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Summary. This paper examines how selected physiologi- 

cal performance variables, such as maximal oxygen up- 

take, strength and power, might best be scaled for sub- 

ject differences in body size. The apparent dilemma be- 

tween using either ratio standards or a linear adjustment 

method to scale was investigated by considering how 

maximal oxygen uptake (l" rain- 1), peak and mean pow- 

er output (W) might best be adjusted for differences in 

body mass (kg). A curvilinear power function model 

was shown to be theoretically, physiologically and em- 

pirically superior to the linear models. Based on the fit- 

ted power functions, the best method of scaling maxi- 

mum oxygen uptake, peak and mean power output, re- 

quired these variables to be divided by body mass, re- 
corded in the units kg 2/3. Hence, the power function ra- 
tio standards (ml.kg -2/3.min -1) and (W.kg-2/3) were 

best able to describe a wide range of subjects in terms of 

their physiological capacity, i.e. their ability to utilise 

oxygen or record power maximally, independent of 

body size. The simple ratio standards (ml. kg-  1. min-  1) 

and (W. kg - 1) were found to best describe the same sub- 

jects according to their performance capacities or ability 

to run which are highly dependent on body size. The ap- 

propriate model to explain the experimental design ef- 

fects on such ratio standards was shown to be log-nor- 
mal rather than normal. Simply by taking logarithms of 

the power function ratio standard, identical solutions 

for the design effects are obtained using either ANOVA 
or, by taking the unscaled physiological variable as the 

dependent variable and the body size variable as the cov- 

ariate, ANCOVA methods. 
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Introduction 

Measurements in physiology and medicine are often 

recorded a per-body mass (m) or per-surface area 

ratio standards, e.g. maximum oxygen uptake 

(ml .kg- l .min -1) or peak power per cross-sectional 

area of muscle (W. cm-2). These simple ratio standards 

have been used to facilitate the comparison of measure- 

ments recorded from individuals of different sizes, 

since, by dividing by an "appropriate" body size varia- 

ble, it is assumed that differences in the physiological 

variable due to the subject's size will have been re- 

moved. Hence, the scaled physiological performance 

variables are assumed to be independent of the subjects' 

body size dimension. 
However, these simple ratio standards have come un- 

der strong criticism by authors such as Tanner (1949), 
Katch (1972, 1973), Katch and Katch (1974) and more 

recently by Winter et al. (1991). These authors' criticism 

is based on several observations. Firstly, when simple 

ratio standards, e.g. maximum oxygen uptake 
(ml.kg -1.min-1), are correlated with a body size di- 

mensions, e.g. m (kg), the correlations are found to be 

negative, i.e. the simple ratio standards fail to produce a 

dimensionless physiological performance variable. On 

the contrary, it would appear that these simple ratio 

standards "over-scale" by converting the positive corre- 

lation, between the physiological performance variable 
and the body size variable, to a negative one. Secondly, 

the authors assume that the relationship between the 

two ratio variables is linear and then argue that if the 
model that describes this relationship is a true linear 

proportion, then the least-squares linear regression line 

should pass close to, if not through, the origin. When 
this fails to occur in most of the studies cited, the au- 

thors propose using an additive adjustment, based on 

the regression line, to correct the numerator variable for 

differences in the body-size denominator variable [see 
Katch and Katch (1974) for details]. 

In contrast, Kleiber (1950) proposed using a power 
function model, the simple ratio standard being a spe- 

cial case, to explain the relationship between a physiol- 



ogical  va r iab le  and  a b o d y  size var iab le ,  since such var-  

iables are  k n o w n  to be p r o p o r t i o n a l  to a power  o f  the  

subjec ts '  l inear  d imens ion  (L), e.g.  m is p r o p o r t i o n a l  to  

L 3 (As t r and  and  R o d a h l  1986). Hence ,  theore t ica l ly  the 

re la t ionsh ip  be tween  such var iab les  is m o r e  l ikely to be a 

power  func t ion  mode l  ra ther  than  l inear  mode l ,  even if  

the empi r ica l  leas t -squares  regress ion line m a y  h a p p e n  

to fi t  the  d a t a  be t te r  (i.e. p roduce  a lower  res idual  sum- 

of-squares) .  A d d i t i o n a l  suppo r t  for  the  use o f  a power  

func t ion  m o d e l  comes  f rom Schmidt -Nie l sen  (1984) 

when scaling phys io log ica l  var iables  for  an imals  o f  dif-  

ferent  sizes. W h e n  me tabo l i c  ra te  was p lo t t ed  aga ins t  m 

for  a large var ie ty  o f  an ima l  species,  using a log- log  

scale, a s t ra ight  l ine re la t ionsh ip  was ob ta ined ,  a well- 

k n o w n  charac ter i s t ic  o f  a power  func t ion  mode l .  A sim- 

i lar  s t ra ight  line was ob t a ined  by  M c M a h o n  (1984) when 

p lo t t ing  the  re la t ionsh ip  be tween  log [max imum oxygen  

u p t a k e  ( m l . s - 1 ) ]  aga ins t  the l o g [ m  (kg)] for  a s imilar  

range  in an imal  scale, once aga in  conf i rming  the un-  

der ly ing  power  func t ion  mode l .  

These  me thods  o f  scal ing will be examined  by  investi-  

ga t ing the results  o f  two studies.  The  first  s tudy exam- 

ines how the m a x i m a l  oxygen  up t ake  values  (1. m i n - 1 )  

o f  308 subjects  might  best  be scaled for  d i f ferences  in 

their  m (kg). The  second s tudy invest igates  how 16 sub- 

jec ts '  peak  and  mean  power  ou tpu t  scores (W) might  

best  be scaled for  d i f ferences  in m (kg). 
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(iii) The power function ratio standard (Y i /X  b) assumes the fol- 
lowing model between the physiological performance variable (Yi) 

and the body size variable (X0 

Y i : a ' X ~ ' e i  (3) 

where e~ is a multiplicative error ratio term. This multiplicative er- 
ror term is a particularly attractive feature of this model since it 
will accommodate a spread in the subjects' Y~ and Xi values when 
plotted against each other, provided these scores diverge at a con- 
stant proportion to each other. The parameters a and b are ob- 
tained assuming a tog-linear model, i.e. by taking logs of Eq. 3 
and fitting the least-squares regression line to log (Yi) using log (X 0 
as the predictor variable, 

log (Yi) = log (a) + b" log (Xi) + log (el) (4) 

The residual error ratios are obtained by re-arranging Eq. 3 to ob- 
tain 

el = Y i / (a 'X  b) = (Y~/xb)/a.  (5) 

Hence, the power function of best fit would suggest the appro- 
priate method of scaling should be the power function ratio stand- 
ard Yi /X  b, a familiar equation to supporters of the simple ratio 
standard when the power function parameter equals unity (i.e. 
b = l ) .  

The statistical modelling of the data from studies 1 and 2, giv- 
en below, was carried out on the University of Birmingham's IBM 
3090 mainframe computer, using the statistical package GLIM 
[Generalized Linear Interactive Modelling; Baker and Nelder 
(1978)]. Much of the descriptive analyses were confirmed on an 
IBM PS/2 using the statistical package MINITAB (Minitab Refer- 
ence Manual 1989). 

Scaling models and statistical methods 

The methods of scaling described by the authors above (Tanner 
1949; Katch 1972, 1973; Katch and Katch 1974) were all presented 
without reference to the errors associated with each model. How- 
ever, different methods of scaling will make quite different as- 
sumptions concerning the relationship that exists between the 
physiological performance variable Yi, the relevant body size vari- 
able X~ and their associated residual errors. 
(i) The simple ratio standard (Yi/XO implies the following mathe- 
matical relationship between the physiological performance and 
the body size variables, 

Yi=a 'X i+  ei, (1) 

where ei is an additive error term. The model assumptions, given 
in Eq. 1, assume the groups' ratio standard parameter a is calcu- 
lated using least-squares linear regression but by omitting the in- 
tercept constant. 
(ii) The least-squares linear adjustment method of scaling assumes 
the following model: 

Yi=a + b 'X i+  ei (2) 

where el denotes the residual errors from the least-squares regres- 
sion line of best fit. Similar to the simple ratio standard model, 
least-squares, linear regression assumes a constant error term 
throughout the range of the variables Yi and Xi, an assumption 
that would appear to be questionable when modelling human per- 
formance val;iables recorded from subjects of different body size. 
Assuming a linear model with an additive error term, the residual 
errors are obtained by re-arranging Eq. 1: 

ei= Y i - a - b X i .  

The method of adjustment, outlined by Katch and Katch (1974), 
requires this residual error to be added to the group's arithmetic 
mean, i.e. Y+ ei, to represent the individual's "adjusted" or scaled 
score. 

Study 1: scaling maximum oxygen uptake for 

differences in m 

Subjects and methods. Over a 7-year period 308 recreationally ac- 
tive subjects (men, n = 179; women, n = 129) gave their informed 
consent and volunteered to take part in experiments at Loughbor- 
ough University which required the direct determination of maxi- 
mum oxygen uptake. All the experiments were conducted in keep- 
ing with the principles embodied in the Declaration of Helsinki for 
experiments involving human subjects. Of the 308 subjects, 204 
subjects (men, n = 112; women, n = 92), completed both the maxi- 
mum oxygen uptake test and a 5-km performance test on the run- 
ning track. The subject's maximum oxygen uptake was deter- 
mined during inclined treadmill running using a modification of 
procedures originally described by Taylor et al. (1955). The speed 
of the treadmill was constant throughout the test, but the eleva- 
tion was increased by 2.5°70 every 3 min. Voluntary exhaustion 
was usually reached within 8-12 min. Samples of expired air were 
collected in 150-1 Douglas bags during the last minute of each 3- 
min period and during the last minute of the test. Oxygen Uptake 
was determined as previously described by Williams and Nute 
(1983). 

Table 1. The residual sum-of-squares from the three scaling mod- 
els relating maximum oxygen uptake (1.rain -1) to body mass 
(kg) 

Residual sum-of-squares (SEM) 

Scaling models Men (n = 179 )  Women (n = 129) 

Simple ratio standard 49.6 (0.53) 13.6 (0.330) 
Linear regression 41.8 (0.49) 11.5 (0.301) 
Power function 41.6 (0.48) 11.4 (0.298) 
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Fig. 1. The least-squares linear relationships between maxxmum 
oxygen uptake and body mass for both men ([]; n=179; 
y = 1.7101 + 0.0356x) and women (0;  n = 129; 
y = 0.937 + 0.0315x) 
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Fig. 2. The power functional relationships between maximum 
oxygen uptake and body mass for both men (IS]; n=179; 
y=0 .2876"  x0.6297 ) and women (0;  n = 129; y=0.1498" X0.7163 ) 

Modelling the relationship between maximum oxygen 

uptake and m. The results of  modelling maximum oxyg- 

en uptake (1. m i n -  1) and m (kg) for men and women us- 

ing all three models are summarised in Table 1. 

As anticipated, the correlation between the simple ra- 

tio standard, maximum oxygen uptake (ml .kg -1" 

min-1) ,  and m (kg) for men and women was negative 

r =  -0 .385  (P<0.01;  n =  179) and r =  - 0 . 3 4 7  (P<0 .01 ;  

n = 129) respectively. In contrast, when maximum oxy- 

gen uptake (1. min-1)  was scaled according to the linear 

adjustment methods outlined in Katch and Katch (1974) 

and correlated with m (kg), the correlation was found to 

be zero ( r=  0.00) for both men and women. When the 

least-squares regression lines were fitted to the data for 

the men and women separately (Fig. 1) both the inter- 

cept parameters were found to be significantly greater 

than zero. This result agrees with the findings of  Ribisl 

and Kachadorian (1969) based on 24 men, presented in 

Katch (1973). 

However,  the best fit was found when these data 

were modelled using power function, assuming a log-lin- 

ear model to estimate the parameters.  The resulting 

power functions for men and women are given in 

Fig. 2. 
No statistically significant differences were found be- 

tween the power function parameters (0.63 and 0.72), 

but a significant difference was found between the con- 

stant multipliers (0.29 and 0.15). Hence, when these 

data were analysed together, allowing separate constant 

multipliers but a common power function parameter,  

the following power functions were obtained: 

Y(men) = 0.244. g 0"669 (6) 

and 
Y(women) = 0.183. X °'669 (7) 

It  is interesting to note that the combined power func- 

tion parameter  b is almost exactly 2/3. Assuming that 

maximum oxygen uptake (1. m i n -  1) should be scaled us- 

ing the model that gives the best fit (least residual sum- 

of-squares), the most appropriate  method of scaling is 

the power function ratio standard, that would require 

the subjects'  maximum oxygen uptake (1.min -1) to be 

divided by a proport ion of the subjects' m, recorded in 
the units kg 2/3, i.e. ( l 'kg2/3.min -1) or (ml .kg  -2/3. 

min-1) .  Note that the correlation between maximum 

oxygen uptake (ml. kg -2 /3 .min -1 )  and m (kg) for men 

and women was not statistically significant r=0 .034  

(P>0 .05 ;  n =  179) and r=0 .017  (P>0 .05 ;  n=129)  re- 

spectively. 

"Scaling" maximum oxygen uptake to predict 5-km run- 

ning performance. Nevill et al. (1990) showed that 5-km 
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Table 2. The residual sum-of-squares from predicting 5-km run- 
ning performance 

Methods of scaling 

Residual sum-of-squares (SEM) 

Men (n=l12) Women (n= 192) 

Simple ratio standard 
(ml. kg - 1. rain - 1) 7.44 (0.260) 5.47 (0.247) 

Linear adjustment method 
of scaling 12.83 (0.342) 7.59 (0.291) 

Power function 
(ml.kg-2/3.min -1) 12.04 (0.331) 7.51 (0.289) 

running performance was better related (correlated) to 

maximum oxygen uptake if running performance was 

recorded as an average speed ( m . s -  1) rather than an ab- 

solute run time (rain). Hence, when the average 5-km 

run speeds were predicted using the scaled power func- 

tion ratio, max imum oxygen uptake (ml .kg -2/3. 

min-1) ,  the residual sum-of-squares was found to be a 

little less than the linear adjustment method of scaling 

for both men and women (Table 2). 

However,  using this ratio standard limits the power 

function parameter  to b = 2/3 when trying to explain av- 

erage 5-kin running speed. On the other hand, if we as- 

sume that the relationship between running performance 

(5-km run speed m ' s - 1 ) ,  maximum oxygen uptake 

(1.min -1) and m (kg) is better described by a power 

function, but not subject to the restriction imposed by 

the ratio (ml. kg--2/3, min-1) ,  multiple regression can be 

used to optimally combine max imum oxygen uptake 

(1.min -1) and m (kg) to predict running performance 

(5-kin run speed m . s - a ) .  Assuming a log-linear model, 

no statistically significant differences were found be- 

tween the male and female models for either the maxi- 

m u m  oxygen uptake or m parameters.  Hence, the com- 

mon  power function model relating 5-km running speed, 

Z ( m . s - 1 ) ,  to max imum oxygen Y(1.min - ] )  and m 

X(kg)  is given by 

Z ( m .  s - 1) = 84.3" yl.Ol "X-  1.o3. (8) 

The power function model,  given by Eq. 8, is both  

simple and meaningful.  The best predictor of  5-km run 

times, when recorded as a rate of  performance,  i.e. 

mean running speed (m . s -1 ) ,  is almost exactly propor-  

tional to the ratio standard maximum oxygen uptake 

(1. min - ]) divided by m (kg) or ml. kg - 1. rain - 1. Hence, 

when the average 5-km run speeds were predicted for 

men using maximum oxygen uptake (ml. kg - 1. rain - ]), 

the residual sum-of-squares was found to be considera- 

bly reduced for both men and women (Table 2). The re- 

lationship between average 5-kin run speed and maxi- 

mum oxygen uptake ( m l . k g - l . m i n  - ] )  is plotted in 

Fig. 3. 
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Fig 3. Running speed vs maximum oxygen uptake in men (4!,) and 
women (El); n = 204 

Study 2: scaling peak and mean  power  output  for 

differences in m 

Subjects and methods. The peak and mean power output (W) of 
16 recreationally active male subjects were recorded on a non-mo- 
torised treadmill as part of a training study carried out at Lough- 
borough University, the results of which are described in Hol- 
myard et al. (1991). In addition to the laboratory-based treadmill 
tests, the subjects also undertook a 50-m and a 30-s sprint test on 
an outdoor running track under carefully standardised test proce- 
dures and conditions. The subjects' mean (SD) age, height, and 
weight were 22.6 (2.7) years, 1.74 (0.1) m, and 68.0 (11.0) kg re- 
spectively. All the data presented below were collected prior to the 
sprint training programme. 

Modelling the relationship between power output and 

m. As anticipated, a moderately strong positive relation- 

ship was found between peak power (W) and m (kg) 

r =  0.608 and between mean power output  (W) and m 

(kg) r =  0.703. The results of  modelling peak and mean 

power output (W) against m (kg) using all three models 

are summarised in Table 3. 

Once again, the curvilinear power function models 

resulted in the best fit to both the peak and mean power 

output data (Fig. 4), having estimated the exponents to 

be 0.628 and 0.738 respectively using the log-linear re- 

gression model. 

Further inspection of  Fig. 4 reveals the scores diverge 

with an increase in scale, questioning the constant error 

g'0 
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Table 3. The residual sum-of-squares from the three scaling mod- 
els relating peak and mean power output (W) to body mass (kg) 

Scaling models 

Residual sum-of-squares (SEM) 

Peak power (n = 16) Mean power (n = 16) 

Simple ratio standard 175434 (108.1) 
Linear regression 150386 (103.6) 
Power function 150086 (100.0) 

64137 (65.39) 
58527 (64.66) 
58481 (62.44) 
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Fig. 4. The power functional relationships between peak power 
and body mass and between mean power and body mass. [2], Men; 
0 ,  Women. Peak power y=51.3693" Xo.6278; mean power 
y = 22.2517" xo.7383 

assumption required by the linear scaling model (ii) and 

supporting the multiplicative error term in the power 

function model (iii). No statistically significant differ- 

ences were found between the power function paramet- 

ers (0.628 and 0.738) but a significant difference was 

found between the constant multipliers (51.8 and 22.4). 

Hence, when these data were analysed together, allow- 

ing separate constant multipliers but a common power 

function parameter, the following power functions were 

obtained: 

Y(peak power) = 41.6 .X °6s 

and 
Y(mean power) = 28.7. X °'68. 

As before, the combined power function parameter 'b '  

is almost exactly 2/3. 

Table 4. The residual sum-of-squares from predicting 50-m and 
30-s sprint running performance 

Residual sum-of-squares (SEM) 

Methods of scaling 50 m (m's -1) 30 s (m's -1) 

Simple ratio standard 
(ml" kg - 1. rain - 1) 0.550 (0.198) 1.181 (0.290) 

Linear adjustment method 
of scaling 0.562 (0.200) 1.202 (0.293) 

Power function 
(ml. kg -2/3.min- 1) 0.574 (0.203) 1.259 (0.300) 

"Scaling" peak and mean power output to predict sprint 

running performance. In order to relate the peak and 

mean power performances (W), recorded on the non- 

motorised treadmill, to running performance, the sub- 

jects were asked to complete a 50-m and a 30-s sprint 

test. When peak and mean power output was scaled as 

the ratio standard W ' k g  -2/3 and used to predict the 

50-m and 30-s sprint ( m . s -  1) respectively, the quality of 

fit was found to be marginally worse than the fit ob- 

tained using the linear adjustment method of scaling 

peak and mean power (Table 4). However, as mentioned 

earlier, using this ratio standard limits the power func- 

tion parameter to b = 2/3. If we assume that the rela- 

tionship between sprinting performance, power output 

(W) and m (kg) is better described by a power function 

model, but not subject to the restriction imposed by the 

ratio W" kg-z/3, multiple regression can be used to opti- 

mally combine power output (W) and m (kg) to predict 

sprinting performance. Assuming a log-linear model to 

estimate the parameters, the optimal predictors of 50-m 

and 30-s sprint performance were found to be almost 
exactly ratio standards (W" k g -  1)o.14 and (W. k g -  i)o.3 

respectively. However, if the simple ratio standards, 

peak and mean power (W.kg-1) ,  was used to predict 

50-m and 30-s sprint performance respectively, the resid- 

ual sum-of-squares increased by only a small amount in 

both cases, suggesting an equally satisfactory and opti- 

mal fit (Table 4). 

Investigating experimental design effects 

The researcher will often with to investigate how these 

ratio variables respond to various experimental design 

conditions. Consider the classical "split-plot" experi- 

mental design frequently used to investigate the effec, 

tiveness of a training study, e.g. the design used by Hol- 

myard et al. (1991). Typically, the researcher would div- 

ide the group of volunteers at random into two groups, 

an experimental group and a control group. Perform- 

ance measurements would be taken for all subjects be- 

fore and after a period of time in which only the experi- 

mental group would have completed a training pro- 
gramme, i.e. the control group would just continue with 

their normal lifestyle. The linear model used to describe 

such a design, assuming additive effects and an additive 

error term, is given by the following equation: 
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Yijk/Xijk =,U + Oq + nk(i) + flj + O~ flij + fl T~jk(i) + gm(ijk) (11) 

where Yijk/gijk is the ratio standard, ai denotes the 

group effect (e.g. control vs experimental), flj represents 

the within-subject or trial effect (e.g. before vs after 

training), nk0) indicates the effect of the kth subject in 

group oq and the residual error en0jk) is assumed to be a 
constant additive terrm throughout the range of measur- 

ements (see Winer 1971, pp 519 for full details of this 

design). Some authors, for example, Winter et al. (1991) 

recommend that the body size variable Xijk should be in- 
cluded as a covariate, rather than used as the denomina- 

tor in the ratio standard, when analysing the results of 

their experiments, i.e. in the model described above they 

would recommend that the physiological variable Y~jk 

should be analysed assuming the following model: 

Yijk = b (Xijk - X i )  d-~/-[- t~ i -[- 7~k(i)-~- ]~j -[- O/]~ij -]- 

+ fiT~k(i) +em (ijk) (12) 

where Xijk will automatically adjust the physiological 

variable Yijk assuming a linear relationship (see Winer 
1971, p 781 for full details of this design). Clearly the 

models given by Eqs. 11 and 12 are incompatible and 

are likely to yield contradictory results when investigat- 

ing experimental design effects, i.e. multiplying both 

sides of Eq. 11 by Xij~ will result in a over-complicated 

model involving interaction terms between the covariate 

and the experimental design parameters. 

As discussed earlier, the assumption that physiologi- 

cal and body size variables are linearly related with a 

constant additive error term is unreasonable. By observ- 

ing Figs. 1, 2 or 4, the data have a tendency to diverge as 
the scale of both maximum oxygen uptake (1.rain-I) 

and power (W) increase with m (kg), implying a multi- 

plicative error term rather than a constant additive error 

term assumed by the models in Eqs. 11 and 12. In addi- 

tion, any changes in these ratio standards, due to the ex- 

perimental design, are also more likely to be described 

by a multiplicative model. In the training study, for 

example, the researcher is often more interested in com- 

paring the percentage change in the ratio variable, from 

before to after training, between the control and experi- 

mental groups, rather than the absolute change in the 

ratio variable. When experimenter is interested in per- 

centage changes rather than absolute changes in the de- 

pendent variable, a multiplicative model should be used 

to explain such effects. 

A multiplicative model, used to describe a split-plot 

experimental design when a ratio standard is to be used 

as the dependent variable, is given by the following 

equation: 

Yij k/Xij k : /- /"  t~i" 7~k (i)" fi j" OL ]~ij" f l  7~j k (i)" ern (ij k) (13 ) 

where, as before, Yi)k/Xok is the ratio standard, ai de- 

notes the group ratio effect, flj represents the trial ratio 
effect, ~Zk(i) indicates the ratio effect of the kth subject in 

group ai and the residual error ratio em(i~k) is assumed to 
be a constant multiplicative error ratio. Provided the ra- 

tio standard in the left hand side of Eq. 13 has been de- 

fined by the power function of best fit, i.e. Yijk/X~jk,b 

by simply taking logarithms of this ratio and using an 

appropriate re-parameterization, the experimental de- 

sign effects can be investigated using traditional 

ANOVA methods. This does, of course, assume that the 

error ratio term in Eq. 13 has a log-normal distribution. 

However, since many of the physiological and body size 

variables have been shown to be proportional to a power 

(> 1) of L, e.g. rnc~L 3, the distribution of such variables 

are likely to be positively skewed, a characteristic that 

will be corrected by a logarithmic transformation. The 

same experimental design effects can be obtained by 

analysing log(Yij0 as the dependent variable, using the 

analysis of covariance (ANCOVA), where 1og(Xijk) will 

automatically adjust the numerator dependent variable 

to provide the same design effects as the ANOVA solu- 

tion described above. 
As mentioned in our examples, if the researcher 

wishes to use the ratio standard that best reflects run- 

ning performance, he or she should use m related varia- 
bles, e.g. maximum oxygen uptake (ml. kg - ' .  min - 1), 

peak or mean power (W.kg -1) rather than the ratio 

standard defined by the power function of best fit 
(ml. kg-2/a, min-  1) or (W. kg--2/3). Under these circum- 

stances the appropriate design effects can only be found 

by analysing the logarithms of the ratio standard, m re- 
lated maximum oxygen uptake (ml. kg - 1. min - '), peak 

or mean power output (W. kg-  1), as the dependent vari- 

able using traditional ANOVA methods. 

Discussion 

An important necessary although not sufficient require- 

ment of a scaling technique is, that having applied the 

scaling method to the physiological performance varia- 

ble, the scaled variable should be independent of body 

size. This is clearly not the case for the simple ratio 

scales maximum oxygen uptake (ml. kg - ' . min - x), peak 

and mean power (W" kg-  1), since, in the examples pre- 

sented in either studies 1 or 2, the simple ratio scales 

correlated negatively with m, although, due to the re- 

duced sample size in study 2, we can only report the an- 

ticipated significant negative correlation for both men 

and women in study 1. In contrast, both the linear ad- 

justment and power function methods of scaling would 

appear to have successfully removed the body size di- 

mension, as suggested by the insignificant correlations 

found between the scaled variables and m for all the 

examples given. 
However, if we assume that physiological perform- 

ance variables, such as maximum oxygen uptake 

(1. min- ' )  peak and mean power output (W), should be 

scaled for individuals of different body size using the 

most appropriate model (based on the residual sum-of- 

squares and the more appropriate multiplicative error 

term), rather than using the linear adjustment methods, 

the best method of scaling is given by the power func- 
tion ratio standards, maximum oxygen uptake 
(ml.kg-2/3.min -1) and peak and mean power output 

(W'kg-2/3). In all four examples described above, the 

residual sum-of-squares was less for the power function 
models when compared with the simple ratio scale mod- 
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els or the linear adjustment models. Hence, the scaling 

models that best divided a population in terms of their 

physiological capacity, i.e. ability to utilise oxygen or 

provide power output maximally for a wide range of 

subjects, independent of body size, was shown to be the 
power function ratio standards (ml. kg -2/3. min - l) and 

(W. kg-2/3) respectively. 
The same conclusion was reached by Astrand and 

Rodahl (1986), when modelling maximum oxygen up- 

take (1" min-1) of top Norwegian athletes trained in a 

variety of events (data by Vaage and Hermansen) and by 

Secher et al. (1983) and Secher (1990) when describing 

the maximum oxygen uptake of oarsmen. Indeed, the 

findings that peak and mean power should be scaled by 
dividing the power output (W) by m (kg- 2/3) is entirely 

plausible, once again, based on the work of Astrand and 

Rodahl (1986). If, as the authors show, human power 
output is proportional to L z then the appropriate scaling 

parameter is m 2/3, where L represents a linear func- 

tion of body size. Additional support for this result 

comes from Nevill et al. (1991), when scaling leg peak 

power (W) of 34 men and 47 women using lean leg vol- 

ume (/). Not surprisingly, the power function ratio 

standard proved to be the best method of scaling peak 

power output (W) with the body size denominator varia- 

ble, l, raised to the power 0.63, (approximately 2/3). 

This finding suggests that the appropriate method of 

scaling peak power is to divide the power output (W) by 

l 2/3, i.e. a surface area dimension such as the cross-sec- 

tional area of the leg muscle. This result might have 

been anticipated by many muscle physiologists. 

An implicit assumption behind scaling physiological 

performance measurements such as maximum oxygen 
uptake (1.min-1) for m (kg), is that having adjusted the 

variable of interest, any remaining "residual" difference 

in the scaled variable should help to explain differences 

in other independent performance variables, e.g. 5-km 

run times, without being confounded by differences in 

the subjects' body size. When the power function ratio 
standards, maximum oxygen uptake (ml. kg -2/3. rain - 1) 

and peak and mean power output (W.kg-2/3), were 

used to predict running performance, the quality of fit 

was good but not optimal. In both studies investigated, 

the simple ratio standard, maximum oxygen uptake 
(ml 'kg- l 'min-1) ,  produced the optimal predictor of 

average 5-kin running speed and the simple ratio stand- 

ards, peak and mean power output (W.kg-1), were 

found to be optimal at predicting 50-m and 30-s track 

running speeds respectively. 

However, it is essential that the distinction between, 
and the implications associated with, these two "scaling" 

methods are clearly understood. The simple ratio stand- 
ards, maximum oxygen uptake (ml. kg - 1. min - 1), peak 

and mean power (W-kg-1), are not true scaling meth- 

ods. On the contrary, they result in a "scaled" index that 

over-adjusts the subjects' physiological performance 

variables for m but nevertheless produces a ratio or in- 
dex that best relates to running performance. Hence, if 
the researcher wishes to obtain a index that reflects the 

performance capacity of a sample, he or she should use 
the ratio derived from the multiple regression fit, assure- 

ing a log-linear model, using a valid measure of per- 

formance as the dependent variable and the physiologi- 

cal numerator variable and the body size denominator 

variable as the predictor variables. The ratio standard 

(ml. kg-  1. min-  1) was the model that was able to divide 

the subjects according to their performance capacity or 

ability to run 5 km. The same was true for "scaling" 

peak and mean power output to reflect sprinting per- 

formance. The index that was best able to reflect the 

subjects' sprinting performance on the track was found 

to be peak and mean power output (W" kg-1). 

Clearly the performance capacity of participants in 

different sporting events is likely to vary according to 

the nature of the sport. Sporting events that require the 

performer to carry his or her own body weight, such as 

running, the likely body size denominator variable will 

be the entire m (kg). Alternatively, if the sporting event 

is weight supported, such as cycling, rowing or canoe- 

ing, the body size denominator component of a "scaled" 

index is like likely to be considerablely less if not absent, 
e.g. unscaled maximum oxygen uptake (1. min-  1). 

However, if the researcher wishes to investigate the 

results of experiments on physiological variables that are 

known to vary with body size, such as maximum oxygen 
uptake (1.rain-I), peak and mean power output (W), 

but with the body-size dimension removed, the appro- 

priate design effects will be obtained by analysing the 

logarithms of the power function ratio standard, i.e. 
(ml. kg -2/3. min - 1) and (W. kg-  2/3), as the dependent 

variable using traditional ANOVA methods. Alterna- 

tively, the identical conclusions will be obtained simply 

by setting the logarithms of the physiological numerator 
variable as the dependent variable and using the logar- 

ithms of body size denominator variable as the covariate 
in the analysis of covariance (ANCOVA). This will au- 

tomatically adjust or scale the physiological variable for 

differences in the subjects' body size to provide the same 

design effects as the ANOVA solution. 
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