perform O(polylog n) accesses to the
database for every access in the client’s original program. In the subsequent two
decades, ORAM techniques have been widely studied [7, 13, 14, 18, 22, 23, 24,
30, 34, 35, 36, 39, 41, 46, 47, 48] with the goals of reducing the communication
overhead between the client and server, reducing the amount of memory required
of the client, and reducing the server’s overall memory overhead. State of the
art approaches to ORAM design limit the overhead in all of these measures to
O(logc n) where c ≤ 3.

ORAM can be applied to the domain of secure computation by implement-
ing ORAM client operations as secure functions, while the mutually-untrusting
computation parties share the role of the ORAM server. This arrangement was
proposed by Ostrovsky and Shoup [35], who used it to show that secure compu-
tations need not take time linear in the size of their input. It was later taken up
by Gordon et al. [25]. Subsequently, the development of secure-computation-
specific ORAMs began.

Wang et al. [44] observed that memory and communication overhead, the
metrics for which ORAM had traditionally been optimized, were inappropriate
for the context of secure computation. They proposed that circuit complexity is
a more relevant measure, and described a heuristic ORAM based on this idea.
Subsequently, Wang et al. [43] proposed Circuit ORAM, which offers asymptot-
ically strong parameters for a data-structure with small circuit complexity.

Zahur et al. [56] observed that by relaxing asymptotic bounds, it is possible
to produce a scheme that has a smaller concrete circuit size. They described
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a modification of the original Goldreich-Ostrovsky Square-root ORAM that is
asymptotically inferior to Circuit ORAM, but outperforms it for data sizes up
to 4 MiB.

Although they represent a dramatic improvement over initial efforts, the
ORAM constructions of Gordon et al., Zahur et al., and Wang et al. suffer
drawbacks. For instance, they are all recursively structured. That is, accessing
the top level ORAM data structure for n elements requires recursively accessing
another ORAM data structure of size n/8 elements, and so on, each layer adding
a communication round. As a result, each semantic access requires accessing
O(log n) different ORAM layers, incurring O(log n) rounds of communication
and latency.

These constructions also have high concrete memory overhead, due in part
to their recursive nature and to the fact that they store wire labels for each bit
of their memory, each wire label being at least 80 times larger than the data it
represents. All prior research efforts of which we are aware report on concrete
experiments that involve at most 220 elements. In our own experiments, we
confirm that the constructions they describe cannot handle more elements in a
reasonable amount of time and space.1

The last, and possibly most significant problem is initialization. In many
cases, an ORAM must be filled with some initial data before it can be used.
Circuit ORAM requires an individual write into each element, a process that
is extremely expensive: we observed it to require more than 3000 seconds for a
moderately-sized memory of 215 elements.2 Zahur et al.’s Square-root ORAM is
asymptotically similar, but uses a permutation network [42] instead of individual
writes to achieve a constant-factor improvement of roughly 100. Nevertheless,
even for moderately-sized memories, initialization is a significant cost.

These bottlenecks limit the use of secure computation protocols mostly to
data-independent algorithms (e.g. AES [37], edit distance [45], or linear re-
gression [33]) or RAM programs that exploit specific algorithmic properties to
restrict their access patterns (e.g. BFS [6], Dijkstra’s algorithm [28], or stable
matching [16]).

1.1 Contributions

We propose a new data structure that addresses the drawbacks discussed previ-
ously, and we demonstrate the first concrete secure computation memory imple-
mentation that is capable of hosting data at the scale of many gigabytes. Our
scheme has faster access times than all prior constructions for memories that
are larger than 32 KiB, and, as it does not have any recursive components, each

1Wang et al. [43] report on an instance of Circuit ORAM storing 2
30 4-byte elements using

an older implementation of Circuit ORAM that stores its data as XOR-shares instead of wire
labels, but they do not report concrete performance figures for that size. In this paper we
evaluate the faster implementation reported by Zahur et al. [56]; with this implementation,
an instance of Circuit ORAM larger than 64 MiB exhausts the 122 GiB of memory in each of
our two test machines.

2See Figure 9d
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access requires only three rounds in principle. Unlike prior ORAMs, our data
structure supports read and write operations independently, and can perform
read operations substantially faster. Instead of storing wire labels, we store
either XOR-shares or encryptions of the data, and thereby reduce the memory
overhead to a small constant. Additionally, we have a linear-time method to
fill our structure with initial data that requires no secure computation. As a
result, an instance with 220 4-byte elements can be initialized in 166 millisec-
onds, roughly 4000 times faster than the best prior initialization technique from
Zahur et al.’s Square-root ORAM [56]. We show that our advantages hold not
only in microbenchmarks, but also in previously-published application contexts
such as binary search and stable matching.

In contrast to most prior secure computation ORAM research, we consider
the Distributed ORAM model [32], and derive our scheme from two-server Pri-
vate Information Retrieval (PIR) techniques. In PIR, a client wishes to retrieve
an element Ai at index i in database A, copies of which are held by two servers.
The client issues a query q1(i) to server 1 and query q2(i) to server 2, and the
servers respond with short messages m1 and m2 respectively, which the client
can use to reconstruct Ai. PIR schemes must satisfy two properties: the to-
tal communication between client and servers must be sub-linear in n, and the
query qp(i) in isolation must reveal no information about i.

Gilboa and Ishai [17] and Boyle, Gilboa, and Ishai [11] recently presented
a surprisingly efficient PIR construction that is based on the notion of a func-

tion secret sharing (FSS) scheme for a distributed point function (DPF). Their
construction offers properties new to PIR which make it well-suited for use in
an ORAM for secure computation. In particular, it produces a query mes-
sage of size O(log n), as opposed to the size of O(n

1/3) required by many PIR
schemes [51], and it requires only a cryptographic pseudo-random generator,
whereas other PIR schemes with logarithmic query size require public key cryp-
tography. We discuss the specifics of this primitive in Section 2. In our con-
struction, the parties to the secure computation, Alice and Bob, also act as the
two servers in the PIR scheme, and secure computation performs the role of the
client. Owing to the efficiency of FSS, our ORAM requires a very small secure
computation in comparison to prior ORAM designs (up to one hundred times
smaller for the memory sizes that we explore).

The second novel property offered by Boyle et al.’s PIR scheme is support
for “PIR-writing”, which we use to implement ORAM write operations, in com-
bination with a standard stash data structure that retains updated elements
until they can be reintegrated into the ORAM’s main memory. The secure
computation needed to implement the stash has an amortized computation and
communication complexity of O(

√
n) per access; however, as demonstrated by

Zahur et al. [56], even schemes with a complexity of O(
√
n log 3n) can outper-

form poly-logarithmic schemes in practice. Our stash reintegration procedure
is related to our initialization procedure, and similarly requires linear time with
no secure computation.

The theoretical disadvantage of our PIR-derived ORAM stems from the fact
that the servers in a PIR scheme (i.e., Alice and Bob, in our case) must perform
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O(n) local computation. This is an unavoidable property of any PIR system.
However, unlike the O(n) secure computation required by a traditional linear
scan, this computation is simple, highly parallelizable, and enjoys widespread
hardware-acceleration support. In practice, secure computation protocols are
typically bottlenecked by network or single-core CPU performance and utilize
a very small portion of the total computational power and memory bandwidth
available with modern hardware; thus, the approach of replacing secure compu-
tation with asymptotically-worse local computation can yield significant perfor-
mance improvements. Despite the poor theoretical complexity of our scheme,
we show via a concrete implementation that it outperforms all prior ORAMs,
even for large datasets.

Due to the heavy influence of the FSS scheme and the fact that the compu-
tation parties make local linear scans of the memory for each operation, we call
our ORAM construction Function-secret-sharing Linear ORAM, or Floram.

As with most prior ORAM research, our implementation is in the honest-
but-curious adversarial setting. We conjecture that our scheme can be hardened
more easily than others due to its simplicity, but we leave that question for future
work.

Organization The remainder of the paper is organized as follows: In Sec-
tion 2, we review definitions of techniques we use, including ORAM and the
recently developed technique of Function Secret Sharing. In Section 3 we con-
struct simple single-function ORAMs based upon FSS, and analyze their prop-
erties, and in Section 4 we combine and extend these constructions to yield a
fully functional ORAM. In Section 5 we present a technique for outsourcing the
FSS computation that yields a significant practical speed increase over a naïve
implementation, and in Section 6 we describe a few additional optimizations.
Finally, in Section 7, we describe an implementation of our scheme and evalu-
ate its performance. In the Appendices we give formal definitions and security
proofs.

2 Background

Secure Multi-party Computation The field of Secure Multi-Party Com-
putation (MPC) studies mechanisms by which a group of individuals, each indi-
vidual i having some secret input xi, can evaluate a function y = f(x1, x2, . . .)
jointly, in such a way that no party i learns anything other than what is re-
vealed by the output y and their private input xi. Specifically, party i must
neither learn any xj for all j 6= i, nor any intermediate value derived from xj

during the evaluation of f . A special case of MPC is Two-Party Computation
(2PC), in which only two parties, Alice and Bob, participate. Though many
variations of MPC have been developed in its thirty-plus year history, and it is
likely possible to adapt our work to suit a significant subset of them, this paper
focuses on Yao’s Garbled Circuits [52, 53].
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Yao’s Garbled Circuits conforms to the honest-but-curious or semi-honest

security model, in which Alice and Bob are trusted to follow the protocol in-
structions, but are curious adversaries who may attempt to learn each others’
secrets by analyzing protocol transcripts. Outside observers may also analyze
protocol transcripts, but must learn nothing in so doing. Selective security for
Yao’s Garbled Circuits in this model has been proven by Lindell and Pinkas [31],
and adaptive security for circuits in NC1 by Jafargholi and Wichs [27]. We pro-
vide a standard security definition in Appendix A.1.

Oblivious RAM ORAM [21] is a data structure that provides the familiar se-
mantics of random access memory, but translates the logical access instructions
it receives into sequences of physical accesses in such a way that no adversary
can recover the logical accesses by observing the physical access patterns. An
ORAM must support the functions Read(i) and Write(i, v), which perform se-
mantic reads and writes to locations specified by a private index i. An ORAM
may also support functions Apply(f, i, v), which applies some function privately
to a single location, and Init(V ), which fills the ORAM with data from the array
V .

As traditionally defined, an ORAM must satisfy the security property that,
for any two sequences of logical accesses of the same length, transcripts of the
physical accesses produced must be indistinguishable. We concern ourselves
with a variant, Distributed Oblivious RAM (DORAM) [32], which considers
the context wherein the underlying memory is split among multiple parties,
and which satisfies a slightly weaker security property: for any two sequences
of logical accesses of the same length, transcripts of the physical accesses per-
formed by any single party must be indistinguishable. Intuitively, no party may
learn anything about the semantic memory by observing their own share of the
physical memory. We provide formal definitions for DORAM in Appendix A.2.

ORAMs are traditionally considered to have some manner of secure CPU
that transforms semantic memory accesses into physical ones. In the setting of
MPC, the CPU is typically implemented as a multiparty protocol. Thus, in some
sense, all ORAMs become DORAMs when applied to MPC: the constructions
as wholes can be only as secure as the MPC protocols that implement their
CPUs, and no protocol can be secure when all participants are corrupt. For
simplicity, we refer to our scheme as an ORAM, except where the distinction is
important.

Function Secret Sharing Secret Sharing [38] allows a dealer to divide a
secret value into m shares, one for each of m parties, such that none of the
parties can individually gain any insight into the secret value, yet all m shares,
as a group, contain enough information to reconstruct it. Recently, Gilboa and
Ishai [17] observed that it is possible to secret-share a point function using shares
with sizes sublinear in the size of the function’s domain; they call this concept a
Distributed Point Function (DPF). Boyle et al. [11, 12] subsequently improved
upon this work and described how to construct a two-server PIR scheme using
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a DPF. We begin by formally defining a Function Secret Sharing Scheme for
two parties.

Definition (Point Function). A point function is a function fα,β : [1, n] → G
such that

fα,β(x) =

{

β if x = α

0 otherwise

Definition (Function Secret Sharing Scheme for Point Functions [11, 17]). A
two-party function secret sharing scheme is a pair of Probabilistic Polynomial
Time algorithms (Gen,Eval) of the following form

1. Gen(1λ, (α, β)) is a key generation algorithm, which on input 1λ (a security
parameter), and a description of a point function function fα,β , outputs a
tuple of keys (kFSS

a , kFSS

b ).

2. Eval(kFSS

p , x) is a deterministic evaluation algorithm, which on input kFSS

p

(party key share for party p ∈ {a, b}), and evaluation point x ∈ [1, n],
outputs a group element yxp ∈ G and a bit txp ∈ {0, 1} such that yxp = fp(x)
(party p’s share of f(x)) and txp is a share of 0 if f(x) = 0, or a share of 1
otherwise.

Definition (Security for an FSS Scheme for Point Functions). A two-party FSS
for point functions is secure if

1. (Correctness) For all point functions fα,β , and for every x ∈ [1, n] in the
domain of fα,β

(kFSS

a , kFSS

b )← Gen(1λ, (α, β)) =⇒

Pr







yxa ⊕ yxb = fα,β(x) ∧ txa ⊕ txb = 1 :
{

(yxp , t
x
p)

..= Eval(kFSS

p , x)
}

p∈{a,b}






= 1

2. (Privacy) For every corrupted party p (either a or b), and every sequence
of point function descriptions f1, f2, . . ., there exists a simulator Sim such
that:

{

kFSS

p : (kFSS

a , kFSS

b )← Gen(1λ, fλ)
}

λ∈N

c≡
{

Sim(p, 1λ)
}

λ∈N

In other words, the simulator can produce a share (without knowing the
function) that is indistinguishable from the real share for the function. Thus,
the function share leaks nothing about fα,β other than its domain and the group
that contains its range.

We summarize the FSS construction of a distributed point function fα,β
from Boyle et al. [11, 12] in Figure 1. The Gen(1λ, (α, β)) method produces
shares kFSS

a , kFSS

b of the point function fα,β . These shares consist of one private
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seed each (sa, ta and sb, tb respectively), and the rest of the information in the
share is the same for both parties. The FSS scheme follows a tree-based PRF
construction, wherein each node of the tree is associated with a seed, and a
pseudo-random generator (PRG) is used to double the seed into two seeds, one
for the left child, and one for the right. At each level j of the tree, Alice and
Bob will have exactly the same seed for all nodes except for the node along the
path from the root to the leaf α. At this node, Alice and Bob have different
seeds, sj,αj

a and sj,αj

b respectively, and thus the expansion of their seeds result
in different seeds for the children of this node at level j + 1, sj+1,0

a , sj+1,1
a and

sj+1,0
b , sj+1,1

b . The scheme provides a correction word σj and two advice bits,
τ j,0 and τ j,1, for each level. σj is conditionally applied to both child seeds of
a node according to tj = Lsb(sj,αj

p )⊕ tj−1 · τ j,αj . This modifies the child seeds
such that afterward, Alice and Bob share the same seed for all nodes except
for the node along the path to leaf α. That is, of the two children of each
node along the path to leaf α, for which Alice and Bob’s seeds differ, one is
“deactivated” (i.e. Alice and Bob’s seeds at that position are made identical),
and the other is not. This correction is performed in such a way that neither
party can determine which branch has been deactivated.

A Private Information Retrieval (PIR) system is a mechanism by which a
client may retrieve an item from a database replicated among some number
of servers, without revealing to any server which item was retrieved. Though
similar to ORAMs, PIR systems are notably distinct: they typically do not con-
cern themselves with writing or with hiding the contents of the memory from
the servers, they do not require any initialization or allow reorganization of the
database, and they do not incur memory overheads for the client or servers.
On the other hand, PIR schemes take for granted that servers must perform
O(n) work for each access, whereas ORAM literature has hitherto focused on
providing sublinear-in-n computation complexity. When combined with mem-
ory encryption, a PIR scheme may be thought of as an Oblivious Read-only
Memory (OROM), and we show how to construct such a primitive from FSS in
Section 3.

3 Single-function Memory

We begin by explaining how to construct write-only and read-only random ac-
cess memories from the FSS scheme described in Section 2. The constructions
presented here may be independently useful in scenarios wherein simultaneous
read and write capabilities are not needed; we combine them into a full ORAM
in Section 4.

Oblivious Write-Only Memory We first construct an Oblivious Write-
Only Memory (OWOM), based on the folkloric technique of PIR-writing. Both
parties hold a local XOR-share of each memory location; in order to write to
a location i (this index being given as private data within the MPC protocol),
the secure computation must determine the difference, v∆, between the value

8



1 function Gen(1λ, α = αm . . . α2α1, β):

2 s′0a , s
′0
b ← {0, 1}λ // pick random seeds

3 t0a, t
0
b

..= a random xor−share of 1

4 for j ∈ [1,m]:

5

{

(

sj,0p

∣

∣

∣

∣

∣

∣ s
j,1
p

)

}

p∈{a,b}

..=

{

Prg
(

s′j−1
p

)

}

p∈{a,b}

6 σj ..= s
j,αj
a ⊕ s

j,αj

b // xor off-path children

7 τ j,0 ..= Lsb
(

sj,0a

)

⊕ Lsb
(

s
j,0
b

)

⊕ αj ⊕ 1

8 τ j,1 ..= Lsb
(

sj,1a

)

⊕ Lsb
(

s
j,1
b

)

⊕ αj

9

{

s′jp

}

p∈{a,b}

..=
{

s
j,αj
p ⊕ tj−1

p · σj
}

p∈{a,b}

10

{

tjp

}

p∈{a,b}

..=

{

Lsb
(

s
j,αj
p

)

⊕ tj−1
p · τ j,αj

}

p∈{a,b}

11 γ ..= s′ma ⊕ s′mb ⊕ β

12 kFSS
a

..=
(

s′0a , t
0
a, {σj , τ j,0, τ j,1}j∈[1,m], γ

)

13 kFSS

b
..=
(

s′0b , t
0
b , {σj , τ j,0, τ j,1}j∈[1,m], γ

)

14 return kFSS
a , kFSS

b

15

16 function Eval(kFSS
p , x = xm . . . x2x1)

17 // Parse key kFSS
p as (s0p, t

0
p, {σj , τ j,0, τ j,1}j∈[1,m], γ)

18 for j ∈ [1,m]:

19

(

sj,0
∣

∣

∣

∣

∣

∣ s
j,1
)

..= Prg
(

s′j−1
)

20 s′j ..= sj,xj ⊕ tj−1 · σj

21 tj ..= Lsb
(

sj,xj

)

⊕ tj−1 · τ j,xj

22 y ..= s′m ⊕ tm · γ
23 return y, tm

Figure 1: Pseudocode for the Function Secret Sharing scheme. Our design
follows Boyle et al. [11, 12].

already stored there and the value to be written. It must then use the FSS
scheme to construct a distributed point function that evaluates to 0 everywhere
except location i, whereat the DPF evaluates to v∆. Alice and Bob individually
evaluate their shares of the DPF, and add these shares into the memory-shares
that they hold. Because they are adding shares of zero at all locations other
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Alice BobSecure Computation

i,v∆

(k
a
FSS,k

b
FSS) ← Gen(1λ,i,v∆)

W '
a

x := W
a

x⊕y
a

x

(y
a

x,t
a

x) := Eval(k
a
FSS,x)

W '
b

x := W
b

x⊕y
b

x

(y
b

x,t
b

x) := Eval(k
b
FSS,x)

k
a

FSS k
b

FSS

W
a

1

W
a

2

W
a

3

W
a

n

.

.

.

W
b

1

W
b

2

W
b

3

W
b

n

.

.

.

Figure 2: Diagram of Oblivious Write-only Memory. To perform a write, the
secure computation generates shares of a DPF, kFSS

a and kFSS

b , which are distributed to
Alice and Bob. Alice and Bob each evaluate the DPF at every value x ∈ [1, n] and
XOR the result into their respective corresponding shares of the OWOM memory.

than i, those values remain unchanged. At index i, they add shares of the dif-
ference between the old and new values to shares of the old value, producing
shares of the value that was to be written.

More precisely, we represent the value at memory location i as W i, and
party p’s share as W i

p, where W i = W i
a ⊕W i

b . To write value W ′i into the mem-
ory, the secure computation calculates v∆ = W i ⊕W ′i and then (kFSS

a , kFSS

b ) ←
Gen(1λ, (i, v∆)), delivering kFSS

a to Alice and kFSS

b to Bob, who use these keys to
derive (yxp , t

x
p)

..= Eval(kFSS

p , x) for all x ∈ [1, n]. For the purpose of writing, the
parties will ignore txp and use the main DPF output yxp , which they XOR into
the underlying memory to perform the write, W ′x

p
..= W x

p ⊕ yxp .
Because write operations are performed by cumulatively XORing adjustment

values with each W i, it is necessary to write the difference between the old
and new values, rather than writing the new value directly. In absence of any
mechanism for reading (or otherwise determining which values are currently
stored), this limits our OWOM to use only in write-only, write-once situations.
However, it will become a building block for a full ORAM in the next section.
We depict this scheme in Figure 2.

Oblivious Read-Only Memory We implement read-only memory in a man-
ner similar to classic PIR constructions. Alice and Bob, in their roles as the
PIR servers, each hold identical copies of the memory, masked by the output
of a pseudo-random function (PRF) using a key kPRF that is known to the se-
cure computation, but not to Alice or Bob individually. To read an element Ri

from the memory at a private index i (again, this index is given as private data
within the protocol), Alice and Bob engage in a secure computation protocol to

10



Alice BobSecure Computation

i,kPRF

(k
a
FSS,k

b
FSS) ← Gen(1λ,i,β)

v
a
 := ⊕Rx·t

a

x

x

v := Prf
kPRF

(i)⊕v
a 
⊕v

b

v

(y
a

x,t
a

x) := Eval(k
a
FSS,x)

v
b
 := ⊕Rx·t

b

x

x

(y
b

x,t
b

x) := Eval(k
b
FSS,x)

k
a

FSS k
b

FSS

v
a

v
b

R1

R2

R3

Rn

R1

R2

R3

Rn

...
...

Figure 3: Diagram of Oblivious Read-Only Memory. To perform a read, the
secure computation generates shares of a DPF, kFSS

a and kFSS

b , which are distributed to
Alice and Bob. Alice and Bob each evaluate a normalized version of the DPF at every
value x ∈ [1, n], calculate the dot product of the normalized DPF with their respective
copies of the OROM memory, and feed the result back into the secure computation to
compute the value v at location i.

calculate (kFSS

a , kFSS

b ) ← Gen(1λ, (i, β)). Each party receives a kFSS

p and uses it to
calculate (yxp , t

x
p)

..= Eval(kFSS

p , x) for all x ∈ [1, n]. Although the DPF yxp may
have an arbitrary range β, for the purpose of reading, it is necessary that they
hold a DPF of magnitude 1. Thus, the parties will use the final advice bits, txp ,
which essentially represent the same DPF normalized to {0, 1}. Both parties
compute vp =

⊕

x t
x
p ·Rx. According to the properties of our FSS scheme, since

txa = txb for all x 6= i, it follows that va ⊕ vb = Ri. Finally, Alice and Bob
use a secure computation to evaluate PrfkPRF(i) ⊕ Ri, effectively importing the
semantic value of interest into the secure computation. We depict this scheme
in Figure 3.

Though this scheme permits an unlimited number of reads, it cannot be
written. Each party stores a PRF-masked copy (i.e. an encryption) of the data
rather than a secret share: were any single memory location to be changed by
a write, the access pattern would be revealed; on the other hand, if all memory
locations were changed during a write, the semantic values of those not being
updated must be destroyed.

Complexity Analysis For both schemes, the secure FSS component (which
forms the bulk of the secure computation) is identical. The computation of
Gen(1λ, (α, β)) requires 4 log2(n) evaluations of the PRG function, along with
some basic boolean operations. It must be seeded with random data of length
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O(λ), and it produces an output of size O(λ log n) where λ is the security pa-
rameter. This output can be revealed to the computation parties all at once, or
incrementally, in log n chunks of λ bits, one for each layer of the FSS scheme. In
the former case, the secure component incurs a memory complexity of O(λ log n)
and O(1) communication rounds. In the latter case, the secure component incurs
a memory complexity of O(λ), and no additional rounds, as the secure compu-
tation does not need to wait for replies. In either case, the communication and
computation complexities are O(λ log n).

Subsequently, a local computation is required to construct the DPF, (yxp , t
x
p)

..=
Eval(kFSS

p , x) for all x ∈ [1, n]. If all n FSS evaluations are combined into a sin-
gle operation, then the FSS tree can be constructed in its entirety only once,
requiring O(n) PRG calls. In the case of a write, each of the n elements in
the output DPF’s domain must be XORed into the corresponding memory lo-
cation; in the case of a read, the dot product of the DPF and the memory must
be taken instead. In either case, this incurs O(n) memory accesses. All of the
operations performed by the local FSS evaluation and the application of the
output DPF are highly parallelizable. We make extensive use of this fact in
our concrete implementation, and in Section 7 we show experimentally that the
local component does not become a significant burden until the amount of data
stored is on the order of hundreds of megabytes.

4 Reading and Writing

We now combine the OWOM and OROM from Section 3 into an ORAM con-
struction. We need a few building blocks in order to make this combination
possible, and conjecture that these building blocks are sufficient for the combi-
nation of any PIR and PIR-writing schemes into an ORAM, assuming that the
schemes themselves are suitable (that is, their access patterns and underlying
memory formats are secure).

At a high level, the construction works as follows: we initialize both an
OROM and an OWOM with the same data, and create a linear-scan stash that
stores elements while they are waiting to be returned to the main memory. Read

operations are performed by inspecting both the stash and the OROM, and
returning the most recent data. Write operations are performed by first reading
the current value at the specified index, using it to calculate the difference
necessary to correctly update the OWOM, and finally writing the new value
into both the OWOM and the stash. When the stash fills, we perform a refresh
operation to convert the OWOM memory into OROM memory, and then clear
the stash. The cost of this refresh can be amortized over the refresh period of the
construction. Because we use this stash-and-refresh technique, our amortized
secure computation complexity becomes O(

√
n).

Refresh Procedure To refresh our ORAM construction, we need to convert
the underlying memory of an OWOM into the underlying memory of an OROM.
The former stores its data as XOR-shares, while the latter uses a masked copy

12
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Figure 4: Diagram of the Floram Refresh method. In addition to the operations
illustrated here, the secure computation must clear the stash.

of the data as the underlying format. We can avoid incurring any secure com-
putation overhead at all if, instead of masking the OROM memory only once,
using a key known only to the secure computation, we mask it first with a key
known only to Alice, and then with a key known only to Bob. To convert the
OWOM into an OROM, Alice and Bob mask their local OWOM memory shares
using two PRFs with individual secret keys, kPRF

a and kPRF

b .

W ′
p

..=
{

W ′x
p

..= PrfkPRF
p

(x)⊕W x
p

}

x∈[1,n]

They each transmit their masked OWOM memory share to the other party, and
both parties calculate

R′ ..=
{

R′x ..= W ′x
a ⊕W ′x

b

}

x∈[1,n]

Finally, each party feeds their key kPRF

p into the secure computation, so that
the OROM memory can be unmasked via v ..= PrfkPRF

a
(x) ⊕ PrfkPRF

b
(x) ⊕ Rx.

This refresh procedure is illustrated in Figure 4. Unlike previous Square-root
ORAM constructions [21, 56], our refresh procedure does not require access to
the stash. Instead, we simply clear it. Our stash serves only the purpose of
allowing updated elements to be accessed multiple times between refreshes.
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Semi-private Access It may be the case that some algorithms call for both
private (i.e. data-dependent) and data independent accesses to the same mem-
ory. Ostrovsky and Shoup refer to the latter type of accesses as semi-private [35].
To our knowledge, it has heretofore been necessary to implement all accesses as
fully private accesses in such a scenario, or to perform costly import and export
operations upon the entire ORAM. Floram, however, allows for a secondary,
semi-private access mechanism, which has a significantly reduced asymptotic
and practical cost. Unlike all other ORAMs of which we are aware, Floram
stores each memory element at the physical address corresponding to its seman-
tic index. Thus, to read the element at the publicly known semantic index i,
the two parties feed their OWOM memory shares W i

a and W i
b into the secure

computation, which computes the value W i in O(1) complexity (and potentially
using only free gates [29]). Semi-private writes must additionally append to the
stash.

Private Read Access Read operations that are publicly known to be read
operations can also be performed without invoking the full-access mechanism:
neither a write to the stash nor a write to the OWOM is required. Because
no write to the stash is required, ORAM reads do not contribute to the refresh
period.

Full Private Access A full private access accepts some arbitrary oblivious
function f and applies it to a single element within the ORAM. f takes an
ORAM element and some auxiliary input vf , and produces a new element and
some auxiliary output yf . We use this general-purpose mechanism to implement
ORAM writes via simple fwrite that returns vf as the output element. To perform
a full access, our scheme first retrieves the desired element from the OROM, then
scans the stash to determine whether a newer version of the same element exists.
f is then applied to it. Finally, the result is stored using an OWOM operation
and appended to the stash. Because the OROM and OWOM access the same
element, they can share a single FSS evaluation. This process is illustrated in
Figure 5.

Initialization The initialization of our ORAM can be performed efficiently
using the mechanism for refreshing that we described earlier. That is, assuming
that the parties begin with some secret sharing of the data values with which
the ORAM is to be filled, they may initialize it by copying those shares into the
OWOM’s memory and performing a refresh. If the ORAM is hosted by a Yao’s
Garbled Circuits protocol, then the point-and-permute technique of Beaver et

al. [4] can be used to encode XOR shares of the data within the protocol’s wire
labels, effectively making the generation of shares a free action. Furthermore,
because this technique encodes the XOR sharing of each data bit only in the
final bit of a much larger wire-label, it is actually a significant constant factor
faster to initialize our ORAM than it is to perform a single linear scan on the
same data. To our knowledge, this property is unique among all known ORAMs.
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Figure 5: Diagram of the Floram Access method. Note that β is randomly
chosen on each access.

Complexity Analysis If we briefly set aside the stash, the complexities of
our scheme for full access to private indices closely follow the complexities of
the individual components described in Section 3. That is, each access requires
a single FSS Gen execution within the secure context, incurring O(log n) com-
munication and secure computation, followed by the evaluation of the DPF at
all points in its domain, incurring O(n) local computation by both parties. This
is in turn followed by a memory scan for the ROM component, adding a further
O(n) local computation, an unmasking within the secure computation context,
which accounts for O(1) communication and secure computation complexity,
and a local memory scan for the WOM component, which incurs a further O(n)
local computation. Thus, still ignoring the stash, a standard access operation
incurs O(log n) secure computation and communication overall, as well as O(n)
local computation.

The stash must be traversed on each access, and its length depends upon the
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Access

Floram Florom Square-root Circuit

Secure Computation O(
√
n) O(log n) O(

√
n log3 n) O(log3 n)

Local Computation O(n) O(n) O(
√
n log n) O(1)

Communication O(
√
n) O(log n) O(

√
n log3 n) O(log3 n)

Rounds O(1) O(1) O(log n) O(log n)

Initialization

Floram Florom Square-root Circuit

Secure Computation – – O(n log2 n) O(n log3 n)

Local Computation O(n) O(n) O(n log n) O(1)

Communication O(n) O(n) O(n log2 n) O(n log3 n)

Rounds O(1) O(1) O(log n) O(n log n)

Table 1: Access and Initialization Complexities. Complexities include amortized
refresh operations where relevant. Florom refers an instantiation of Floram with a
stash size of zero (i.e. one which has recently been refreshed); due to the fact that
only writes increase the stash size, refreshes can be forced before long sequences of
reads to achieve these complexities.

refresh period of the ORAM. The refresh operation requires a simple masking
(i.e. encryption), transmission, and element-wise XOR of n memory elements
by each of the two parties, without any secure computation. Thus the total cost
of a refresh is O(n) in terms of local computation and communication. This
is optimally amortized over O(

√
n) accesses, and thus the cost of each access

must include the cost of scanning O(
√
n) elements in the stash. The optimal

constant can be determined by the relative costs of secure and local scans. Our
concrete implementation uses a stash of size

√
n/8. A summary of these costs,

along with comparisons to other ORAM schemes, is provided in Table 1.
The asymptotic complexity of our initialization procedure is O(n) in terms

of local computation, memory, and communication. Like the refresh procedure
on which it is based, it requires no secure computation at all. This is optimal, at
least from a complexity standpoint. Furthermore, as we shall see in Section 7,
the practical costs of our initialization procedure are so low that it is actually
faster in practice than a simple memcpy over the same data.

Comparison to other ORAM schemes Our ORAM scheme stands in con-
trast to those that have preceded it in a number of respects, as summarized in
Table 1. Here we discuss their implications. We focus primarily on the secure
component of our scheme (which cannot be parallelized), and explore the prac-
tical consequences of the local component in Section 7. Although our ORAM
uses a simple stash that incurs square-root overhead, it does not use recursive
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position maps or permutations required by Zahur et al.’s construction [56], nor
does it need the sorting and binary searching required by the classic Goldreich
and Ostrovsky construction [21]. Consequently, its optimal stash size is much
smaller. Moreover, our scheme can be refreshed more efficiently than that of
Zahur et al., and much more efficiently than classic Square-root ORAM, which
requires O(n) encryptions within the secure context as well as an oblivious
sort for each refresh operation. In previous Square-root ORAM constructions,
stash scan and amortized refresh operations accounted for the vast majority of
per-access cost; in having provided asymptotic improvements to both (as well
as significant constant cost improvements), we have made our new ORAM far
more suitable than its predecessors for handling large data sizes. On the other
hand, our ORAM requires O(log n) calls to a PRG within the secure context for
each access. Because these PRG calls are expensive, our ORAM is less suitable
than that of Zahur et al. for small data sizes. In Section 5, we describe a method
for reducing the number of secure PRG calls to O(1) at the cost of incurring
O(log n) communication rounds. This significantly improves our performance
for small values of n, but for very small values, the construction of Zahur et al.

remains more efficient in practice.
A comparison to Circuit ORAM (and other tree-based ORAMs) is somewhat

less straightforward. Our ORAM enjoys an initialization procedure many or-
ders of magnitude more efficient; however, in terms of access complexity, Circuit
ORAM remains ahead. Nonetheless, as we shall discuss in Section 7, reduction
in constant costs renders our scheme far more efficient in practice. Boyle et

al. [10] propose a parallelization method for tree-based ORAMs, from which it
is possible to derive an initialization procedure that uses permutations in place
of individual writes. With this mechanism, Circuit ORAMs could achieve ini-
tialization performance similar to that of Zahur et al.’s construction, at best.3

Although the local component of our ORAM is highly parallelizable, no equiv-
alent parallelization scheme for our secure component is possible.

Finally, it is worthwhile to acknowledge the distinctions between our scheme
and the recent work of Abraham et al. [2], which also combined ORAM with
PIR. Like Floram, their scheme is properly a Distributed ORAM, but in con-
trast, their scheme uses PIR to retrieve single elements along the branches of a
larger recursive tree ORAM. Consequently, it shares more with Circuit ORAM
and Onion ORAM [15] than it does with our scheme. They optimize for com-
munication overhead, and their scheme achieves a communication complexity
of O(log n) per access, which we can match only when no writes are performed.
Furthermore, it is likely that PIR-server computation is significantly less bur-
densome in their scheme, since their PIR requires no PRG and is evaluated
over only O(log n) elements. On the other hand, they primarily consider the
outsourcing model, and do not account for costs in an MPC context. We find
it likely4 that these would be similar to Circuit ORAM.

3This mechanism has not yet been implemented, so we cannot currently provide concrete
data to support this claim.

4As we have no implementation of their scheme (MPC-oriented or otherwise), we cannot
perform a practical evaluation.
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Security Analysis To argue that our scheme is semi-honest secureunder the
definition of security given in Appendix A.2, we must present a simulator that
produces a party’s view of an ORAM operation (without receiving any informa-
tion about other parties’ private inputs) that is indistinguishable from the same
party’s view of the real ORAM operation. Simulators for access and initial-
ization, along with proofs of computational indistinguishability, are presented
in Appendix B.1. Informally, the security of our scheme follows from the se-
curity properties of the MPC technique chosen to host the construction and
the security of the FSS scheme, which guarantees that the neither the FSS key
share nor the output leaks any information about the associated point function,
other than its domain and range. The underlying memory itself reveals nothing
about its contents due to its mechanism of representation: each party views
an OROM memory that is masked by the output of a PRF for which they key
is not known, as well as an information-theoretically secure secret-share of an
OWOM memory

PRG and PRF Among several options for the PRG, we have chosen AES-
128 [1]. Significant research effort has been put toward optimizing the boolean-
circuit representation of AES [8, 50], and these optimizations have naturally
been adapted for the context of secure computation [26]. Specifically, we use
the AES S-box circuit of Boyar and Peralta [9], which requires less than 5000
non-free gates per block, and we accelerate local AES evaluations using Intel’s
AES-NI instruction set. In order to avoid the cost of repeated key expansion, we
assume that AES satisfies the ideal cipher property and use the Davies-Meyer
construction [49], with independent keys for left and right expansions in the
FSS tree. We use AES in counter mode as the PRF that masks the OROM.

5 Constant Secure PRG Evaluations

The costliest single component of our scheme is the repeated evaluation of the
PRG function within the secure computation of the FSS Gen algorithm. In this
section, we present an optimization that can be used to achieve a significant
constant-factor speed improvement relative to a naïve implementation by out-

sourcing the evaluations of the PRG in the FSS Gen algorithm to Alice and
Bob. That is, instead of Alice and Bob performing a single secure computa-
tion which uses O(log n) PRG expansions to compute their shares of the FSS
key (line 5 in Figure 1), we instead divide Gen into m = log2 n iterative com-
putations that compute the FSS key one part at a time. Surprisingly, we can
divide the computation in a manner that requires no PRG evaluations inside
the secure computation, and that also maintains the security properties of the
original.5 Specifically, we devise an equivalent method of computing the value
σj (line 6 in Figure 1) that does not require the PRG to be evaluated in a

5i.e., we will still be able to simulate the view of Alice or Bob given only the output of the
function. Notice that we would not be able to simulate the view if our protocol simply asked
Alice and Bob to evaluate line 5 in Figure 1.
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Figure 6: Diagram of the modified Gen/Eval algorithm used by the CPRG optimization. Variables and
processes for which Alice and Bob’s views are identical are rendered in black. Variables and processes for which
Alice and Bob’s views differ are rendered in red for Alice and blue for Bob. In this example, n = 8, m = 3, and α is
a three-bit number with value 6.

secure computation. Hereafter, we refer to this as the Constant PRG or CPRG
optimization.

Thus far, our FSS notation has only identified seeds sj,αj
p that are on the

path from the root to the leaf α in the FSS evaluation tree. We now introduce
notation to identify all of the nodes in the evaluation tree. Let Sj,ℓ

p denote
the ℓth node from the left at level j of player p’s FSS evaluation tree, where
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p ∈ {a, b}, j ∈ [1,m], and ℓ ∈ [0, 2j). Thus, seed sj,αj
a can also be identified as

node Sj,α∗

j
a where α∗

j is the integer with the binary representation αj . . . α2α1.
Next, we observe that the FSS construction guarantees that at any level j,

Sj,ℓ
a = Sj,ℓ

b for all ℓ 6= α∗ (that is, for all nodes except the one along the path
to leaf α), and Sj,α∗

j
a 6= Sj,α∗

j

b . It follows that all of the PRG expansions of the
nodes at level j, i.e., the uncorrected children at level j+1, are equal except for
the two children of the node along the path to α. Finally, consider the sum of
the PRG expansions of Sj,ℓ

p for ℓ ∈ [0, 2j):

(

zj+1,0
p

∣

∣

∣

∣

∣

∣zj+1,1
p

)

=
⊕

ℓ∈[0,2j)

Prg
(

Sj,ℓ
p

)

From the above, we have:

zj,0a ⊕ zj,0b = sj,0a ⊕ sj,0b

zj,1a ⊕ zj,1b = sj,1a ⊕ sj,1b

σj = zj,αj
a ⊕ z

j,αj

b

Thus, we instruct Alice and Bob to locally compute zj,0p and zj,1p by accu-
mulating the XOR of all left children and all right children at each level. These
two values are submitted to a secure computation, which selects the correct sum
using bit αj , computes the next advice words (σj , τ j,0, τ j,1) and returns them
to both parties. Both parties can then apply these values (per lines 9–10 in
Figure 1) to generate the corrected seeds for all nodes at the next level, and
then continue the process until level m. Revised pseudocode is presented in
Figure 7. Although we model this function as returning a pair of key values
(kFSS

a , kFSS

b ), note that most components of each party’s key are revealed to them
over the course of the function, and furthermore, that both parties will have
had to perform most of the work of evaluating Eval(kFSS

p , x) for all x ∈ [1, n] in
order to calculate (zj,0p , zj,1p ). Consequently, in practice, the CPRG-optimized
Gen algorithm returns only those key components that have not already been
revealed, and Alice and Bob evaluate Eval simultaneously with the evaluation
of Gen. This process is illustrated in Figure 6.

Security Analysis Relative to the original Gen algorithm, nothing additional
is revealed to either party, i.e., the output of the CPRG-optimized Gen is exactly
the same, and the view of each party can be easily simulated with the final key.
The only difference is that the advice strings included in the output key are
revealed one by one. In the honest-but-curious setting that we consider here,
the adversary has no additional power when receiving outputs in this manner.

Efficiency Analysis The CPRG optimization requires no calls to the PRG
function within the secure evaluation of Gen, and only two calls to the PRF
to unmask the value retrieved from the OROM. We still perform O(log n) dif-
ferencing and advice bit generation steps, but these require only a handful of
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1 function Gen(1λ, α = αm . . . α2α1, β):

2 S′0,0
a , S

′0,0
b ← {0, 1}λ // pick random seeds

3 t0,0a , t
0,0
b

..= a random xor−share of 1

4 for j ∈ [1,m]:

5 for p ∈ {a, b}: // local computations

6

{

(

Sj,2ℓ
p

∣

∣

∣

∣

∣

∣S
j,2ℓ+1
p

)

}

ℓ∈[0,2j−1)

..=

{

Prg
(

S′j−1,ℓ
p

)

}

ℓ∈[0,2j−1)

7 zj,0p
..=
(

⊕

ℓ∈[0,2j−1) S
j,2ℓ
p

)

8 zj,1p
..=
(

⊕

ℓ∈[0,2j−1) S
j,2ℓ+1
p

)

9 σj ..= z
j,αj
a ⊕ z

j,αj

b // xor off-path children

10 τ j,0 ..= Lsb
(

zj,0a

)

⊕ Lsb
(

z
j,0
b

)

⊕ αj ⊕ 1

11 τ j,1 ..= Lsb
(

zj,1a

)

⊕ Lsb
(

z
j,1
b

)

⊕ αj

12 for p ∈ {a, b}: // local computations

13

{

S′j,ℓ
p

}

ℓ∈[0,2j)

..=
{

Sj,ℓ
p ⊕ t

j−1,⌊ℓ/2⌋
p · σj

}

ℓ∈[0,2j)

14

{

tj,ℓp

}

ℓ∈[0,2j)

..=

{

Lsb
(

Sj,ℓ
p

)

⊕ t
j−1,⌊ℓ/2⌋
p · τ j,Lsb(ℓ)

}

ℓ∈[0,2j)

15 γ ..= zm,αm
a ⊕ z

m,αm

b ⊕ σm ⊕ β

16 kFSS
a

..=
(

S′0,0
a , t0,0a , {σj , τ j,0, τ j,1}j∈[1,m], γ

)

17 kFSS

b
..=
(

S
′0,0
b , t

0,0
b , {σj , τ j,0, τ j,1}j∈[1,m], γ

)

18 return kFSS
a , kFSS

b

Figure 7: Pseudocode for the Constant PRG optimization applied to the FSS
Gen method. This optimization is discussed in Section 5.

gates each. On the other hand, our local stage now requires a reduction to be
performed over all of the blocks in each layer of the FSS Eval algorithm. Con-
sequently, this variant is significantly more efficient for small and medium sized
memories, where secure computation dominates total runtime, but slightly less
efficient for memories on the scale of gigabytes, as shown by our evaluations in
Section 7.

6 Techniques and Optimizations

In this section we present a few additional optimizations that we employ to
improve the practical performance of Floram.

21



6.1 Tree Trimming

During private read operations (that is, accesses wherein the index i is private
but the operation is publicly known to be a read), the scheme as previously
described generates a full FSS tree with one leaf per ORAM element, but uses
only the DPF t and never the DPF y. As an optimization, we can truncate the
last log2(log2(|G|)) levels of the FSS tree, split each leaf into individual bits,
and set β = 2(i mod log

2
(|G|)) such that the bits formed from y are equivalent to

the bits t would otherwise have held. As can be seen in Figure 8, in both the
standard FSS and CPRG cases these last levels (seven in our implementation)
are by far the most expensive.

In the standard FSS case, we may save some additional time by trimming
the root of the tree. The first five iterations of the loop in the FSS Gen algo-
rithm expand a single seed into 32. In our implementation (without the CPRG
optimization), these five loops account for roughly 100,000 non-free gates in the
secure computation. As an optimization, we eliminate them, and instead collect
enough random coins from each party to generate 32 seeds directly, and include
all of them in the output keys. This increases the input size of the secure com-
putation that evaluates Gen, but the savings are nonetheless substantial. The
Eval method is similarly changed to index the correct starting seed from the 32
in the key.

6.2 Multithreading and Scheduling

We interleave several steps of our ORAM for efficiency. First, as the secure
computation produces the output of Gen, we use separate threads to begin the
local Eval steps. This interleaving incurs no additional round trips and does not
increase communications costs, and thus it can only improve timing. Second,
the stash scan does not depend on the FSS construction or the OROM and
can be performed simultaneously with the final layer of the FSS Eval and the
OROM memory scan. In the case of the CPRG optimization, it can also be
interleaved with the secure FSS Gen function. Together, these optimizations
allow non-dominant components of our ORAM scheme to effectively disappear
behind dominant components, an effect that is illustrated in the concrete bench-
marks that we present in Section 7. Using the benchmarking setup described
in Section 7, and an instrumented version of our code-base, we recorded a de-
tailed wall-clock profile, to illustrate both the temporal layout of our scheduling
strategy as it appears in practice, and the relative costs of Floram’s various
parts. We recorded this profile both for standard Floram, and for the CPRG
variant, for ORAMs of 220 and 230 4-byte elements. The results are presented
as a diagram in Figure 8.

7 Evaluation

Experimental Setup We implemented and benchmarked Floram, using Obliv-
C [54], a C derivate that compiles and executes Yao’s Garbled Circuits proto-
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FSS Gen ROM ScanApply Function WOM Scan

Floram Standard - 220 elements

Floram CPRG - 220 elements

FSS Eval

Floram Standard - 230 elements

Floram CPRG - 230 elements

0ms 400ms 800ms 1200ms 1600ms

0ms 40ms 80ms

MiscStash Scan

Secure Computation Local Computation

117ms

Figure 8: Scheduling diagram for an ORAM access operation. This illustrates the way in which we interleave
the various operations of our ORAM. The x-axis represents time, in milliseconds, and the y-axes represent the divide
between secure computation, and local computation. Times are averages from a number of samples that is greater
than 100 and a multiple of the refresh period. Elements are 4 bytes. Cross-hatching indicates regions wherein two
components are scheduled to run simultaneously, and may preempt one another. The misc category includes time
spent allocating and copying memory, managing threads, and performing other local setup tasks.

cols [52] with many protocol-level optimizations [4, 5, 26, 29, 55]. Additionally,
we made use of Obliv-C-based Square-root and Circuit ORAM implementations
that were provided by the original authors of those works and are identical to
the ones reported on previously by Zahur et al. [56].

We created two variants of our ORAM, one using the basic construction
described in Section 4, and the other using the CPRG method from Section 5.
Both variants have optimized scheduling, as described in Section 6.2. Our con-
crete implementation uses a 128 bit block size, this being the block size of
AES-128, our chosen PRG function. For ORAMs with element sizes smaller
than 128 bits, we pack multiple elements into a single block and linearly scan
them. For ORAMS with element sizes greater than 128 bits, we perform an ad-
ditional expansion and correction stage after the last layer of the FSS in order
to enlarge the blocks to the correct length.

Our benchmarks were performed under Ubuntu 16.04 with Linux kernel 4.4.0
64-bit, running on a pair of identical Amazon EC2 R4.4xlarge instances. All
code was compiled using gcc version 5.4.0, with the -O3 flag enabled, OpenMP
was used to manage multithreading and SIMD operations, and local AES com-
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Figure 9: Microbenchmark Results. Access figures are averages from at least 100
samples; for refreshing ORAMs, the sample count was a multiple of the refresh period.
Initialization figures are averages from 30 samples. For all benchmarks, elements were
4 bytes in size.
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putations were implemented using Intel’s AES-NI instructions. Each machine
had 122GB of DDR4 memory and eight physical cores partitioned from an Intel
Xeon E5-2686 v4 CPU clocked at 2.3 GHz, each core being capable of execut-
ing two threads. We measured the bandwidth between our two instances to be
roughly four gigabits per second. In order to ensure that the secure compu-
tation would be bandwidth-bound, as we would expect it to be in real-world
conditions, we artificially restricted the bandwidth to 500 megabits per second,
using the linux tool tc.

Multithreading Our two Floram implementations make extensive use of
multithreading for their local components, but we have not attempted to multi-
thread their secure components, nor have we multithreaded the other ORAMs
against which we make comparisons. Multithreading a secure computation does
not reduce the total communication between parties, and thus in bandwidth-
bound environments provides no advantage. Neither Square-root nor Circuit
ORAM performs significant local computation, and so they cannot benefit sig-
nificantly from local parallelism.

7.1 Full ORAM Microbenchmarks

Full Access We performed single-access microbenchmarks for Floram, as well
as Floram with the CPRG optimization discussed in Section 5. For the purpose
of comparison, we also performed benchmarks for the Square-root ORAM of
Zahur et al. [56], Circuit ORAM [43], and linear scan. For all ORAMs, we used
an element sizes of 4 bytes. For linear scan, we varied the number of ORAM
elements between 25 and 220, and for Square-root ORAM, between 25 and 222.
In both cases, this is far past the range in which those schemes are competitive.
For Circuit ORAM, we performed benchmarks with up to 224 4-byte elements,
corresponding to 64 MiB of data; beyond this the ORAM’s physical size was
so large that it could not be instantiated on our machine. We benchmarked
Floram with sizes up to 232 4-byte elements, corresponding to 16 GiB of data;
these were the largest instances that our machine could handle. We recorded
the wall-clock times for both parties, the number of bytes transmitted, and the
number of non-free Yao gates executed. Our results are reported in Figures 9a,
9b, and 9c, respectively.

As we expected, the wall-clock time of our scheme exhibits a piecewise be-
havior. Up to roughly 225 4-byte elements, secure computation (specifically, the
FSS Gen algorithm) dominates the total access time, and thus the time grows
with O(log n)—noticeably more slowly than any other ORAM. In this region,
as expected, the CPRG optimization leads to a significant concrete performance
gain, amounting to roughly a four-fold improvement. Beyond 225 elements, local
computation becomes the dominant factor, and thus the wall-clock time grows
with O(n) and the standard FSS scheme becomes more efficient. We estimate
that the break-even point with Circuit ORAM lies at 230 elements.
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Initialization We also performed initialization benchmarks. That is, begin-
ning with an array of data, we evaluated each construction’s native mechanism
for importing that data into a fresh ORAM instance. As before, we varied
the number of elements for linear scan between 25 and 220, and for Square-root
ORAM between 25 and 222. Circuit ORAM has the slowest initialization process
by several orders of magnitude, and so we benchmarked only up to 214 elements,
after which continuing was impractical. Both variants of Floram share the same
initialization procedure, and we tested instances up to the largest size that our
machines supported: 232 4-byte elements, or 16 GiB of data in total. Results
for wall-clock time and total communication are reported in Figures 9d and 9e
respectively; gate counts are not reported, as our ORAM requires no gates to
initialize.

As we expected, our ORAM has a clear asymptotic advantage over other
schemes in terms of initialization. Moreover, at 222 elements, it has a 4500-fold
concrete performance advantage over Square-root ORAM, the fastest previously
known construction in this respect. In fact, in the context of garbled circuits, our
construction even initializes somewhat faster than a linear scan, which requires
only a simple memcpy by each party. Thus, so long as a single access in our
scheme is faster than a single linear scan, the efficiency break-even point between
the two is exactly one access. This is far better than other schemes, which
require Ω(log n) accesses in order to reach their break-even points.

Thread-restricted Microbenchmarks Although our ORAM is bound by
secure computation at small sizes, for very large instances, the local component
becomes the dominant factor. Here we analyze its performance when a varying
number of threads are used, in order to assess the performance of our algorithms
in contexts where a high level of parallelism may not be available. We collected
samples for each combination of ORAMs of 210, 215, 220, 225, and 230 4-byte
elements, and 1, 2, 4, 8, and 16 threads. The results are plotted in Figure 10.

At small ORAM sizes, where the entire computation might fit into the CPU
cache, it is unsurprisingly the case that additional threads decrease performance.
It is not until the linear component of our ORAM’s complexity becomes domi-
nant that parallelism makes a significant difference. Note that at 225 elements
and greater, the execution time decreases nearly linearly with threadcount, for
threadcounts of eight and fewer. As our benchmark machines have only eight
physical CPU cores, using more than eight threads offers little to no advantage.

7.2 Applications

In order to assess the performance of our ORAM construction in realistic sce-
narios, we implemented two secure applications, and benchmarked them with
each of the ORAMs considered previously.

Binary Search In order to highlight the ways in which the novel properties of
our ORAM differentiate it from previous ORAM constructions, we begin with
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Figure 10: Thread-limited Access Wall-clock Time. Sample counts are multiples
of the refresh period. Elements are 4 bytes.

a simple binary search benchmark. The use of ORAM for performing binary
searches was first considered by Gordon et al. [25], who reported that searching
a database of 220 64-byte elements required roughly 1000 seconds.6 Our ORAM
benchmark procedure is derived from that used by Square-root ORAM [56]:
first, the data is loaded from secure computation into an ORAM, and then
a number of searches are performed (each requiring log2 n semantic accesses
to complete). In this context, linear scan has a special advantage: because it
touches each element in the memory, it requires only a single semantic access
to perform a search. As a consequence of this property, ORAM has thus far
yielded little improvement over the trivial solution for the problem of searching.

We executed instances of this benchmark upon databases of 215 and 220

16-byte elements, with 1, 25, and 210 searches being performed. In addition,
we benchmarked single searches of databases of 225 elements under Floram
(due to exhaustion of memory, it was not possible to instantiate Square-root or
Circuit ORAMs of this size). We do not include in our benchmark the cost of
sorting the data, which is unnecessary for the linear scan solution. Sorting can
be performed with a Batcher Mergesort [3] in O(n log2 n), with practical costs

6Though we show significant improvement upon this number, our construction is not di-
rectly comparable to theirs, due to differences in the underlying protocol and benchmarking
hardware.
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n s Linear Circuit Square-root Floram CPRG

215
1 2.80 5192.4 12.87 0.79 0.37

25 89.75 5284.2 37.24 23.73 11.15

210 2872.1 8126.8 1210.0 758.89 358.0

220
1 89.52 – 690.99 2.04 0.99

25 2864.5 – 800.23 56.94 21.94

210 91,663. – 12,736. 1826.5 697.65

225 1 2864.5 – – 14.37 11.55

Table 2: Binary Search Benchmark Results. We measured the wall-clock time re-
quired for s searches through n 16-byte data elements, including initialization. Figures
are averages in seconds from 30 samples for databases of 215 elements, or 3 samples
for larger databases. Linear scan figures are estimated from results in Section 7.1.

Square-root Floram CPRG

Wall-clock Time (Hours) 28.98 15.78

Billions of Non-free Gates 226.87 143.29

Table 3: Roth-Peranson Benchmark Results. Our wall-clock time result for
Square-root ORAM differs from that presented by Doerner et al. [16]; this is due to
differences in benchmarking environments used.

being lower than the that of instantiating any of the tested ORAMs, other than
Floram. Results are reported in Table 2.

Floram has the fastest access and initialization procedures at these sizes,
and so, not surprisingly, it is the fastest among the ORAMs regardless of the
number of searches performed. What is surprising, however, is that it is signif-
icantly faster than linear scan, even when only a single search is performed. To
our knowledge, such a thing is not possible under any other ORAM scheme, at
any data size. Our scheme achieves this due to the fact that, considering ini-
tialization and a single access, only two full scans of XOR shares are required,
whereas in the context of Yao’s Garbled Circuits a linear scan requires iterat-
ing over wire labels that are at least eighty times larger than the equivalent
secret-shared representation.

Stable Matching Many previous research efforts have sought to optimize
the secure evaluation of the Gale-Shapley algorithm for stable matching. Re-
cently, Doerner et al. [16] developed algorithmic improvements which yielded a
significant increase in asymptotic and concrete performance, allowing them to
execute a secure stable matching using the related Roth-Peranson algorithm on
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the scale of the stable matching performed annually by the National Resident
Matching Program (NRMP) to match graduating doctors to medical residencies
in the United States. This algorithm requires O(nr) ORAM accesses in n, the
number of doctors, and r, the number of hospitals for which the doctors are
allowed to submit rankings, to a comparatively small ORAM of size O(m) in
m, the number of hospitals (in practice, around 5000 for NRMP-scale match-
ings). Nonetheless, in terms of gates, the NRMP matching is one of the largest
secure computations ever reported. In other words, this is a benchmark for
which Floram’s initialization advantage matters very little. The parameters of
the benchmark were derived by Doerner et al. from the 2016 NRMP Statistical
Report; specifically: 35,476 residents submitting up to 15 rankings each, and
4836 hospitals submitting up to 120 rankings each, and having at most 12 open
positions. Individual preferences were generated at random. We collected one
sample each for Square-root ORAM and Floram CPRG, and, following Doerner
et al., we did not collect any data for Circuit ORAM or linear scan, which would
not be competitive. The results are shown in Table 3, and demonstrate a factor
of 1.83 improvement over prior work for a very small ORAM used in a real
application.

7.3 Notes on Scalability

The title of this document is “Scaling ORAM for Secure Computation”, and so
it is fitting that we should comment upon the limits of scaling, and how well
we believe our implementation has fared relative to the theoretical possibilities.
At 232 four-byte elements, we measured our scheme to require 6.3 seconds to
complete an access, on average. During this time, it reads the underlying mem-
ories of both the WOM and the ROM, and writes the WOM. In the course of
the FSS Eval algorithm, it both reads and writes an amount of data equal to
twice the size of the WOM or ROM memory. The stash is negligible in size by
comparison. Thus, the amount of data transferred to and from memory inside
each local machine is 232 · 4 · 7 bytes in total, or 120.3 gigabytes, at 152.8 gi-
gabits per second. For comparison, a single DDR4-2400 memory controller has
a maximum bandwidth of 153.6 gigabits per second. We do not know exactly
how resources are apportioned among EC2 instances, but we do know that we
are renting eight of the 18 physical cores in a single CPU, and that those 18
physical cores share four memory controllers. If partitioning were perfectly fair,
we would expect our instance to have access to slightly less than two memory
controllers’ worth of bandwidth. Thus, we conjecture that we are within roughly
a factor of two of the best possible performance on our test hardware. This is
not bad, considering that the parallelization and scheduling of our implementa-
tion are not hand-tuned, and we have taken no pains to ensure proper affinity
between CPU and memory.

At large sizes, local CPU and memory bandwidths are the definitive bot-
tlenecks for our scheme. These are easily increased: in modern systems each
additional processor has its own set of memory controllers. Furthermore, our
algorithm is parallel in such a way that it can be run on a cluster with little
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performance loss: only log(n) synchronizations per access would be required,
and each synchronization involves the transfer of a small, constant amount of
data. We suggest that further scaling and performance improvement can be
accomplished by the addition of computing hardware, which is typically cheap
relative to the cost of additional bandwidth, as would be incurred were our
scheme network bound.
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A Definitions

A.1 Security

We first recall the semi-honest security model in which we claim our scheme is
secure.

Definition (Semi-honest Security [19, 31]). Let F = (Fa,Fb) be a probabilistic
polynomial time functionality, and let π be a two party protocol for computing
F such that party A supplies input xa and receives output Fa(xa, xb), while
party B supplies input xb and receives output Fb(xa, xb), with |xa| = |xb|. π is
considered secure in the presence of static semi-honest adversaries if there exist
probabilistic polynomial-time simulators Sima and Simb such that

{

(

Simp

(

1λ, xp,Fp (xa, xb)
)

,F
(

1λ, xa, xb

)

)

}

λ∈N,xa,xb∈{0,1}∗

c≡
{

(

Viewπ
p

(

1λ, xa, xb

)

,Outputπ
(

1λ, xa, xb

)

)

}

λ∈N,xa,xb∈{0,1}∗

for p ∈ {a, b} where Viewπ
p (xa, xb) = (xp, rp,m

1
p, . . . ,m

t
p) is party p’s view of the

computation, with rp denoting party p’s internal random tape and mj
p denoting

the jth message that party p received; and where Outputπ(1λ, xa, xb) denotes
the union of the outputs of all parties; and where

c≡ denotes computational in-
distinguishability with security parameter λ. That is, a protocol π is secure in
the semi-honest setting if the full view of a party can be simulated by a proba-
bilistic polynomial time algorithm given only a record of that party’s input and
output. Note we assume that all protocols and functionalities have access to the
security parameter λ, and that computational indistinguishability is considered
relative to this parameter. In proofs, we omit λ from our notation.

A.2 Distributed ORAM

We deviate from the standard formulation of ORAM in order to align the se-
curity model of our scheme with the security model of multiparty computation
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(Definition A.1). We assume that the ORAM’s storage, like the protocols that
implement its access an initialization methods, is split among multiple parties,
and we guarantee security only against the corruption of some subset of those
parties. In contrast, the standard ORAM definition [21] considers a context
wherein there exists a single trusted CPU and a single untrusted memory, and
assumes that an adversary has a full view of all memory accesses, but no in-
sight into the CPU. Our variant of the ORAM definition is known as Distributed
ORAM; it was originally proposed by Lu and Ostrovsky [32], and our definitions
expound theirs.

Definition (Random Access Memory). For every n,m ∈ N, a random access
memory RAMn,m is a functionality that associates an m-bit value with each
unique integer index in [1, n] and can recall this value when queried with the
index. Indexes are by default associated with values of 0m. A RAMn,m receives
instructions of the form (o, i, v), where o ∈ {read,write} is an operation specifier,
i ∈ [1, n] is an index, and v ∈ {0, 1}m is a value. Additionally, a RAMn,m may
receive an initialization instruction of the form (init, V ), where V ∈ {0, 1}n×m

is an array of values. Upon receiving an instruction (o, i, v), a RAMn,m must
behave as follows:

1. if o = read, then RAMn,m immediately recalls and returns the value asso-
ciated with index i, and ignores v.

2. if o = write, then RAMn,m remembers value v and associates it with index
i, forgetting any previous associations that index i may have had, and
returns nothing.

Upon Receiving an initialization instruction (init, V ), RAMn,m immediately for-
gets all associations it has previously made, and associates the values in V with
their corresponding indices.

Note Any structure that implements the write operation can implement the
init operation as a sequence of writes. However, our construction has a dedicated
initialization function which requires its own analysis. Therefore, we include init

in our definition.

Definition (Distributed Random Access Memory). For every n,m ∈ N, a Dis-
tributed Random Access Memory DRAMn,m is a protocol evaluated among two
parties which correctly implements the RAMn,m functionality. An implementa-
tion of DRAMn,m may require that each party p ∈ {a, b} implements a private,
local instance Mp of the RAMpoly(n),poly(m) functionality. For each instruction
it receives, a DRAMn,m may issue to each of its local memories a number of
instructions bounded by poly(n). We assume that instructions issued to and
replies received from the Mp of a non-corrupt party p are observable only by p.
A DRAMn,m may additionally have access to a random tape.

Note For simplicity, we define DRAM for two parties and observe that it can
be extended to many parties.
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Definition (Access Patterns and Epochs). For any memory M that implements
RAMn,m, an access pattern is a sequence {xj}j∈[1,ℓ] of length ℓ, such that xj

corresponds to the jth instruction received by M . An epoch is an access pattern
X = {xj}j∈[1,ℓ] such that x1 is an initialization instruction (init, V ) and all
subsequent instructions are either read or write instructions. We use Ξn,m,λ to
denote the set of all valid epochs for a RAMn,m with lengths in O(poly(λ)). A
sequence of epochs is constructed by deriving the initialization vector for epoch
j from the final state in epoch j − 1. Thus, a sequence of epochs has only one
initialization vector. We use X to represent a sequence of epochs, and Ξ∗

n,m,λ

to denote the set of all such sequences with total lengths in O(poly(λ)).

Note It is necessary to introduce the concept of epochs due to the existence
of an initialization instruction. While we expect an ORAM to hide indices ac-
cessed and whether accesses are reads or writes, we cannot expect it to hide
which instructions are initialization instructions. Consequently, in subsequent
definitions, we will reason over sequences of epochs, each of which has exactly
one initialization. While most ORAM schemes that require refreshing use fixed
epoch lengths, this is seldom necessary, and in fact Floram can vary its re-
fresh period to achieve greater practical efficiency. Consequently, we allow for
arbitrary epoch lengths in our definitions and proofs.

Definition (Distributed Oblivious Random Access Memory). For every n,m, λ ∈
N, a suite of multi-party protocols D is a DORAMn,m,λ if it implements DRAMn,m

and there exists a simulator SimD
p for p ∈ {a, b} such that for security parameter

λ:
{

SimD
p

(

1λ,
{

1|X|
}

X∈X
, Vp

)

}

X∈Ξ∗

n,m,λ

c≡
{

ViewD
p (1λ,X )

}

X∈Ξ∗

n,m,λ

That is, the view of party p over a sequence of epochs can be simulated given
only the lengths of those epochs and p’s share of the initialization vector V
associated with the first epoch. Note that Vp is an array of n×m bits.

Discussion Although ORAM is sometimes taken as an acronym for Oblivious
Random Access Memory, Goldreich and Ostrovsky use it to stand for Oblivious
Random Access Machine, and their model includes a trusted CPU capable of
arbitrary computation in a data-oblivious fashion. Although our definitions do
not explicitly call upon universal computation, they nonetheless imply a similar
conclusion. Specifically, our definitions, in combination with MPC protocols,
imply the ability to securely compute circuits with “memory gates”; that is, gates
capable of storing and retrieving data in a black-box fashion while maintaining
data-obliviousness. From such circuits, it is possible to construct CPUs that
can execute secure instructions in a familiar way.
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B Proofs of Security

In this section, we prove that the standard Floram construction is a secure
DORAM under Definition A.2. To do this, we prove the protocol security of
our initialization and access methods under Definition A.1, and then compose
these proofs to show security over the course of an epoch. Given security over
an epoch, a standard hybrid proof can show security over a sequence of epochs.
We do not consider semi-private access, data export, or any other nonstandard
capabilities of our construction, nor do we consider any of the optimizations we
have presented throughout this work. Nonetheless, we have no reason to suspect
that they are insecure.

Mapping definitions to concrete schemes We have defined DORAM to
implement three different methods: read,write, and init, but Floram only ac-
tually implements init and a generic access method, which applies an arbitrary
function f to the target element. If fread and fwrite are combined into a single
circuit or constructed in such a way that they can be simulated by a single sim-
ulator, then accesses that perform reads will be indistinguishable from accesses
that perform writes, as required.

B.1 Proof of Security for Access

Notation and Real-world View Before we present our proof, we specify a
convenient notation describing the same access algorithm given in Section 4. We
refer to the functionality implemented by the algorithm as FA, and the protocol
as πA. Party p’s share of the output of the functionality FA is FAp. Party p’s
input to the algorithm is denoted by InputAp , and p’s output of a protocol execu-
tion using that input is denoted OutputπA

p (InputA), while a complete transcript
of the protocol execution for party p is denoted by ViewπA

p (InputA). The access
protocol can be decomposed into a four step process, (C1,L1, C2,L2), where C1
and C2 are circuits evaluated by some MPC protocol (we use Yao’s Garbled
Circuits), and L1 and L2 are party-local computations. These circuits receive
some of their input values as secret-shares, and party p’s secret share of value
x is denoted xp. We omit special notation for share-creation and reconstruc-
tion operations, leaving them implicit. We use x ← X to signify the uniform
random choice of element x from the distribution X, ..= to signify deterministic
assignment,

c≡ to signify computational indistinguishability, and
s≡ to signify

statistical indistinguishability.
The first circuit, C1, implements the FSS Gen algorithm. C1 receives shares

of the target index i, as well as shares of a uniformly randomly chosen value β,
such that βp ∈ {0, 1}λ. To Alice, C1 returns the FSS key kFSS

a , and to Bob, kFSS

b

(these keys may be thought of as a sharing of the joint FSS key, kFSS). Formally:

InputC1

p =
(

ip, βp

)

OutputπC1

p

(

InputC1

)

=
(

kFSS

p

)
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Subsequent to C1, each party p executes a local computation, L1, which takes
as input kFSS

p and also some local state R (the ROM memory), and produces vp.
The second circuit, C2, implements the stash scan, function application, and

FSS leaf adjustment procedures. This circuit receives shares from both parties
of i, β, and the stash state Stash. From Alice, it receives as input va, k

FSS

a , kPRF

a ,
and from Bob, vb, k

FSS

b , kPRF

b . A description of f , the function to be applied, is
baked into the circuit C2. As output, the circuit returns v∆ to both parties.
In addition, it returns shares of the updated stash state Stash′. f may receive
some auxiliary input vf as shares, and may produce some auxiliary output yf

as shares. Formally:

InputC2

p =
(

ip, vp, v
f

p, βp, Stashp, k
FSS

p , kPRF

p

)

OutputπC2

p

(

InputC2

)

=
(

v∆, yf

p, Stash
′
p

)

Subsequent to C2, each party p executes a local computation, L2, which takes
as input kFSS

p , v∆, and some local state, Wp (a share of the WOM memory), and
returns some updated local state, W ′

p.
The sequence (C1,L1, C2,L2) composes the access protocol, as illustrated in

Figure 11. Party p’s view of an access is equal to the union of p’s internal random
tape rp, its inputs, outputs, and the messages it receives. Using MsgsπC

p (InputC)
to denote the messages received during evaluation of circuit C via protocol πC

(excepting the input and output), this give us:

InputAp =
(

ip, R, f, vf

p, Stashp, k
PRF

p ,Wp

)

InputA = InputAa ∪ InputAb

OutputπA

p

(

InputA
)

=
(

yf

p, Stash
′
p,W

′
p

)

ViewπA

p

(

InputA
)

=







rp,View
πC1

p

(

InputC1

)

, R,

ViewπC2

p

(

InputC2

)

,Wp,W
′
p







=







rp, Input
A
p , βp,MsgsπC1

p

(

InputC1

)

, kFSS

p ,

MsgsπC2

p

(

InputC2

)

, v∆, yf

p, Stash
′
p,W

′
p







Valid Inputs An input to the access protocol, InputA, is said to be valid if
and only if i ∈ [1, n], |R| = |W | = n, kPRF

a and kPRF

b are the two keys for the PRFs
that were used to mask R, and the stash contains only those elements which
differ between R and W when R is unmasked:

(j, u) ∈ Stash ⇐⇒
(

u = W j
)

∧
(

W j 6= PrfkPRF
a
⊕ PrfkPRF

b
⊕Rj

)

We denote the set of all valid inputs for A for an ORAM of n elements of size
m as DomA

n,m.
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a
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v
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b
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b
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(j,u)  otherwise

Figure 11: Diagram of the Floram Access method, illustrating the correspon-
dence between the view described here and the algorithm presented in Section 4.

Lemma B.1 (Correctness for πA). If (Gen,Eval) is a secure FSS scheme for

DPFs, πC1
and πC2

are secure multiparty computation protocols for C1 and C2
respectively, and Prf is a Pseudo-random Function Family, then:

{

FA

(

InputA
)

}

InputA∈DomA
n,m

s≡
{

OutputπA

(

InputA
)

}

InputA∈DomA
n,m

(1)

Proof. We specify the ideal functionality for πA in Figure 12. First we consider
the circuits C1 and C2, implemented by MPC protocols πC1

and πC2
respectively.

Security under Definition A.1 implies that OutputπC1 (InputC1)
c≡ C1(InputC1) and

OutputπC2 (InputC2)
c≡ C2(InputC1). Because we consider only the outputs and not

the full views, the lengths of the elements in these ensembles remain fixed, even
as the security parameter increases. If they are computationally indistinguish-
able then it follows that as the security parameter increases they must also
become statistically close (i.e. correct with very high probability).

The remainder of the correctness proof follows by inspection. As shown in
Figures 5 and 11, the functionality of C1 is the FSS Gen algorithm. Because
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1 function FA

(

InputA
)

:

2 // Parse InputA as
(

i, R, f, vf , Stash, kPRF
a , kPRF

b ,W
)

3 v ..=















u if ∃ (j, u) ∈ Stash : j = i

PrfkPRF
a

(i)⊕ PrfkPRF
b

(i)⊕Ri otherwise

4

(

v′, yf
)

..= f
(

v, vf
)

5 W ′ ..=





























v′ if j = i

W j otherwise















j∈[1,n]

6 Stash′ ..=





























(⊥,⊥) if j = i

(j, u) otherwise















(j,u)∈Stash

∪
{

(

i, v′
)

}

7 return
(

yf , Stash′,W ′
)

8

9 function FAp

(

InputA
)

:

10

(

yf , Stash′,W ′
)

..= FA

(

InputA
)

11 return
(

yf
p , Stash

′
p,W

′
p

)

// generate secret shares

Figure 12: Pseudocode for the ideal functionality of the access protocol πA.

(Gen,Eval) is a correct FSS scheme per Definition 2, the output of the Eval

function for party p will be p’s share of a pair of point functions y and t with
values β and 1 respectively at index i. Algorithm L1 implements the dot product
of t with R, and so va and vb are shares of Ri.

The functionality of C2 is given in the appropriate sections of Figures 5
and 11. InputA is assumed to be valid, which implies that R was twice-masked
by Prf, and it follows that either

W i = PrfkPRF
a

(i)⊕ PrfkPRF
b

(i)⊕Ri

or (i,W i) ∈ Stash. Either way, we have v = W i, the correct value. Note that the
stash read, function application, and stash write steps are specified identically
between FA and C2, and consequently

{

(

yf , Stash′
)

:
(

yf , Stash′,W ′
)

..= FA

(

InputA
)

}

InputA∈DomA
n,m

s≡
{

(

yf , Stash′
)

:
(

yf , Stash′,W ′
)

..= OutputπA

(

InputA
)

}

InputA∈DomA
n,m

(2)
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Here we reason about only two of the three elements in OutputπA ; we must
still reason about W ′. Recall that v = W i, and that each party has shares of
two point functions: y and t with values β and 1 at index i respectively. C2
calculates v∆ = W i ⊕ v′ ⊕ β. By inspection of L2, we see that both parties
XOR v∆ into their shares of the point function y, conditioned element-wise on
t, yielding shares of a new point function y′ such that for j ∈ [1, n]:

y′j =

{

β ⊕ v∆ = β ⊕ β ⊕ v′ ⊕W i = v′ ⊕W i if j = i

0⊕ v∆ ⊕ v∆ = 0 otherwise

The parties then combine their shares of y′ with their shares of W to yield
W ′ as specified by FA. For j ∈ [1, n]:

W ′j =

{

W j ⊕ y′j = W j ⊕W i ⊕ v′ = v′ if j = i

W j ⊕ 0 = W j otherwise
(3)

By the conjunction of Equations 2 and 3 we have Equation 1, and thus
Lemma B.1 holds.

Lemma B.2 (Security for πA). If (Gen,Eval) is a secure FSS scheme for DPFs,

πC1
and πC2

are secure multiparty computation protocols for C1 and C2 re-

spectively, and Prf is a Pseudo-random Function Family, then for each party

p ∈ {a, b} there exists a simulator SimA
p such that:







(

SimA
p

(

InputAp ,FAp

(

InputA
)

)

,FA

(

InputA
)

)







InputA∈DomA
n,m

c≡
{

(

ViewπA

p

(

InputA
)

,OutputπA(InputA)

)

}

InputA∈DomA
n,m

Proof. If (Gen,Eval) is a secure FSS scheme for DPFs, then by Definition 2 there
must exist some simulator, SimFSS, for FSS keys. Similarly, if πC1

and πC2
are

secure multiparty computation protocols, then by Definition A.1 for p ∈ {a, b}
there must exist simulators SimC1

p and SimC2

p for those protocols. We begin by
specifying a simulator for πA, SimA

p , which has access to SimFSS, SimC1

p , and
SimC2

p , as well as L1 and the inverse of L2 with respect to v∆:

v∆ = L−1
2

(

Wp,W
′
p

)

= max

(

{

W x
p ⊕W ′x

p

}

x∈[1,n]

)

Simulator SimA
p is given party p’s share of the inputs for πA, along with the

output of FA, upon which it performs the procedure given in Figure 13. Roughly
speaking, it uses SimFSS along with L1 and L−1

2 to simulate the inputs and
outputs for C1 and C2 given the known inputs and outputs for πA, and then
passes these to SimC1

p and SimC2

p . Our proof proceeds via a series of hybrid
views.
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1 function Sim
πA
p

(

InputAp ,FAp

(

InputA
)

)

:

2 // Parse InputAp as







ip, R, f, v
f

p ,

Stashp, k
PRF

p ,Wp







3 // Parse FAp

(

InputA
)

as
(

yf
p , Stash

′
p,W

′
p

)

4 kFSS
Sim ← SimFSS

(

p, 1λ
)

5 βSim ← {0, 1}λ

6 Msgs
C1

Sim ← SimC1
p

(

ip, βSim, k
FSS
Sim

)

7 vSim
..= L1

(

kFSS
Sim , R

)

8 v∆Sim
..= L−1

2

(

Wp,W
′
p

)

9 Msgs
C2

Sim ← SimC2
p







ip, k
FSS

Sim , βSim, vSim, f, v
f

p ,

Stashp, k
PRF

p , v
∆
Sim, y

f

p , Stash
′
p







10 return







rSim, ip, βSim,Msgs
C1

Sim, k
FSS

Sim , R, f, v
f

p , Stashp,

k
PRF

p ,Msgs
C2

Sim, v
∆
Sim, y

f

p , Stash
′
p,Wp,W

′
p







Figure 13: Pseudocode for a simulator for the access protocol πA.

First Hybrid Our first hybrid, H1, is identical to the real-world view, except
that subsequent to the evaluation of circuit C1, we discard the messages produced
by the real circuit and replace them with

MsgsC1

Sim
← SimC1

p

(

InputC1

p ,OutputπC1

p

(

InputC1

p

)

)

Consequently, the view produced by H1 for party p is identical to p’s view of
the real protocol, except where these messages differ.

Suppose there were a probabilistic polynomial time (PPT) distinguisher, D1,
that could distinguish between the ensembles

EπA
p =

{

(

ViewπA

p

(

InputA
)

,OutputπA

(

InputA
)

)

}

EH1

p =

{

(

ViewH1

p

(

InputA
)

,OutputH1

(

InputA
)

)

}

for some input InputA with some advantage δ1. We could use D1 to construct
a distinguisher D2 for the MPC protocol that evaluates C1. D2 is given some
ViewD2

p , produced either by a real evaluation of πC1
or by SimC1

p . Additionally,
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1 function D2

(

ViewD2
p ,OutputD2 ,AuxD2

)

:

2 // Parse ViewD2
p as

(

ip, βp,MsgsC1

p , kFSS
p

)

3 // Parse OutputD2 as
(

kFSS
p , kFSS

q

)

4 // Parse AuxD2 as







iq, βq, R, v
f

p , v
f

q , Stashp, Stashq,

k
PRF

p , k
PRF

q ,Wp,Wq







5 vp ..= L1

(

kFSS
p , R

)

6 vq ..= L1

(

kFSS
q , R

)

7 InputC2 ..=







ip, iq, vp, vq, v
f

p , v
f

q , βp, βq,

Stashp, Stashq, k
FSS

p , k
FSS

q , k
PRF

p , k
PRF

q







8 // Evaluate both parties’ portions of the protocol for C2
9

(

v∆, yf
p , Stash

′
p

)

← OutputπC2
p

(

InputC2

)

10

(

v∆, yf
q , Stash

′
q

)

← OutputπC2
q

(

InputC2

)

11 W ′
p

..= L2

(

kFSS
p , v∆,Wp

)

12 W ′
q

..= L2

(

kFSS
q , v∆,Wq

)

13 ED1
p

..=

















View
D2

p ,View
πC2
p

(

Input
C2

)

,

R,Wp,W
′
p









,
(

yf , Stash′,W ′
)









14 return D1

(

ED1
p

)

Figure 14: Pseudocode for distinguisher D2 for MPC protocols. This distin-
guisher takes nonuniform input AuxD2 and has access to a distinguisher D1 for the
ensembles EH1

p and E
πA
p .

it is given the two-party output of the associated functionality, OutputD2 , and
some nonuniform auxiliary information, AuxD2 (chosen as a function of ViewD2

p ,
OutputD2 , and D1 to give D2 the best possible advantage). Furthermore, D2

has access to the circuit C2. D2 performs the procedure specified in Figure 14.
If ViewD2

p was generated by SimC1

p , then ED1

p = EH1

p , whereas if it was
generated by a real evaluation of the circuit C1, then ED1

p = EπA
p . D2 makes a

single call to D1, and all of the inputs to D1 that are not determined by ViewD2

p

or OutputD2 are given as non-uniform advice to provide the best discriminatory
power; thus it must be the case that D2 has advantage δ2 such that δ2 = δ1. By
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Definition A.1, for security parameter λ and all choices of InputC1 :

δ2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

[

D2

(

ViewπC1

p

(

InputC1

)

,OutputπC1

(

InputC1

)

)

= 1

]

−Pr

[

D2

(

SimC1

p

(

InputC1

p

)

,FC1

(

InputC1

)

)

= 1

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
1

poly(λ)

Thus δ1 = δ2 < 1/poly(λ), and H1 is computationally indistinguishable from
the real view.

Second Hybrid Our second hybrid, H2, is identical to the first, except that
we omit the evaluation of C1, and replace its outputs as follows: choose βSim ←
{0, 1}λ (Note that βSim has the same distribution as the real value), and then
generate the FSS key using a DPF simulator:

kFSS

Sim
← SimFSS

(

p, 1λ
)

Suppose there were a probabilistic polynomial time (PPT) distinguisher, D3,
that could distinguish between the ensembles

EH1

p =

{

(

ViewH1

p

(

InputA
)

,OutputH1

(

InputA
)

)

}

EH2

p =

{

(

ViewH2

p

(

InputA
)

,OutputH2

(

InputA
)

)

}

for some input InputA with some advantage δ3. We could use D3 to construct
a distinguisher D4 for FSS keys. D4 has access to the simulator SimC1

p , as well
as the real circuit C2. Given some FSS key, kFSS

D , created either by the real
FSS Gen algorithm, or by its simulator, SimFSS, and some nonuniform auxiliary
information, AuxD4 , D4 performs the procedure given in Figure 15.

If kFSS

D was generated by SimFSS, then ED3

p = EH2

p , whereas if it was generated
by a real instance of the FSS Gen algorithm, then ED3

p = EH1

p . D4 makes a
single call to D3, and inputs to D3 that are not determined by kFSS

D or βSim are
given as non-uniform advice; thus it must be the case that D4 has advantage δ4
such that δ4 = δ3. By Definition 2, for security parameter λ and all α, β, and p:

δ4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

[

D4

(

Gen
(

1λ, fα,β

)

: kFSS

p

)

= 1

]

−Pr

[

D4

(

SimFSS

(

p, 1λ
)

)

= 1

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
1

poly(λ)

Thus δ3 = δ4 < 1/poly(λ), and H2 is computationally indistinguishable from
H1.
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1 function D4

(

kFSS
D ,AuxD4

)

:

2 // Parse AuxD4 as















ip, iq, βq, k
FSS

q , R,

v
f

p , v
f

q , Stashp, Stashq,

k
PRF

p , k
PRF

q ,Wp,Wq















3 βSim ← {0, 1}λ

4 ViewSim
C1

p ← SimC1
p

(

ip, βSim, k
FSS
D

)

5 vp ..= L1

(

kFSS
D , R

)

6 vq ..= L1

(

kFSS
q , R

)

7 InputC2 ..=







ip, iq, vp, vq, v
f

p , v
f

q , βSim, βq,

Stashp, Stashq, k
FSS

D , k
FSS

q , k
PRF

p , k
PRF

q







8 // Evaluate both parties’ portions of the protocol for C2
9

(

v∆, yf
p , Stash

′
p

)

← OutputπC2
p

(

InputC2

)

10

(

v∆, yf
q , Stash

′
q

)

← OutputπC2
q

(

InputC2

)

11 W ′
p

..= L2

(

kFSS
D , v∆,Wp

)

12 W ′
q

..= L2

(

kFSS
q , v∆,Wq

)

13 ED3
p

..=

















View
Sim

C1

p ,View
πC2
p

(

Input
C2

)

,

R,Wp,W
′
p









,
(

yf , Stash′,W ′
)









14 return D3

(

ED3
p

)

Figure 15: Pseudocode for distinguisher D4 for FSS keys. This distinguisher
takes nonuniform input AuxD4 and has access to the distinguisher D3 for ensembles
EH1

p and EH2
p .

Third Hybrid The third hybrid, H3, is identical to the second, except that,
subsequent to the evaluation of C2, we discard its messages and replace them
with

MsgsC2

Sim
← SimC2

p

(

f, InputC2

p ,OutputπC2

p

(

InputC2

p

)

)

Suppose there were a PPT distinguisher, D5, that could distinguish between
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1 function D6

(

ViewD6
p ,OutputD6 ,AuxD6

)

:

2 // Parse ViewD6
p as







ip, vp, v
f

p , βSim, Stashp, k
FSS

Sim ,

k
PRF

p ,Msgs
C2

p , v
∆
, y

f

p , Stash
′
p







3 // Parse OutputD6 as
(

v∆, yf , Stash′
)

4 // Parse AuxD6 as
(

kFSS
q , R,Wp,Wq

)

5 ViewSim
C1

p ← SimC1
p

(

ip, βSim, k
FSS
Sim

)

6 vp ..= L1

(

kFSS
Sim , R

)

7 W ′
p

..= L2

(

kFSS
Sim , v

∆,Wp

)

8 W ′
q

..= L2

(

kFSS
q , v∆,Wq

)

9 ED5
p

..=













View
Sim

C1

p ,View
D6

p

R,Wp,W
′
p






,
(

yf , Stash′,W ′
)







10 return D5

(

ED5
p

)

Figure 16: Pseudocode for distinguisher D6 for MPC protocols. This dis-
tinguisher takes nonuniform input AuxD6 and has access to the distinguisher D5 for
ensembles EH2

p and EH3
p .

the ensembles

EH2

p =

{

(

ViewH2

p

(

InputA
)

,OutputH2

(

InputA
)

)

}

EH3

p =

{

(

ViewH3

p

(

InputA
)

,OutputH3

(

InputA
)

)

}

for some InputA with some advantage δ5. We could use D5 to construct a
distinguisher D6 for the MPC protocol that evaluates C2. D6 has access to
SimC1

p , and as input it is given some view, ViewD6

p , which was produced either
by a real evaluation of C2 or by its simulator, SimC2

p . Given ViewD6

p , the two-
party output of the associated functionality, OutputD6 , and some non-uniform
auxilliary information AuxD6 , D6 follows the procedure given in Figure 16. Note
that the distinguisher does not simulate the FSS key, because a simulation of a
key is included in the view to be distinguished.

If ViewD6

p was generated by SimC2

p , then ED5

p = EH3

p , whereas if it was
generated by a real evaluation of the circuit C2, then ED5

p = EH2

p . D6 makes a
single call to D5, and all of the inputs to D5 that are not determined by ViewD6

p

or OutputD6 are chosen non-uniformly to provide the best discriminatory power;
thus it must be the case that D6 has advantage δ6 such that δ6 = δ5. By
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Definition A.1, for security parameter λ and all choices of InputC2 :

δ6 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

[

D6

(

ViewπC2

p

(

InputC2

)

,OutputπC2

(

InputC2

)

)

= 1

]

−Pr

[

D6

(

SimC2

p

(

InputC2

p

)

,FC2

(

InputC2

)

)

= 1

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
1

poly(λ)

Thus δ5 = δ6 < 1/poly(λ), and H3 is computationally indistinguishable from
H2.

Fourth Hybrid Finally, we return to the full simulator, SimA
p , which we

specified in Figure 13. The simulator is identical to H3, except that we omit C2
entirely. The simulator is provided FAp(Input

A) as input, from which it extracts
the necessary values of yf

p, Stash
′
p, and W ′

p. L−1
2 is employed to derive v∆ (which

is an input to the simulator for C2) from Wp and W ′
p. We conclude that for all

parties:

{

FAp

(

InputA
)

}

InputA∈DomA
n,m

=

{

OutputH3

(

InputA
)

}

InputA∈DomA
n,m

=⇒

EH3

p =

{

(

SimA
p

(

InputAp

)

,FA

(

InputA
)

)

}

InputA∈DomA
n,m

Thus by transitivity and Lemma B.1, Lemma B.2 holds.

Corollary In order to call the access protocol multiple times upon the same
data, it is necessary to show that the state it outputs is also a valid input
state, input validity being assumed by Lemmas B.1 and B.2. Notice that in the
specification of C2, we remove any existing elements from the stash that have
the index i, and append (i, v′). Consequently, we have a corollary:

Corollary B.2.1. Assuming that πA is a secure protocol under Definition A.1,

for any valid input,

InputA =
(

i, R, f, vf , Stash, kPRF

a , kPRF

b ,W
)

if (yf , Stash′,W ′) .

.= OutputπA(InputA), then for any f ′ and any vf′

that is valid

relative to f ′, and any i′ ∈ [1, n],

Input′A =
(

i′, R, g′, vf′

, Stash′, kPRF

a , kPRF

b ,W ′
)

is a valid input for πA.
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1 function FI

(

InputI
)

:

2 // Parse InputI as (W )

3 kPRF
a ← {0, 1}λ

4 kPRF

b ← {0, 1}λ

5 R′ ..=
{

PrfkPRF
a

(i)⊕ PrfkPRF
b

(j)⊕W j
}

j∈[1,n]

6 return
(

kPRF
a , kPRF

b , R′
)

7

8 function FIp

(

InputI
)

:

9

(

kPRF
a , kPRF

b , R′
)

..= FI

(

InputI
)

10 return
(

kPRF
p , R′

)

Figure 17: Pseudocode for the ideal functionality of the initialization proto-

col πI .

B.2 Proof of Security for Initialization

Real-world View The real-world view of party p of the initialization protocol
πI comprises p’s random tape rp, the inputs and outputs of the protocol, and
the messages received by p. As specified in Section 4 and illustrated in Figure 4,
party p receives only one message, W ′

q (where q is p’s counterparty), which is a
copy of q’s local state, Wq, that has been masked by a PRF under an unknown
key. Thus we have

InputIp =
(

Wp

)

InputI =
(

Wp,Wq

)

OutputπI

p

(

InputI
)

=
(

kPRF

p , R′
)

ViewπI

p

(

InputI
)

=
(

rp,Wp, k
PRF

p ,W ′
p,W

′
q, R

′
)

Lemma B.3 (Correctness for πI). For each party p ∈ {a, b}
{

FI

(

InputI
)

}

InputI∈DomI
n,m

=

{

OutputπI

(

InputI
)

}

InputI∈DomI
n,m

Proof. The ideal functionality for initialization, FI

(

InputI
)

, is specified in Fig-

ure 17. By comparison with the protocol specification given in Figure 4, we
observe that in both the ideal functionality and the actual protocol, new PRF
keys are chosen uniformly at random. We further observe that R′ is calculated
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1 function SimI
p

(

InputIp,FIp

(

InputI
)

)

:

2 // Parse InputIp as (Wp)

3 // Parse FIp

(

InputI
)

as
(

kPRF
p , R′

)

4 W ′
p

..=
{

PrfkPRF
p

(j)⊕W j
p

}

j∈[1,n]

5 W ′
q

..= W ′
p ⊕R′

6 return
(

rSim,Wp, k
PRF
p ,W ′

p,W
′
q, R

′
)

Figure 18: Pseudocode for a simulator for the initialization protocol πI .

identically in both, the only difference being in the associativity of XOR opera-
tions. Thus, the output of the real initialization protocol is identical to that of
the ideal functionality.

Lemma B.4 (Security for πI). If Prf is a pseudo-random function family, then

for each party p ∈ {a, b} there exists of simulator SimI
p for πI such that:







(

SimI
p

(

InputIp,FIp

(

InputI
)

)

,FI

(

InputI
)

)







InputI∈DomI
n,m

=

{

(

ViewπI

p

(

InputI
)

,OutputπI

(

InputI
)

)

}

InputI∈DomI
n,m

Proof. We specify a simulator, SimI
p, which receives as inputs both the inputs

and outputs of the original protocol and performs the procedure given in Fig-
ure 18. The view produced by the simulator and the one generated by the real
evaluation are actually identical, and thus by Lemma B.3, Lemma B.4 holds.

Corollary B.4.1. Assuming that πI is a secure protocol under Definition A.1,

for any input InputI = (W ), if (kPRF

a , kPRF

b , R′) .

.= OutputπI

(

InputI
)

and Stash .

.=

∅ then for any f and any vf that is valid relative to f , and any i ∈ [1, n],

InputA =
(

i, R′, f, vf , Stash, kPRF

a , kPRF

b ,W
)

is a valid input for πA

B.3 Proof of Security for Floram

Real-world view Finally, we prove the security of Floram under Defini-
tion A.2. As we mentioned previously, our construction differs from DRAM
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1 function ViewπF

(

InputF
)

:

2 // Parse InputF as

(

W,

{

(

f j , ij , vfj
)

}

j∈[2,ℓ]

)

3

(

kFSS
a , kFSS

b , R
)

← OutputπI (W )

4

{

s
1
p

}

p∈{a,b}
←
{

View
πI
p (W )

}

p∈{a,b}

5 Stash ..= ∅

6 for j ∈ [2, ℓ]:

7 InputAj ..=
(

ijp, R, f j , vfj

, Stash, kPRF
a , kPRF

b ,W
)

8

(

yfj

, Stash′,W ′
)

..= OutputπA

(

InputAj
)

9

{

s
j
p

}

p∈{a,b}
←
{

View
πA
p

(

InputAj
)

}

p∈{a,b}

10 W ..= W ′

11 Stash ..= Stash′

12 {Sp}p∈{a,b}
..=

{

{

s
j
p

}

j∈[1,ℓ]

}

p∈{a,b}

13 return (Sa,Sb)
14

15 function View
πF
p

(

InputF
)

:

16 (Sa,Sb)← ViewπF

(

InputF
)

17 return Sp

Figure 19: Pseudocode for a party’s view of Floram over an epoch.

as specified in Definition A.2 in that it accepts arbitrary functions as input
rather than simple read and write commands. Thus

InputFp =

(

Vp,

{

(

f j , ijp, v
fj

p

)

}

j∈[2,ℓ]

)

where ℓ is the length of the epoch. We formally specify a party’s view of Flo-
ram over an epoch in Figure 19, and we specify the ideal functionality FF in
Figure 20. Note that the protocol specification πF for Floram over an epoch is
identical, except that it replaces the ideal functionalities FI and FA with the
protocols πI and πA respectively.

Theorem B.5 (Security for Floram). If πI is a secure initialization protocol

and πA is a secure access protocol and Prf is a Pseudo-random Function Family,
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1 function FF

(

InputF
)

:

2 // Parse InputF as

(

W,

{

(

f j , ij , vfj
)

}

j∈[2,ℓ]

)

3

(

kFSS
a , kFSS

b , R
)

..= FI (W )

4 Stash ..= ∅

5 for j ∈ [2, ℓ]:

6 InputAj ..=
(

ijp, R, f j , vfj

, Stash, kPRF
a , kPRF

b ,W
)

7

(

yfj

, Stash′,W ′
)

..= FA

(

InputAj
)

8 W ..= W ′

9 Stash ..= Stash′

10 return

(

W ′,
{

yfj
}

j∈[2,ℓ]

)

11

12 function FFp

(

InputF
)

:

13

(

W ′,
{

yfj
}

j∈[2,ℓ]

)

..= FF

(

InputF
)

14 return

(

W ′
p,
{

yfj

p

}

j∈[2,ℓ]

)

Figure 20: Pseudocode for ideal functionality of Floram over an epoch.

then for each party p ∈ {a, b}, there exists a simulator SimF
p such that:

{

SimF
p

(

InputFp ,FFp

(

InputF
)

)

}

InputF∈DomF
n,m,λ

c≡
{

ViewπF

p

(

InputF
)

}

InputF∈DomF
n,m,λ

where DomF
n,m,λ is the set of valid epochs with lengths ℓ in O(poly(λ)).

Proof. We specify SimF
p in Figure 21. Notice, first, that kPRF

Sim
is drawn from an

identical distribution to its counterpart in the real view, as are StashSim, and
WSim for all iterations j ∈ [2, ℓ] (those counterparts being secret shares). The
only distinguishing features in the simulated view are the messages exchanged
in the course of πA and πI , and RSim, which is drawn uniformly from its domain,
whereas in the real view it is the XOR of two PRF outputs with V . Our proof
will proceed via a series of hybrids.
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1 function SimF
p

(

InputFp ,FFp

(

InputF
)

)

:

2 // Parse InputFp as

(

Wp,

{

(

f j , ijp, v
fj

p

)

}

j∈[2,ℓ]

)

3 // Parse FFp

(

InputF
)

as

(

W ′
p,
{

yfj

p

}

j∈[2,ℓ]

)

4 RSim ← {0, 1}n×m

5 kPRF
Sim ← {0, 1}λ

6 s
1
Sim ← SimI

p

(

Wp, k
PRF
Sim , RSim

)

7 WSim
..= Wp

8 for j ∈ [2, ℓ|]:
9 if j = ℓ:

10 W ′
Sim

..= W ′
p

11 else:

12 W ′
Sim ← {0, 1}n×m

13 Stash′Sim ← {0, 1}(j−2)×m

14 s
j
Sim ← SimA

p







ip, RSim, f
j
, v

fj

p , StashSim, k
PRF

Sim ,WSim,

y
fj

p , Stash
′
Sim,W

′
Sim







15 WSim
..= W ′

Sim

16 StashSim
..= Stash′Sim

17 SSim
..=
{

s
j
Sim

}

j∈[1,ℓ]

18 return SSim

Figure 21: Pseudocode for a simulator for Floram over an epoch.

First Hybrid The first hybrid, H4, is identical to the real view, except that
after πI is evaluated, MsgsπI

p is discarded and replaced with the output of the
associated simulator, SimπI

p . As the two views differ only insofar as the simulated
view of πI differs from a real one, it follows from Lemma B.4 that the two are
computationally indistinguishable.

Second Hybrid The second hybrid, H5, is identical to H4, except that after
each execution of πA, the corresponding instance of MsgsπA

p is discarded, and
SimπA

p is called to replace it. H5 differs from H4 only insofar as the simulated
views of πA differ from the real ones. Thus, it follows from Lemma B.2 and
Corollaries B.2.1 and B.4.1 (which provide that initialization and access proto-
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1 function D8

(

VD8
,AuxD8

)

:

2 // Parse AuxD8 as

(

kPRF
p , V,Wp,

{

(

f j , ijp, v
fj

p , yfj

p

)

}

j∈[2,ℓ]

)

3 RD8

..=
{

V
j
D8
⊕ PrfkPRF

p
(j)⊕ V j

}

j∈[1,n]

4 s
1
D8
← SimI

p

(

Wp, k
PRF
p , RD8

)

5 WSim
..= Wp

6 for j ∈ [2, ℓ]:

7 W ′
Sim ← {0, 1}n×m

8 Stash′Sim ← {0, 1}(j−2)×m

9 s
j
D8
← SimA

p







ip, RD8
, f

j
, v

fj

p , StashSim, k
PRF

p ,WSim,

y
fj

p , Stash
′
Sim,W

′
Sim







10 WSim
..= W ′

Sim

11 StashSim
..= Stash′Sim

12 ED7
p

..=
{

s
j
D8

}

j∈[1,ℓ]

13 return D7

(

ED7
p

)

Figure 22: Pseudocode for distinguisher D8 for PRF outputs. This distin-
guisher takes nonuniform input AuxD8 and has access to the distinguisher D7 for
ensembles EH5

p and ESimF

p .

cols can be chained) that the two are computationally indistinguishable if the
epoch length ℓ is in O(poly(λ)).

Third Hybrid Finally, we return to the full simulation, which is identical
to H5 save for two details: First, πA is omitted entirely, and shares of the
stash and WOM (except for the final WOM state) are chosen uniformly from
the appropriate domains, as in Figure 21. As the new values are distributed
identically to the old, it is necessarily the case that they give a distinguisher no
advantage. Second, R is replaced by RSim and the evaluation of πI is omitted.
Suppose there existed a PPT algorithm D7 that could distinguish between the
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ensembles

EH5

p =







(

ViewH5

p

(

InputF ,FFp

(

InputF
)

)

,OutputH5

(

InputF
)

)







ESimF

p =







(

SimF
p

(

InputFp ,FFp

(

InputF
)

)

,FF

(

InputF
)

)







for some valid epoch inputF with advantage δ7. We could use D7 to construct
a distinguisher D8 for PRF outputs, as specified in Figure 22, which accepts as
input some value VD8

∈ {0, 1}n×m, such that

VD8
= {Prfk(i)}i∈[1,n]

where k ← {0, 1}λ and Prf{0,1}λ : {0, 1}m → {0, 1}m is a Pseudo-random Func-
tion Family, or

VD8
= {x← {0, 1}m}i∈[1,n]

In the former case, D8 constructs an ensemble with a distribution identical to
EH5

p , and in the latter case it constructs an ensemble with a distribution identical
to ESimF

p . D8 also receives some non-uniform advice AuxD8 . D8 implements a
statistical test for PRFs, which succeeds with advantage δ8 = δ7, and a Family
of Pseudo-random Functions must admit the success of no statistical test with
advantage greater than 1/poly(λ) [20]. In other words, it must be the case that
for any n, λ ∈ N, k ← {0, 1}λ,

{Prfk(i)}i∈[1,n]

c≡ {x← {0, 1}m}i∈[1,n]

Consequently, δ7 = δ8 ≤ 1/poly(λ), and by transitivity, over all valid epochs, the
output of SimF

p is computationally indistinguishable from a real view of party
p’s local memory, as required.

Note A standard hybrid argument yields indistinguishability over sequences
of epochs, as required by Definition A.2. The definition allowed the simulator
knowledge only of the lengths of the epochs it was to simulate, whereas in
this proof we have given the simulator function descriptions for each access as
well as shares of inputs and outputs for those functions. However, if a single
circuit is constructed to implement both the read and write functionalities,
and all accesses in an epoch make use of this circuit (i.e. the functionality of
Floram is reduced to simple read and write operations), and if the inputs and
outputs are information-theoretic secret shares, then it is unnecessary to pass
this extra information, and the statement in Theorem B.5 collapses to that in
Definition A.2.
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