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ABSTRACT 

The scaling property in deep inelastic electron scattering is established 

by regarding the physical nucleon-as a bound state of a bare nucleon and a bare 

meson (or a few bare mesons). This boundstate formulation provides a fully 

relativistic generalization of the “parton” model that is no longer restricted to 

infinite momentum frames. It also connects the scaling property in inelastic 

processes with the rapid decrease of the electromagnetic form factors in elastic 

scattering. Rigorous statements are derived for specific bound-state solutions of 

the Bethe-Salpeter equation with the ladder approximation. An Adler sum rule 

is derived and crossing properties are discussed. 

A general phenomenological approach is developed which is relativistically 

covariant and gauge invariant, and which allows one to correlate directly the observed 

structure functions and form factors with the appropriate bound-state wave function. 

If all constituents in the bound state are assumed to be of masses 2 1 GeV , the 

model gives a qualitative understanding as to why the scaling property is experi- 

mentally observed at relatively moderate energies. 



I. Introduction 

While the validity of the scaling hypothesis ’ has been well-established by 

recent extensive experimental investigations on inelastic electron-proton scattering 
2 

, 

its theoretical basis remains in an unsatisfactory state. The original parton idea of 

Feynman puts a special emphasis on the infinite-momentum frame of reference. It is 

suggested that in the infinite-momentum frame, the electromagnetic property of the 

assumed pointlike constituents of the physical nucleon can be treated as that of an 

assembly of independent free particles. The “infinite momentum frame”, by itself, is 

clearly not a Lorentz invariant concept. Furthermore, one can easily show3 that, in 

general, the direction of the infinite momentum cannot be arbitrary. It must be limited 

to a certain restrictive set of directions, depending on the virtual photon momentum; 

otherwise, the mass of each of the pointlike constituents has to be lighter than that of 

the physical proton, and that would be too unphysical. Naturally, this leads to questions 

of whether such an ad hoc rule can be derived from a relativistically invariant theory. 
-- 

In the literature, there have been several attempts to try to derive the scaling 

property from the usual relativistic local field theory. So far, the only success has been 

limited to either the trivial case of free particles (free except for their electromagnetic 

interaction), or the unphysical case of a super-renormalizable q3-type theory4 in which 

all particles must be of zero spin. For the physically interesting case of spin 3 charged 

particles with some non-electromagnetic interaction, straightforward calculation in 

lowest order perturbative expansions leads to a logarithmic deviation from scaling 
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5 
behavior . In order to derive scaling properties for such field theories with renormal- 

izable but not super-renormalizable hadronic interactions, it has been necessary to 

introduce additional ad hoc rules, such as either a transverse momentum cut-of P or 
-- 

the so-called “formal manipulation” of current operators;: etc. However, at present 

the theoretical foundation of such rules appears to be quite uncertain. In particular, 

the transverse momentum cut-off in the field theoretical derivation of scaling leads to a 

formalism and a scattering amplitude that are current-conserving only in the infinite 

momentum frame and in the scaling region, Therefore, it is difficult to see how one 

may derive such an ad hoc cut-off procedure in a bona fide relativistic field theory. 
-- -- 

The purpose of this paper is to point out that if one regards the physical nu- 

cleon as a bound state, then there exists a large class of relativistic field theories in 

which, at least for the deep inelastic electron-nucleon scattering, the scaling property 

as well as the approach to scaling can be derived by using the conventional field-theo- 

retical rules for bound states, provided radiative corrections are neglected8. In con- 

structing the explicit bound-state wave function for the physical nucleon, there is, of 

course, a certain degree of arbitrariness with respect to both the nature of its constit- 

uents and that of the binding forces. In view of the experimental fact that the scaling 

limit seems to occur at a remarkably low energy range, it seems reasonable that the 

masses of the constitutents and the relevant binding energy should all lie approximately 

in the 1 GeV range. Therefore, at least in terms of quantum numbers, these constitu- 

ents should more closely resemble known particles than any unknown particles, such as 

quarkP. As a first example, we assume in section II that the physical nucleon is simply 

a two-body bound state composed of a “bare” nucleon of spin 3 and a “bare” meson of 
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spin 0. The various quantum numbers (charge, spin, isospin, etc.) of the “bare” nuc- 

leon are assumed to be the same as those of the physical nucleon; for simplicity, we may 

assume its mass to be the same as, or at least comparable to, the physical nucleon mass. 

Similarly, for reasons of simplicity, the “bare” meson is assumed to be an SU3 singlet, 

and its mass as well as other quantum numbers to be the same as those of the physical X0 

meson. There is, however, an important difference between a “bare“ particle and the 

corresponding “physical ” one. The electromagnetic form factors of a “bare” particle 

are always assumed to be independent of the 4-momentum transfer. In the language of 

the parton model, these “bare” particles are the “pointlike” constituents of the physical 

nucleon. Whether or not such pointlike “bare” particles that are introduced as constit- 

uents of a physical nucleon will ever be observed is an open question-as is also the case 

for “quarks’‘-at this time. [See, however, the discussion given in section V below. ] 

To illustrate the relation between the scaling limit and the conventional field- 

theoretical rules for the bound state, we adopt the Bethe-Salpeter equation with the 

ladder approximation. The covariant potential responsible for the binding is assumed 

to be of the general form 

v (9) = J (T (K’) dk* 

q2 + K2 

(1-U 

where q* denotes the square of the 4-momentum transfer. The integral Ja(k2) dK2 

is assumed to be convergent; thus, 

v (q) N 0 (q-*1 as q*+ 03 . O-2) 

As will be shown, this implies that as the relative momentum k between the two “bare” 
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particles in the bound state approaches infinity, the wave function cp(k) of the Bethe- 

Salpeter equation has a similar asymptotic behavior 
10 

; i. e., 

9(k) - 0 (k-2) as k* + co . (1.3) 

By using this asymptotic property, one can then establish the existence of the scaling 

’ limit for the bound-state solution. The underlying picture for deep inelastic elec- 

tron scattering that emerges provides a fully relativistic generalization of the “par- 

ton” model that is no longer restricted to special infinite momentum frames. It will 

be demonstrated that one may view the dynamic process as simply the physical pro- 

ton dissociating into its bare constituents, with the electrically charged one propa- 

gating (invariantly with a Feynman propagator) until the instant when it is scattered 

onto its mass shell by the incident virtual photon. The final state re-scatterings be- 

tween the bare constituents will be shown to vanish in the scaling limit so that the 

constituents may be regarded as being scattered independently of one another, just as 

in the usual impulse approximation. Furthermore, for the physical proton in which 

the charged constituent is a bare proton of spin 4 so that m p , = &( [“WJ I we W 

find that as x -, 1 both the W, and vW2 functions approach zero as ( 1 - x)~ 

where x is the customary scaling variable. This is rather encouraging, since it is 

in good agreement with the present experimental result, unlike most spin 4 parton 

models ’ ’ with an ad hoc transverse momentum cut-off which lead naturally to a 
-e 

linear ( 1 - x) dependence as x -c 1 . 

The same bound-state wave function can also be used to evaluate the electro- 

magnetic form factors F 
1 

and F 
2 

of a physical nucleon. Both these form factors de- 

pend on the square of the wave function + . It can be readily shown that, on account 

of (1.3), as the square of the 4-momentum transfer q2 + 43 , apart from factors of 
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In q* , both F, and F2 are 0 ( qg4) , in agreement with the theoretical conclusion 

previously reached by others 
10 

, and with the threshold rule 
12 

relating the power of 

(l-x) inthe W , function and the power of the q *-dependence in the elastic form 

factors. This result has its parallel in the treatment of the non-relativistic bound-state 

problem with the Schradinger equation. Equation (1.3) is the Bethe-Salpeter analogue 

of the condition that the wave function and hence the charge density is finite at the 

origin, from which it also follows that the form factor F, is 0 (q4) as q-~ co . 

In section II, we also discuss the forward Compton scattering amplitude and 

prove an Adler sum rule, which provides a convenient normalization condition for the 

bound-state solution of the Bethe-Salpeter equation . In addition, the crossing property 

to the annihilation channel e + E - ij + anything is discussed in the same section. 

While the Bethe-Salpeter equation is useful n illustrating the relation between 

the scaling property and the bound state system in a relativistic field theory, it has 

some obvious limitations for practical applications. Apart from the mathematical com- 

plexity of solving the Bethe-Salpeter equation, the covariant potential V(q) is not known, 

the ladder approximation is not to be trusted, and furthermore, one cannot expect a 

simple two-particle bound state description of the physical nucleon to be an adequate 

one; due to virtual meson exchanges, there must be some additional multi-particle 

components present. Thus, for further insight as well as for practical applications, 

we adopt in section III a phenomenological approach by assuming that, instead, the 

bound-state wave function + is known. The W, and vW2 functions can then be 

directly evaluated in terms of a phenomenological set of diagrams which are based 

on the usual set of Feynman diagrams for the bound state, In particular, the impli- 

cations of the physical picture of a proton as a bound state on the singularity structure 
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and asymptotic behavior of these diagrams are explored. This phenomenological 

description also allows us to generalize the two-particle bound state concept to in- 

clude some multi-particle components, which in turn makes it possible for a more 

detailed comparison between the present experimental results and some simple model 

. calculations. 

In section IV, a simple ansatz for the multi-particle final state is made and 

the results of this model for deep inelastic electron scattering processes are given. 

In section V we first consider some further applications of the model, such as the 

polarization effect, then discuss some open questions, including “Where are these 

bare constituents to be found in nature?“, “What might be the final meson multi- 

pl icity?” and “Is scaling an exact law in the infinite energy limit?“, and finally we 

compare our approach to some related work of others. 
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II. Bethe-Salpeter Equation 

: ., 

In this section we shall discuss some general properties of the bound-state 

solution of’s Bethe-Salpeter equation in the ladder approximation 
10,!3 

. For definite- 

ness, we assume the bound-state solution to represent the physical proton p , and 

that it is composed of a spin 3 particle P (the bare proton) of mass M and a spin 0 
) 1 

particle X0 (the bare meson) of mass k . It is convenient to use p P and 
v’ v 

X;,,, to zlenote, respectivql,y, the 4-momenta of the particles p , P and X0 . 

Therefore, one has : -’ ., 

pV 
=Pv+X . 

V 
(2-U 

3’ 
, 

A. Bound state wave function 

The eqwation for the bound-state wave function qp(k) can be,written as 
13 

qp(k) = iX J V (k - k’) Kp’(k’) qp(k’) d4k’ (2.2) 

where 

KpO E (-iy* P- M+ie) (X2 +p* - ic) , (2.3) 

i ; 

e = O+, V is the covariant potential given by (1. l), X is the coupling constant, k 

is the relative momentum given by the usual expression 

,, : .: 

k,, = (M+td-’ WV -MX,,) , (2.4) 
/ 

__ -!.’ 
,_. 

the sqlution q,(k) is a &component Dirac.spinor function and the subscript p indicates 

that the, to&l 47momentum pA acts as a constant parameter for the integral equation. 



8. 

It is useful to introduce an associated wave function qp(k) , defined by 

which differs from cp 
P 

(k) only in the inclusion of the free propagator K 
-1 

P 
(k) 

terms of Pp(k) , Eq. (2.2) becomes 

qpt’d = Kp(k) qpt’4 = ix s V (k-k’) ep(k’) d4k’ . 

(2.5) 

In 

(2.6) 

both the wave functions qplc) , qp(k) and the free propagator Kp(k) depend implicitly 

on the total 4-momentum px . For a given V , by setting 

P 2 = -m’ , 
P 

(2.7) 

Eq. (2.2), or (2.6), can be regarded as an eigenvalue equation for the coupling con- 

stant X . 

The asymptotic behavior of qp(k) at large k can be readily obtained from 

(2.6) by taking V outside the integral, provided that 

J $,&‘) d4ki is finite . (2.8) 

That this provision (2.8) is indeed a correct one will be established in Appendix A. 

From (1.2), (2.6) and (2.8), it follows then l5 

CPpt’4 - 0 (k-*) as k2 _ -++a. (2.9) 

[ In Appendix A, the next order correction term to this asymptotic behavior will also be 

given. ] It is also a consequence of the provision (2.8) that in the coordinate space 

the bound state solution is regular at the origin. [ See (A. 19) in Appendix A, 1 This 
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is the relativistic analogue of the familiar result for a non-relativistic two-particle 

system. The bound-state solution of the Schrddinger equation for two particles inter- 

acting via a static Yukawa potential is also finite at the origin. 

B. Conjugate solution 

In a collision process, if the bound-state system is present in the initial state, 

then one can simply use the solution +,@) . On the other hand, if the bound-state sys- 

tem is in the final state then one cannot simply use its Hermitian conjugate $i (k) . 

This is because in the bound-state solution, each of the constituents, either P or X , 

can separately be on its mass shell, and therefore the i e term in (2.3) is of importance. 

To derive the correct conjugate solution, called Fp&) , appropriate for the final state 

description, we shall make use of the time-reversal operation. 

It is convenient to first introduce a 4 X4 matrix rp(k) which relates the 

bound-state wave function *,&) to that of a free Dirac spinor u : 
P 

+,04 = rpt’4 up 

where u 
P 

satisfies the free Dirac equation 

(- i, y* p - mp) up = 0 . 

The matrix rp+) satisfies an equation identical to that of qp&) ; i.e., 

(2. ‘0) 

(2. ‘1) 

Kp(k) rp(k) = i X $ V (k - k’) rp(k’) d4k’ . (2. 12) 

For definiteness, let us adopt the usual Pauli representation 
14 

of the Dirac matrices. 
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Under the time-reversal operation, rp(k) becomes [ Tp&)lT, which is related to 

the complex conjugate rp(k)* by 

‘2 [rpk’]T ‘2 = rp&)* . (2. 13) 

From (2. 12) d an assuming that V is real, one sees that the Hermitian conjugate of 

[ rp&)lT satisfies 

[rp(k)]; Kp(k) = i A j’ [I-~&‘) 1; V (k - k’) d4k’ . 

The conjugate solutions Tp(k) and $p~) are defined to be 

and 

Tpo g u; Y4 [rpck) 1: Kp(k) * 
Equation (2. 14) impl ies that these conjugate wave functions satisfy 

TpR) = $04 Kp(k) = i X J y,&‘) V (k - k’) d4k’ . 

(2. 14) 

(2. 15) 

(2. 16) 

In Figure 1, we give the standard graphical representation of the bound state 

wave function o,(k) and its conjugate solution p(k) . It is important to note that 

these conjugate functions ,l~) p and 9 (k) are not the time-reversed solutions of __ 

cpp(k) and Ip(k); rather, their relation with +,l~) and Cp(k) is the same as that 

between any outgoing wave and its corresponding incoming wave in a scattering 

process. 
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C. Normalization condition and some simple identities 

In terms of the usual Feynman diagram given in Fig. 2, the matrix element of 

the electromagnetic current operator Jv between an initial physical proton state of 

4-momentum p 
V 

and a final physical proton state of 4-momentum 

_ ‘P,: = P, + av 

can be readily derived. Since the electromagnetic vertex of a “bare” proton is simply 

i e yv , one finds for the physical proton 

+‘jJv]p’ = -e (2~r)~ $ d4k (>c+ u*) Fp,(k’) y,qp(k) (2. 17) 

where X 
V 

is related to pv and kv through (2. 1) and (2.4), and k’v denotes the 

relative momentum in the final state which is given by 

k’ = ky + (M+ /.I)-‘px . (2. 18) 
V 

Since the physical proton has unit charge e , one must have 

+/J,,~P> + e(Pvhp) asq,+O. (2.19) 

Therefore, the wave function q,&) t f sa is ies the normalization condition 

(2d’4S d4k (X2 + P*) $0 yv qpck) = - (pv/mp) . (2.20) 

In addition, qpfi) , or op(k) , satisfies some simple identities which are 

I isted below: 

$ yb(k) [G ] 4’,lc) d4k = 0 

V 
P 
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or 

a K;‘t’d 
a 1 opt’4 d-% 

P 

where the subscript p outside the square bracket indicates that the total 4-momentum 

% 
is kept fixed in the differentiation. 

(ii) The normalization condition (2.20) can also be written as 

i (ZIT)~ $ VP(k) Kp(k) qp&) d4k = [d In h/dmp]-’ 
. (2.22) 

The proofs of these identities are elementary; for completeness, they are given in 

Appendix B. 

So far as the bound-state equation (2.6) is concerned, the charge of the constit- 

uents is irrelevant. Thus, the solution 4rp(k), or cpp(k) , can be applied equally well 

to the case in which the physical proton p is composed of, say, a bare neutron N 

and a bare r+ (replacing P and X0, respectively). Instead of the spin 3 constituent, 

it is now the spin 0 constituent that has a non-zero electromagnetic vertex. The first 

identity (2.2’) insures that the limiting behavior (2. 19) remains correct, as it should be. 

Or, one may also regard the bound-state solution q,&) , or qp&) , as describing a 

physical neutron n composed of a bare proton P and a bare TT- . The same identity 

(2.21) insures that for the physical neutron state 

<n’IJvIn> -c 0 as qv = (n’ - n)v-f 0 . (2.23) 

Of course, if the physical neutron were composed only of an X0 and a bare neutron 

N , then < n’ 1 Jv 1 n > would be zero identically. The second identity (2.22) makes 
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it possible to express the normalization condition (2.20) in terms of a single loop dia- 

gram without the electromagnetic vertex 
16 

, as illustrated in Figure 2. 

As we shall see in the following section G, the normalization condition (2.20) 

can be written in still another equivalent form which is related to Adler’s sum rule 
17 

. 

D. Electromagnetic form factor 

To obtain the asymptotic behavior of the electromagnetic form factor for a 

physical proton state, it is most convenient to express <p’ 1 Jv ( p> in termsof 

9p l 
Equation (2. 17) can be written as 

<P’I Jv I P’ = - e (2~)~ J d4X (X2 + u2)-‘6p,&‘) (- i y* P’- M)” yv 

l (-iy* P - M)-‘qp(k) (2.24) 

where pv , k , P 
v v 

and Xv are related by (2. 1) and (2.4), P’v = Pv + qv , and 

therefore 

and 

PJ 
= P\l,+X 

V 

k’ 
V 

= (M+p)-’ (up’/ MXV) . 

(2.25) 

It can be readily verified by using (2.6) and (2. 16) that the current conservation law 

holds; i. e., 

q/p’IJ, lp> = 0 . (2.26) 

Thus, one may write 

<p’ 1 Jv 1 p> = ieu;’ q [yv F1(q2)+(2mp) 
-1 

k ql,cl,,, F2(q2)1 up (2.27) 
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where u and u 
P P’ 

are, respectively, the free Dirac spinors with 4-momenta p and 
V 

P; I c ~ = W(Yp Yv- Yv Y/J, K is the anomalous magnetic moment and Fl(q2) , 

F 
2 

(q2) are the usual charge and Paul i form factors. 

We observe that in the integral (2.24) as q* - 00 , if, say, in the laboratory 

,frame the integration variable X 
V 

is finite, then Pv = p 
V 

- Xv and 

k,, = CM + d-l I-‘P, - Xv remain finite, but (- iy l P’ - M)-l qp, (k’) is O(qo3), 

on account of (2.9); therefore, the integration over finite regions of X contributes 
V 

0 (q”4) to both F, (4’) and F2(q2) , apart from possible factors of In q2 . If the 

integration variable Xv itself is 0 (q) , then the entire integrand in (2.24) is 0 (qW8) 

but 
4 

d X is 0 (q 
4 

) ; therefore, the integration over the X 
V 

= 0 (q) region gives also 

a 0 (q 
-4 

) contribution to F, (q2) , though a 0 (qe6) contribution to F2(q2) . 

To ascertain the In q ’ factor, we may assume for large k2 , that qp+) is 

proportional to (k2 + X2)” . A direct calculation then leads to 
10 

and 

F,(q2) = 0 -+ (In q2J2 

4 I 

F2(q2) = 0 -+- . 
c I 4 

(2.28) 

This is in qualitative accord with present data according to which for q2 k 25 GeV2 

GM(q2) - F, + K. F2 cc (q2 f m2)” 

where m2 g 0.71 GeV’ . The electric form factor G&q*) is known 
18 

only for 

q2 C 4 GeV* , in which region it is proportional to GM(q2) : 

( 1 + K) G&q*) = GMk’i2) l (2.29) 
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Since, by definition, GE(q*) E F, - (q2/4M2) K F2 the model we are using predicts a 

deviation from the relation (2.29). Equation (2.28) may be wrong in detail, based as 

it is on so crude a model of the proton built of two bare constituents. However, as we 

shall see in the following, the physical model of a bound-state proton has led to the 

important general connection of the observed scaling in deep inelastic scattering with 

the rapid decrease of the electromagnetic form factors. We have shown here that a 

rapidly decreasing electromagnetic form factor, F(q2) - 0 (qm4) is implied for a 

bound-state solution of the Bethe-Salpeter equation that is regular at the origin. There 

is a parallel to this result in the non-relativistic Schrddinger theory for which the form 

factor of a bound state that is regular at the origin is also known to decrease at least as 

fastas \qim4 - 
19 

where q is the 3-momentum transfer . 
15 

E. Structure functions 

Next, we discuss the inelastic ep scattering 

e+P -c p+x”. (2.30) 

In the simple model of a two-body bound state where the covariant potential V is 

regarded phenomenologically as a given non-local function, this is the only reaction 

for the deep inelastic ep scattering process. There are two Feynman diagrams, 

labeled Iv and I’ 
V 

in Figure 3. One finds that (in the usual Feynman gauge) 

I 
V 

= e ui ~4 c [--’ y*(P’q)- M]” 9p(kin) 

and 

-9 
-1 

I’ 
V 

= ie (27r) “pi y4<kfITpti/k’> [-ir*p’-M] 

(2.31) 

l yv [-‘r (p- X1)-M]-’ [Z2+ p2]-’ gpbin) d4X’ 

(2.32) 
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where 
ct 

is the virtual photon momentum, k. 
In 

and kf denote, respectively, the 

relative momenta between the P and X0 in the initial bound state and in the final 

continuum state, u p denotes a free Dirac spinor of 4-momentum P , and the matrix 
V 

T is the two-body scattering matrix defined by 

‘<kIT p+q 1 k’ > = i X V (k’ - k) +-(i x)‘(2n)AJd4k” V (k’ - k”) Kp+q(k”) V (k”- k) + l * l 

(2.33) 

in which the subscript p + q denotes the total It-momentum of the system, k’ and k 

are, respectively, the initial and final relative momenta for the two-body scattering 

process. 

The diagram 1 
VI 

by itself, is not gauge invariant. As can be readily checked 

from the three preceding equations, the sum Iv + 1’ , of course, does satisfy 
V 

qv(Iv + I;) = 0 . 

It is useful to decompose the amplitude I 
V 

into a sum of a longitudinal part (I ,, ) 
V 

and a transverse part (IL) , and similarly I’v = (I ;, ) + (I;) such that 
V V V 

qv(Il) = q,(Ii) = O * While the two longitudinal amplitudes (I,, ) and (Ii, ) 
V V V V 

are related through the gauge transformation, the two transverse ones are not. As we 

shall see, in the scaling limit only (IL) is of importance. 
V 

We note that the diagram I 
V 

is identical in form to a corresponding one in 

the usual perturbation series in a standard pseudoscalar-coupling meson theory, except 

that in its evaluation the usual free spinor is now being replaced by the bound-state 

wave function qpp(kin) . Since the usual perturbation diagram fails to scale only by a 

In v factor, the presence of qp(kin) is sufficient to satisfy the scaling property for 
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the present case because of the asymptotic behavior (2.9). By using (2.9) and (2.3 1), 

one can readily verify that in the scaling limit the diagram I 
V 

gives a finite and non- 

zero contribution to the transverse structure function W , , but a zero contribution to 

the longitudinal structure function WL which is related to the standard W, and VW 
2 

functions” 2 by 

VW 
2 

= 2xm 
p (W, +wL) l 

(2.34) 

To derive the contribution of the diagram I’ 
V’ 

it is most convenient to use, 

say, the laboratory frame. The essential point is the observation that the behavior of 

I’ 
V 

is determined by the configuration in which the virtual momentum P’ of the bare 

proton is 0 (q,) . Since each of the loop integrations in the diagrams for 

ck I Tp+s I k’ > is a convergent one and since the additional loop integration over 

X’ in the diagram for I’ is a superconvergent one, the integral (2.32) remains con- 
V 

vergent if the bare proton propagator with the large momentum P’ is taken outside the 

integral. [Actual ly, it remains convergent if, in addition, one takes out also the 

boson propagator. ] It is then easy to verify that in the scaling limit, compared to 

(II) the transverse part (Ii) is smaller by a factor 0 (qm2) , and consequently the 
V V 

diagram I’v does not contribute to W, . Furthermore, its longitudinal part (I ;, ) , 
V 

Iike (I,,) , makes zero contribution to W 
L’ 

The entire diagram I’ can therefore 
V V 

be neglected in the scaling limit. For completeness, a detailed derivation of this result 

is presented in Appendix C. 

With the vanishing of the re-scattering diagram I’ 
V 

in Figure 3 in the scaling 

region, we have now derived, in the context of this model, a fully relativistic gener- 

alization of the “parton” model. We find that the amplitude I 
V 

gives an invariant 
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expression in (2.3 I) of the bare constituent, or parton, propagating invariantly and 

scattering independently onto its mass shell in the scaling region. [This replaces the 

usual parton theory amplitude of elastic scattering of an almost free parton in the im- 

pulse approximation. ] 

To derive the general functional form of the structure functions in the scaling 

limit, one needs only the value of the bound-state wave function qp(k) when one of 

its constituents, x”, is on its mass shell. Let us define 

Lim 

x2+ p2=o 
9p(k) z g (K) y5 up (2.35) 

where, for clarity, the 4-momenta of the two constituents X0 and P in the bound state 

are labeled, respectively, by Xv and Kv . Thus, in diagram Iv given in Figure 3, 

one has 

K = 
V 

Pv - xy = pv - 4, l 

On account of (2.9), the function g satisfies 

9 - O(K-2) as K2 + fco . 

(2.36) 

(2.37) 

Furthermore, as will be shown in Appendix A, in this limit K2 -, +oo , g is a c-number 

function independent of y-matrices. By using (2.31) and (2.35), one finds that in the 

scaling limit 

wL 
4 0 I 0.38) 

+a0 
w, 02 J d” , 

U min (u+M*) 

2 1 g(u) 1’ [(u+ M*>(l-4 +x [CM- mp12 - IJ’]~ 

(2.39) 
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with 

U = P2X 

min 
-- m*x 
1 -X P 

and x = -@P* 4)” q* is the usual scaling variable. The variable u = K2 = (P-q)’ , 

and u 
min 

is the minimum invariant momentum transfer carried by the bare proton 

in diagram I 
V 

of Figure 3. In terms of u , (2.37) becomes 

s(u) - 0 (u-l) as u++co. (2.40) 

We note that, before the scaling limit, the upper limit u 
max 

of the integral in (2.39) 

would be - 2 p l q ; because of the above convergence property of the bound-state wave 

function g (u) , one may set u max to be 00 in the scaling limit. Now, the lower 

limit u min grows as (1 -x)-l as x-l; therefore, in the scaling limit, (2.39) shows 

explicitly that the wave function is being probed for large values of u , or at “small 

distances”. Furthermore, by using (2.40) we find that 

w’ - 0 [(l-x,3] as x - 1 . (2.4’) 

This is in agreement with the threshold relation 
‘2 

since F, (q2) - 0 (q-4) in this model. 

The important physical point is that detailed study of W, near x - 1 measures 

the bound-state wave function of the nucleon, For example, if g(u) is - 0 (u-“) as 

U+CD, then, according to (2.39), W, would be -0 [(l-x) 
1+2n 

] as x-c 1 . 

This behavior is also in accord with the threshold relation; i.e., F, will be 

wl 
-2-2n 

) as q2 + oo . To see this, repeat the arguments leading to (2.9), observing 

that we must replace the potential in (1.2) by V(q) - 0 (q 
-2n 

) in order to obtain the 

asymptotic behavior 9,‘~) - 0 (k 
-2n 

) from (2.6). By repeating the identical arguments 

given above (2.28), the stated result can be proved. 
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In the present simple model where the physical proton consists of only a two- 

body bound state, one sees that, according to (2.39) 

w’ -, constant as x+0 (2.42) 

. and therefore 

VW = 
2 

2xm W -t 0 
P ’ 

as ~40 . (2.43) 

In the hypothetical case that the “bare” proton is, like the X0, also of spin 0 

and, in addition, the covariant potential V(q) is simply q-2 , then the exact bound- 

state solution is known 
20,2’ 

and the corresponding g(u) is given simply by 

g (4 = constant l (u+M2)-’ , w4) 

If in the present case of a spin 3 bare proton, one makes the ad hoc assumption that 
-- 

g(u) remains given by (2.44), then one finds 

w’ 
= constant l 

(1 - x)~{ (1 - x)(M2 - m;x) + 4 x [2 (M - mp)2 + ,.I’]) 

[p2x + (M2 - mix) (1-x)13 

(2.45) 

which, of course, satisfies both (2.41) and (2.42). 

F. Forward Compton scattering 

We now want to verify directly that the structure functions computed in this 

model are in fact the absorptive parts of the forward Compton scattering amplitude 

in the scaling region. That is precisely how W, and W2 are defined in general; 

however, in calculating these structure functions in the preceding section we have 
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used only the inelastic reaction (2.30) while ignoring all other final states consisting 

of ( P + X0+ gluons) where the gluons refer to the quanta of whatever fields are 

responsible for generating the covariant Yukawa potential between the two constitu- 

ents P and X0 . Such on-mass-shell states contribute to the absorptive part of the 

forward Compton amplitude although they are not included in our calculation of the 

preceding section. Nevertheless it will be shown that in the scaling I imit these 

additional states are not important in the framework of our Bethe-Salpeter model with 

the ladder approximation. (For further discussions, see the remark given at the end 

of this section and also comments D and E in section V.) 

In the present simple two-body bound-state model the spin-averaged forward 

amplitude Fxv (p, q ) for the Compton scattering 

Y+P’Y+P 

of a virtual (or real) photon of 4-momentum q, on a physical proton of 4-momentum 

Cl 
can be written as a sum of four terms 

FAV = AhV(Ptq) + A,,$p,-q) + Bxv(p,q) + BJp,-q) (2.46) 

where AXv ( P, q 1 and Bxv (p, q ) represent the corresponding diagrams in Figure 4, 

and $,(p,-q) and BvA(~, -4)’ d enote, respectively, the same diagrams but with 

the two external photons exchanged. The explicit expressions of Ahv and Bxv are 

given by 

AXv(p,q) = iJ(2r)-4d4X(X2 +u2)-‘Pp(kin) [-iy* (p-X)-M]-’ yv [I-iy*P-M-l-’ 

’ yx r-’ y’ (P-‘) - M]-’ ~p(kin’ I (2.47) 
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BXJPI4) = i$(%r) -8 d4X d4X’ (X2+ p2)-’ (X12+ u2)-’ Fp(kf) l-i y* (p-X) - MI-’ 

l yv II-iy*P-M]-‘<k lTp+q 1 k’> I-iy.P’-M,]-‘yA 

. 
I-- i Y l (p-X’)- M I-’ ~p(kin) (2.48) 

where X and X’ 
V V 

are the 4-momenta of X0 as labeled in Figure 4, 

P = pi-q-x, p’ = p+q-X’, (2.49) 

k 
in 

and k 
f 

denote the appropriate relative momenta in the bound state, given respec- 

tively by 

k 
in 

= (M+u)-’ pp-X’ 

and 

kf = (M+u)-’ pp-x , 

k and k’ are the relative momenta in the continuum states, related to X , P and 

X’ , P’ by 

and 

k = (M+p)-‘(pP-MX) 

k’ = (M+c~)-’ (up’- MX’) , 

and <k I T 
p+q 

1 k’ > is given by (2.33). By using the Bethe-Salpeter equation (2.2), 

one can readily verify that Fhv satisfies the requirement of current conservation 

9x Fhv = O l 
(2.50) 
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Thus, Fxv can be written as 

FAv = ?w - 
J2iqx pv-- 

)( 

P* 4 

q2 q2 

U2 (2.5’) 

where U 
1 

and U 2 are scalar-functions of q* and v z - m ,‘(P 4 l 
In this section, 

we are only interested in the case of a space-like photon q2 > 0 with v > 0 . 

As we have already noted, in the present model the absorptive parts (i. e., 

the imaginary parts) of U, and U2 are, in general, different from the corresponding 

structure functions ~TW 
1 

and ITW 
2 

calculated by using only the inelastic reaction 

(2.30). However, as we shall prove in Appendix D, in the limit q2 + co , v --c 03 , 

but keeping x = (2 mp v) 
-1 

q2 fixed, 

Im U, + nw 
1 

and P2. 52) 

Im (v 5 > 4 dvw,) 

where W , is the same function given by (2.39) and vW2 = 2 xmpW, . Of course, 

had one included all diagrams, then Im U, = *W, and Im U2 = rW2 should hold at 

al I values of q2 and v . The above expression (2.52) shows that under the ladder 

approximation these equalities are at least maintained in the scaling limit. 

As will be shown in Appendix D, the diagram Bxv in Figure 4 can be neglec- 

ted in the scaling limit. We emphasize that in the Bethe-Salpeter model with the lad- 

der approximation, the gluons are exchanged o& between different bare constituents. 

This is why in diagram Bxv these on-mass-shell intermediate (P + X0 + gluons) states 
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are of no importance in the scaling limit. In a bona fide relativistic local field 
-- 

theory, there must be other forward Compton diagrams which contain gluon radiative 

corrections, or renormal izations; in these diagrams, there are emissions and absorp- 

tions of gluons by the same bare constituent. The imaginary part of these diagrams 

.would correspond to gluon radiation in deep inelastic ep scattering; such processes 

lie outside the present framework of a simple two-body bound-state model, and are 

therefore not included in our calculations on structure functions. As will be discussed 

in comment E of section V, at least in a perturbation series, these additional gluon- 

radiation diagrams would lead to violations of the scaling property. 

We note that, like the diagram I’ in the previous section, the diagram Bxv 
V 

contains an s-channel pole at (p+q)2 + m 2 = 0 . 
P 

Both diagrams are needed for main- 

taining gauge invariance, and both can be neglected in the scaling limit. 

G. Adler sum rule 

In this section, we shall show that the normalization condition (2.20) implies 

that in the scaling limit the vW2 function should satisfy 

J-’ x-’ dx (VW,) = 1 (2.53) 

0 

where vW2 = 2xmp W, and W , is given by (2.39). Equation (2.53) is (essentially) 

‘7 
the Adler sum rule , but applied to the present simple two-body bound-state model of 

the physical nucleon. By using (2.39), one sees that the above integral is a convergent 

one. Equation (2.53) then determines the proportionality constant in (2.39). Our 

interest in deriving (2.53), or equivalently in our model, in proving the Adler sum rule 

stems from the fact that, on the basis of (2.20) alone we cannot in practice normalize 
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our structure functions. This is because we have not solved the Bethe-Salpeter equa- 

tion explicitly for the wave function; we have simply derived those general properties 

and the asymptotic behavior of ‘lag as required to establish scaling properties, 

asymptotic behaviors of the elastic form factors, and the threshold theorems. In nor- 

malizing the current in (2.20) we have to know the exact wave function ep&) for 

all momenta k 
tJ 

which is integrated over its entire range, while in evaluating vW2 

we need only g (u) , which is, according to (2.35), determined by qp(k) when one 

of the constituents, X0 , is on its mass shel I. The sum rule (2.53) provides the needed 

normalization of the structure functions for our purposes. 

It is useful to define a new scattering amplitude 

F& kw) z +,$rq) - Avhb,-q) + BXV(p,q) - f,xJp, -4 (2-W 

where A 
XV 

and B xv are given respectively by (2.47) and (2.48). If one wishes, one 

may relate F’ 
hV 

to the vector part of the v’ p scattering amplitude. However, for the 

purpose of deriving (2.53), the precise nature of the physical process that is represented 

by this amplitude F ’ 
XV 

is immaterial. By definition, Fiv satisfies 

F~v(p,d = - F;+p,-q) . (2.55) 

By using the Bethe-Salpeter equation (2.2) and the normalization condition (2.20), one 

can readily establish the divergence condition 

qv Fiv = 2m;’ ‘A 

and therefore 

9x 9, Fiv = 2mi’(p* q) = - 2v . 

(2. w 

(2.57) 
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Equation (2.56) is the crucial result, since it plays the role of current algebra 

in the usual derivation. Once we have established the divergence condition, we need 

only verify that Fiv satisfies appropriate convergence requirements (unsubtracted 

dispersion relations) when v 4 co . This is explicitly clear in the discussions of Adler 

‘7 
I and Bjorken . We reproduce the necessary algebra in Appendix E, commenting here 

only that the asymptotic behavior of the wave function (1.3) insures the required con- 

vergence properties which establish (2.53). In the literature, the Adler sum rule has 

been derived for the part of the forward Compton amplitude that is odd under crossing, 

that is for the difference of amplitudes for neutrinos and antineutrinos incident on a 

given target nucleon, In our model with a single charged nucleon in the bound state, 

the coupling of the z-component isospin I3 (electromagnetic) current to the proton is 

1 

just 2-’ in strength relative to that of the usual I f= 2-’ (I, + i 12) current in the 

weak interaction. 

H. Crossing to the annihilation channel 

The physical process of 

e+‘e + ‘3 + anything 

is related to deep inelastic scattering’ 

e + p- e + anything 

(2.58 a) 

by crossing symmetry. In a perturbation calculation of these processes, this can be 

proved by applying the usual substitution rule to each Feynman graph order by order. 

It has been shown’ that this symmetry persists in the cut-off field theory model and that 
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as a consequence the structure functions for Q.ssa), ($V, , W2), are analytic contin- 

uations into the physical region for this process of the structure functions for @.58b), 

(W , W ) . Moreover, the scaling behavior for these functions has been derived for 
1 2 

the deep inelastic annihilation and scattering regions, respectively. In particular 

and 

w, 04 = W,(x) 
O-59) 

v w, (4 = VW,(X) ; 

i.e., $V , is the continuation of W,(x) from the physical region for (2.58 b) with 

x > 1 to the physical region for Q.58’d with x < 1 , where now l/x is the fraction 

of the total e Z collision energy deposited on the observed hadron in the collision 

center-of-mass system. 

The practical value of (2.59) is its prediction of the magnitude of the cross 

section for Q.58a) near x = 1 in terms of scattering measurements. More generally, 
-- 

if we can prove (2.59) for our physical bound-state model, then we have a prediction 

of the threshold behavior for the inclusive annihilation process in accord with (2.4,). 

The crossing properties of the scattering amplitude depend on those of the wave 

function g(u) appearing in it. Generally, we destroy crossing symmetry when working 

with the Bethe-Salpeter equation in the ladder approximation. However, for study 

of the threshold behavior we require only the solution for g(u) for large values of u 

according to (2.40). For the inelastic scattering near threshold as 1 - x - 0 +, 

u-+02 , whereas for the crossed or annihilation process the virtual intermediate 

constituent is timelike or masslike in Figure4 with u-+ -00 . In both cases, (2.40) 
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states that g(u) - 0 (u-l) as u~fco. Therefore, (2.59) is valid near x - 1 for our 

bound state model. However, we have not studied the general crossing properties for 

arbitrary x . 
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III. Phenomenological Approach 

In this section we reconstruct the results of the Bethe-Salpeter model of the 

preceding section by developing a phenomenological approach for studying a bound- 

state model of the proton’s structure. Our starting point is the diagram I 
V 

in Figure 3 

and its corresponding amplitude, by (2.31) and (2.35): 

I = 
V 

e upt y4 yv 1. - i Y l (P-q) -M-I-’ y5 upg(u) 

where g (u) is the wave function at the (pPXo) vertex and is a function of the 

mass of the virtual P with both the p and X0 on their mass shells. In this phe- 

nomenological approach, we shall for simplicity assume g (u) to be strictly a c- 

number function, whereas in our previous discussions on the Bethe-Salpeter equation 

g (u) is a c-number function only in the limit u 4 0~) . 

A. Current conservation 

Equation (3. 1) is not gauge invariant as noted earlier, and its completion requires 

that final state rescattering effects be added. Thus, in the Bethe-Salpeter approach we 

accomplish this by adding the diagrams I ’ in Figure 3. These take into account the 
V 

fact that the exchange of quanta between the constituents P and X0 that gave rise 

to the initial bound state of the physical proton is still occurring after the virtual photon 

q is absorbed. In the well known way, all possible insertions of the photon must be 

made on the charged line in Figure 3 in order to insure current conservation. 

In constructing the terms which must be added to (3. 1) in order to give us an 

overall current-conserving amplitude for inelastic scattering, we are guided by two 
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principles: the first is simplicity, and the second is our insistence not to introduce 

any “unwanted, unphysical ” singularities in the amplitude. We may directly write 

in accord with these principles 

II 
t 

= + i e up y4 ys Up 
(2Pv+ qv) 

V g (4 

[(p+q)* + m; 1 
(3.2) 

so that qv(Iv + IIv) =0 . This form has an s-channel pole at the bound-state proton 

mass, as it should. In the simple phenomenological approach, it seems sensible to 

choose only functions with simple poles. This is to be contrasted with our previous 

Bethe-Salpeter approach in which IIv is replaced by I ’ of (2.32) which has in 
V 

addition to the same bound-state s-channel pole also cuts due to the continuum states. 

Of course, Eq. (3.2) is not unique and one can readily construct a more general term 

that, for simplicity, still retains the spin structure of (3.2) by writing 

fi 
V = ieup 4 5 P 

t, Y u [A, Pv +h2qv+X3 p,l 

where Xi are scalar functions of the three independent scalars 

s s (p +tq)2 ; u z (P-q)2 ; t 5 (p-P)2 , 

with 

s+t+u = - 
c mp2 

+ M*+ u*-q*] . 

(3.3) 

(3.4) 

Current conservation requires that the functions X; satisfy the restriction 

x, q l p+X2q2 +x39 l p = g(u) l (3.5) 

Such a relation has no unique solution; we can add to any particular solution of (3.5) 
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arbitrary amounts, 6 X 
1’ 

such that 

sx,q.p + sx2q* +SA3q*P = 0 . (3.6) 

This is equivalent to the observation that the restriction of current conservation fixes the 

amperian current interactions, but not the non-minimal terms proportional to electro- 

magnetic field strengths and their derivatives. These are automatically gauge invariant. 

In our model we rule out all such non-minimal terms. For example, their presence in 

the interaction Lagrangian of a relativistic field theory calculation generally leads to 

non-renormalizable theories. If included in the electromagnetic interaction of the con- 

stituents (or pat-tons), they violate scaling. 

Returning to (3.5), we look for that solution which introduces no additional 

u-channel singularities since these are already contained in (3. l), i.e. the graph I 
V 

in Figure 3. We also rule out t-channel singularities, or by (3.4), poles in the photon 

mass q*, since the X0 is taken to be neutral with no direct electromagnetic inter- 

action. We find therefore that (3.5) gives 

A, = 2x2 = 2s (4 

[ (P+4)*+m,“l 

; x3=0 (3.7) 

and (3.3) reduces to (3.2). We have now the inelastic scattering amplitude according 

to our criteria of simplicity, of minimal electromagnetic couplings, and of no unwanted 

singularities in the u- or t-channels. 

B. Bound-state vs. elementary particle model of the proton 

The difference between a physical model of the proton as a bound state of two 

constituents, and an elementary particle picture of the proton lies in the behavior of 
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the wave function g(u) . As we have already shown for a particular bound-state model 

in the ladder approximation to the Bethe-Salpeter equation, as illustrated in Figure 3, 

the wave function behaves as in (2.40); i.e. 

s(u) - o+ for u-cfao (3.8) 

where u is the virtual mass of either of the constituents forming the bound state. On 

the other hand, if the nucleon is elementary and there is an elementary vertex inter- 

action, as illustrated in Figure 6, in place of g(u) y 
5 

one has the vertex function 

G y5 where G is a constant in the lowest order perturbation calculation. Furthermore, 

even if one includes final state interactions with a potential given by (1. 1), the effective 

vertex function G for the three-point function p - p + X0 , after summing over all lad- 

der diagrams in the final state of p X0 , remains dominated by this non-vanishing lowest 

order diagram at least at large u ; therefore, in the ladder approximation 

G- constant for large u . (3.9) 

This contrast between bound-state and elementary-particle descriptions of the nucleon 

has been analyzed and discussed in some detail by Ball and Zachariasen 
10 

. 

From the view of the elementary-particle model, one may, of course, invoke 

the possibility that the final state strong interaction can be quite complicated, and that 

for some unknown reason the three-point vertex for p -c p + X0 is given phenomenolog- 

ically by G y5 where G does not satisfy (3.9); instead, it can be of a general form 

G = G (p* , P* , X2 ) (3. ‘0) 
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where p and P denote the initial and final momenta of the same elementary particle 

p , and X that of the boson as before. Because of crossing symmetry, 

G (P’ , P* , X2) = G (P’ , p* , X2) . 

As we shall see, even then there is an important difference between the elementary- 

particle approach and the bound-state approach. 

As shown in Figure 6, there are at least two standard diagrams T 
x 

and fl 
x 

for 

the process 

Y+P - p + x0 

in the elementary particle approach. In these two diagrams, the electromagnetic vertex 

is assumed to be given by the usual minimal interaction e y 
A’ 

If G is a constant, or 

if G satisfies (3.9), then the result does not scale as noted before. With G given by 

(3. lo), the sum of the first two amplitudes in Figure 6 is just 

‘-,,+ II 
1 

x 
= ieu’, 

P L- y5 
-i ye (p+q) - m 

rj, G (s, - m2, - r*> 

+ rx 
1 

-i y. (PI-q)- m 
Y5 G(-m2, 4-r*) 1 up 

(3. 1’) 

where m is the nucleon mass, q is the photon momentum, and p and p’ denote 

respectively the initial and final proton momenta. If G is not a constant, then 

(3. 11) has the defect of failing to conserve electromagnetic current, viz. 

- - t 
qA( IA+ IIA) = -eupl y4 y5 up 

c 
G(s,-m*,-p*) - G(-m2, u, -p*) 

I 
. (3.12) 
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One is led to remedy this defect in the usual manner by adding to the amplitude (3. 11) 

a four-point contact interaction as the diagram III 
x 

in Figure 6 which is suitably tailored 

so that the additional contribution, III 
X’ 

restores current conservation to the overall 

amplitude: 

(3. 13) 

As in our prior discussion of (3.3) and (3.4)’ there is no unique solution to this 

condition, but one usually searches for a “guess” that is both simple and free of un- 

wanted singularities. In this elementary nucleon example, the latter condition means 

in particular that KI, should contain neither s- nor u-channel poles since the direct 

and exchanged nucleon poles are already 

trast, for a bound-state physical model an 

term in (3.2)’ since it represented the ent 

ncluded in the two terms of (3. 11). In con- 

s-channel pole was introduced in the gauge 

re s-channel contribution. As we shall see, 

in the bound-state approach it is the presence of this growing denominator factor at 

high energies, S-COO, that leads to the limiting behavior that the gauge term vanishes 

in the scaling region. Without the large denominator, the gauge terms generally will 

grow and eventually destroy scaling behavior, as would be the case in the elementary- 

particle approach. For example, we may choose 

G(s,-rn: -p*) - G(-m*,-m*,-p*) 
(2P-w~ 

_, s-km* 

_ G(- m*, u, - p*) - G(- m*, - m2, - r”> (2p, _ q) 
x 1 (3.14) 

u+m* 

which satisfies (3. l3), h as no unwanted poles, and is also the result of the standard 
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minimal electromagnetic coupling; i.e., as can be readily verified, if one represents 

the three-point vertex G y5 by an effective Lagrangian, the formal replacement of 

a a 
ax 

x 
by ax,- i eAX for the charged field in the Lagrangian would lead to a four- 

point function given by (3. 14). By choosing a sufficiently convergent function G , 

the contribution to the structure functions from the square of the first two amplitudes, 

T,+ TI, in (3. 13)’ can be easily made to vanish in the scaling limit. However, the 

third amplitude z, survives in the scaling limit due to the constant vertex 

G (- m*, - m*, - p’) that was added to both terms to remove the s- and u-channel 

poles and leads to a logarithmic violation of scaling for the transverse function W, 

and a linear one for the longitudinal function W 
L’ 

and therefore also for v W 
2: 

VW 
2 

- O(v) 

and 

2mv 

w1 
-+ constant J 

udu 
G* (- m*, -m*, L p”) + finite terms 

U 
min 

(u +m’)’ 

0~ I,$+ l --* 

(3. 15) 

where u 
min 

= lf.2 - m2x 
l-x 

. We can trace the origin of the difficulties leading to 

(3. 15) to the appearance of an elementary s-channel pole term in the diagram fix of 

Figure 6. No such diagram a,ppears in the bound-state model because there is never a 

first moment for the electromagnetic current to interact with an elementary charged 

constituent “before” it finds itself bound into the physical proton. In the bound-state 

model, the s-channel pole term is introduced only through the final state interactions 

between the emerging constituents after they have been struck by the photon. In place 

of the amplitude ii, + iii,, one has the amplitude IJv given by (3.2) in the simple 

phenomenological approach l-or Ii, given by (2.32) in the Bethe-Salpeter approach. 1. 



36. 

For a bound-state proton with the wave function (3.8) it is easy to show that 

the contribution to the structure functions W 
1 

and VW 
2 

coming from the added “gauge “ 

term, or II in (3.2)’ vanishes as l/q’ in the scaling limit. This is because in the 
V 

scaling region of large v and q* the energy denominator in this amplitude is large, 

7v or s, and cannot be cancelled by large numerator factors in integrating over the 

final two-particle phase space when the region of large u values is damped as in (3.8). 

Both the square of the gauge term IIv and its interference with I 
V 

can be computed 

for studying the approach to scaling, but the entire contribution in the scaling region 

comes only from the amplitude Iv in (3. 1). This conforms to the simple “parton” 

picture in that the relevant mechanism is the “dissociation” of a physical nucleon into 

its constituents as it interacts with the electromagnetic field. Whereas the parton model 

is limited to the infinite momentum frame, we have now a covariant and current- 

conserving description in terms of Feynman propagators, As expected, our final 

result in the phenomenological approach scales and coincides with (2.39)’ which 

was obtained previously in the Bethe-Salpeter approach. 

We recall from section II that the same bound-state model of a proton that leads 

to a scaling behavior for the inelastic structure functions also predicts a rapid decrease 

of the electromagnetic form factors: 

F,h*) - 0 a (In q*)* - 
I 

and F2(q2) - 

q . 
(3. ‘6) 

in qualitative accord with present data. Since the physical model constructed here with 

a phenomenological approach has the same wave function behavior for large momenta, 

i.e., g(u)“O(t) f or ar e u according to (3.8)’ we again find as in section II that 1 cl 
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W, -0 [(‘-x)~] as x+ 1. As noted before, this is in agreement with the threshold 

relation by (3. 16). Moreover, the crossing relation to the annihilation channel described 

in section II remains valid. Finally, we note that the added amplitude II 
V’ 

as 

required for gauge invariance, can also lead to a sum rule (2.53) of the Adler type 

for normalizing the structure functions in the phenomenological approach. 

While the simple phenomenological approach described in this section is guided 

by the Bethe-Salpeter equation, it has a greater heuristic value than our previous Bethe- 

Salpter approach. It allows us to dissociate the rigid connection between the vertex 

function g(u) and the solution of a particular class of equations based on the ladder 

approximation. For any given g(u) , the amplitude (Iv + IIv ) is relativistically 

invariant and gauge invariant, thus allowing us to calculate directly the structure 

functions in the scaling limit as well as the approach to scaling. 
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Iv. Simple Model Calculations 

The description that a physical nucleon is only a two-body bound state is 

clearly an over-simplified one. Through virtual meson exchanges there also must 

be multi-meson channels connected to the physical nucleon state. Furthermore, as 

we shall see, the existence of such multi-meson channels can alter the limiting be- 

havior of the structure functions as x + 0 ; in particular, VW 
2 

may approach a con- 

stant, instead of zero as given by (2.43) for a two-body bound state. 

A. First example 

In order to illustrate such possibilities, we take as a first example a simple 

ansatz that the physical nucleon p or n consists of (i) a two-body state composed of 

a bare nucleon P or N and an SU3 singlet X0, and (ii) a multi-body state composed 

of, at least, a bare SU3 octet baryon and two SU3 octet mesons, say P IT’ IT’, or 

I+ K- ,’ , etc.; formally, one may write 

P = (PXO) + (P~IT) + (IKIT) + .** (4.‘) 

etc. LThe possibility that there should also be, in addition, a two-body (P n) channel 

will be discussed later. ] While the actual bound-state calculation for a multi-particle 

system is complicated, a phenomenological description, based on the bound-state idea, 

can be easily given. Following the discussion given in section III, we may represent 

the reaction 

Y+P -, P + x0 (4.2) 
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by diagrams IA and IIA in Figure7, the reaction 

Y+P’ P + lr” + lr” F-3) 

by diagrams IIIx and IVA in the same Figure, etc. The amplitudes IA and IIA 

are given by (3. 1) and (3.2) respectively; i.e. 

I 
x= ey!qYJ- i y- (P-q) - M]-’ 

ys upg 

and 

IIh = i4qygup [b+q)2+m~]-‘(2p+q)xg - 

In complete analogy, the diagrams IIIh and IVX may be represented by 

IIIx = ieuJr,YA[-iy.(P-q)-Ml-‘upgl 

and 

IvA = -euJ y4 up [ tp+q)* + mp2 1-l (2p+q)xg’ 

(4.4) 

8.5) 

(4.6) 

(4.7) 

where, as before, g denotes the two-body bound-state wave function when X0 is on 

the mass shell, and similarly g’ denotes the three-body bound-state wave function 

when both mesons are on their mass shells. Thus, g depends only on one variable, say 

u = (P-q)*, but g’ depend: on three variables, say (p- Hi)* , ( p- rb)* and 

u = (P-q)* where IT and IT 
a b 

denote the final momenta of the two pions. It is easy 

to see that for arbitrary g and g’ one has 

qx ( Ix + IIA) = 0 

and (4.8) 

qx ( IIIx + Ix) = 0 . 
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In a phenomenological approach, g and g’ may be assumed to be any 

reasonable wave functions. We note that according to (3.8) 

s(u) - 0 (u-l) as U-COD . (4.9) 

For definiteness, g(u) may be assumed to be given by (2.44 ); i. e., 

g(u) 02 (u + M*) 
-1 

(4.10) 

which, we recall, is the rigorous solution of the Bethe-Salpeter equation if all par- 

ticles are of zero spin and if V (q*) is q’* . To assign a specific form to g’ , 

there is at present very little theoretical guidance. Purely for reasons of computational 

simplicity, we choose as an ansatz for g’ 

!3’ = g’(4 64. “I 

which depends only on u . Physically, this corresponds to the assumption that the 2a 

system behaves like a composite of a variable mass K , and that as an extremely crude 

approximation g’ is taken to be independent of the mass K and the other internal 

variable of the 21r system. It is then straightforward to evaluate the structure function 

by using (4.6) and (4.7). We find that in the scaling limit, diagrams IIIx and NA 

lead to a W, function given by 

03 

w, oc ,f U(K) dk* s” d” 

4P2 U 

2 1 g’(u) l*{(u +M*)(l-x) +x [(M- mp)*- ~‘1) 

min (U + M*> 

(4. 12) 

where p is the pion mass, 

K* X 
U = 

min 
- m*x 

l-x 
P 

c4. ‘3) 
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and CT(K) denotes the density of states for the 2s system which is given by 

u(K) = K (K’ _ 4$]’ . 
-1 @*‘4) 

As expected, the integrand inside the first integral in (4. 12) is identical to that in (2.39) 

except for the replacement of g by g’ and p by K . 

From (4. 12), one can readily verify that if 

g’ (4 + 0 (u-y 

where n 2 1 , then 

w1 
- 0 [( 1-x)‘+2n.-] 

as U-OD 

as x41 

(4.15) 

(4.16) 

and 

w1 
-, 0(x-‘) as ~40 . (4. ‘7) 

This latter behavior is closely connected with the property that the density of states 

satisfies 

+> + constant as K-CO . c4.W 

From a phenomenological point of view, the precise origin of the approximation (4. 11) 

is not of immediate concern. We may regard (4. 12) as representing the combined 

contributions of all multi-body states, not just the three-body state, provided that 

(4. 11) and (4. 18) serve as reasonable approximations. 

To assign a specific value for n , we may be guided by the aforementioned 

crude physical picture of the (P 271) system. Let us neglect the n- 71 interaction. 

The two pions, say IT and nb , 
a 

are then bound only through the two-body 7t P 

potential V . The most elementary Feynman diagram for the three-body potential U 
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should consist of two bonds: one links s to P and the other n 
b 

to P. Each bond 
a 

gives a factor V , and therefore U is proportional to the square of V . Since as 

q* - co , V is - 0 (q-*) , one may expect U to be - 0 (q 
-4 

) where q denotes the 

4-momentum transfer between P and the (2~) system, assuming that q is of the same 

order as the 4-momentum transfer between P and each individual pion. This crude 

picture suggests that as a pure trial form one may assume n = 2 in (4. 15); i.e. 

9’ - 0 (u-‘) as u-cm. 

For definiteness of calculation, we make the further ad hoc assumptions that g is 
-- 

given by (4. 10) with M = mp, i.e., apart from normalization factors, 

-1 
$I = tu+mi) , 

and similarly g’ is given by 

g’ = (u + mp2)-* . 

The result is then, for the physical proton 

W,) = 
P 

P, ,[FII(“) + ap F](x)] 

(4.19) 

64.20) 

where ap and /3 
P 

are constants, the contribution due to the two-body channel is 

proportional to 

FI(x) = (l-x? 

mp4 [mp2( l-x)* + i rni x-J 

[mp2(1-x)* +m);x13 

(4.21) 
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and the contribution due to the multi-body channel is proportional to 

FIIt4 = x -’ (1 - x)~ h(x) , (4.22) 

in which 

h(x) = ’ 

64 (l-x)~ c 

135 -- 33 [* - 23 t4 - 15t6 

_ 3 (‘-[*)(45+ 19[*+ 11*4+5t6)ln 5 (4.23) 

24 II 

and 

5 = [(l-x)*+4x(u*/mp’)]-’ (l-x) . (4-W 

The function h(x) satisfies 

6 

h(0) = 1 and h(l) = (4.25) 

Similarly to (4. l), one may regard the physical neutron as being composed of 

n = (NX’) + (N2n) + (NH) + 9-o c4.w 

which can be obtained from (4. 1) through the usual charge symmetry operation. In 

this simple model of the physical neutron, the constituents in the two-body channel are 

all neutral; thus, only the multi-body channel can contribute to structure functions in 

the deep inelastic en scattering. One finds 

w, ) 
n 

= P, FII(x) . 

The parameter p 
n 

is related to the probability of finding a charged baryon in the 
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multi-particle channel of the physical neutron state, and the parameter /3 is related 
P 

to the corresponding probability in the physical proton state. The ratio (8,/P,) 

depends on the detailed SUS structure of the multi-particle channel. For example, 

in the three-body channel, if the two mesons are in a pure octet state then (8,/B, ) 

should lie within a range 0.58 < (/3,/p,) < 1.8 . 

In the multi-particle channel, since the bare mesons can carry charge, there 

must also be diagrams in which the photon is absorbed by the bare meson. These dia- 

grams lead to a non-vanishing longitudinal structure function WL . The magnitude of 

WL depends on the bound state amplitude g” in which only the relevant bare charged 

meson is off the mass shell while all other constituents, mesons and baryons, are on 

their mass shells. The ratio 

is a free parameter in the simple phenomenological approach, though it should be 

computable if one knew the correct potential and, in addition, could solve the cor- 

responding Bethe-Salpeter equation. Since the present experimental value of WL , 

at least for ep scattering, is quite small and uncertain, we shall assume, for sim- 

plicity, 

1 I 17 << 1 . (4.29) 

For a comparison with the present experimental value, we set in FT, Eq. (4.21), 

the value for m X to be simply the observed X0 mass g 958 MeV , and in F 
II f 

Eq. (4.22), th e value for (u*/m,2) to be 
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lL= 
3m2 +4m2 + m* 

71 K 77 - = .12 
mp2 3m; + 2rnk + 2ml+m/\2 

L 

(4.30) 

which represents in. an approximate way its SU3 average over different three-body 

states PITS , ZKn, etc. In Figure 8, the theoretical curve for (Wl ) is plotted 

P 

by choosing 

pP = l 22 
and 

aP 
= 1.4 . (4.31) 

The corresponding ratio for (Wl ),/(W, )p is plotted in Figure 9 by assuming as a 

simple choice 

P, = Qn (4.32) 

which means that in the multi-particle channel, the probability of finding a charged 

bare baryon in the physical nucleon state is almost independent of the total charge of 

the physical state p or n . 

We recall that, as shown in section II, in the simple model where the physical 

proton consists of only the two-body channel P X0 , the (VW,) function satisfies an 

Adler sum rule (2.53); furthermore, since in that simple model vW2 = 2xmp Wl , 

Eq. (2.53) may also be written as 

1 

2mp J dx (W,) = 1 . 

0 P 
(4.33) 

1 

In the present case, because of multi-particle channels, the integral J dx (W ) 

0 1 P 

diverges, and therefore Eq. (4.33) cannot possibly hold. [Apart from other reasons, 
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the assumption of no subtraction constant for the dispersion integral is clearly not 

valid here, unlike in the simple case of a two-body bound state discussed in section 

II. ] However, if one chooses l3 
P B 

= n , then the difference (W 1 ) p- W,) de- 
n 

pends only on the PX” channel; in this case one may define 

rs 5 2m 
s’ _dx pyp - W,) 

p 0 
n 

] l 
(4.34) 

Heuristically, 5 may be regarded as the probability for finding the PX” channel 

in the physical proton state. Thus, c should lie between 0 and 1 . For the choice 

of parameters given by (4.3 1) and (4.32), 5 =” 0. 17 . In the simple model where the 

physical nucleon consists of only the two-body channel P X0, or N X0, one has 

(W,) =O and g = 1. Equation (4.34) then reduces to the sum rule (4.33). 
n 

B. Second example 

So far we have neglected the possibility of a two-body channel in which the 

meson can also be charged, such as (N IT+) , (1’ K+), etc. The inclusion is straight- 

forward; it leads to, instead of (4.20) and (4.27), 

(wl )p 
= P, [ FIl(4 + ap FI(x) + $ Fi <x) ] 

and 

W,) 
n 

= &, [ FrI(4 + a; Fi (XI] 

where a’ and a’ 
P n 

are new parameters, 

F; (4 = (l-x)3 

rnz [mp2(1-x)2 + i p2 x] 

[mp2( 1 -x)’ + u2x13 

(4.35) 

(4.36) 

(4.37) 
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and p*/mp’ is given by (4.30). We note that, as x - 0 , (W ) /(W ) 
1 n 1 P now 

approaches a non-zero constant. The presence of such new two-body states will also 

give a new contribution to the W L function. The magnitude of this WL function de- 

pends on the two-body wave function g”’ in which the charged meson is off-mass-shell, 

but the baryon is on-mass-shell. It is easy to see that 9”’ should have a similar asymp- 

totic behavior as that of g (u) given in (4.9). If one assumes, similarly to (4. lo), 

9 
111 

cc b+ p2) 
-1 

(4.38) 
. 

then the resulting WL function is proportional to 

F&x) = 

x(l-~)~ [m2 x2 -I- &.l* (l-x)] 
‘* , 

c mp2 x2 +l.~~(l-x)]~ 

(4.39) 

Equation (4.39) h s ows that the threshold relation which we have derived for spin 3 

charged constituents and the transverse structure function is not, however, valid for 

spin 0 constituents for the longitudinal structure function. For interactions with both 

nucleon end pion currents, the elastic form factor decreases 
10 

as l/q4 ; but Eq. 

(4.39) shows only a quadratic threshold behavior ( 1 -x)’ for WL as x- 1 . That 

WL musr be an even function of ( 1 -x) near threshold was already proved in Ref. 6. 

At present, the experimental data is consistent with a’ z a’ g 0 . 
P n 

We showed in our Bethe-Salpeter analysis that structure functions measure 

the wave function of the bound state, In this section we have now shown that a sim- 

ple guess of the wave function can provide a qualitative fit to the data. 
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V. Comments 

A. The physical bound-state model that we have developed in sections II and III 

avoids some of the formal difficulties of the parton model. It is Lorentz invariant 

‘and relativistically covariant ,at each step of the development, not just at the in- 

finite momentum scaling limit. It provides a physical connection between the ob- 

servations of scaling of the structure functions in deep inelastic scaling and of rapid 

decrease of the electromagnetic form factors in elastic scattering. It also reveals 

the relation between the bound-state wave function of the proton for large momenta, 

i.e., g(u)* O(u-‘), and the threshold behavior of Wl - 0 [ ( 1 -x)~ ] near. x = 1 

as well as its crossing property to the annihilation channel, In addition, since the 

bound state is constructed of a few (two or three) constituents of masses s 1 GeV 

there is no large parameter > (1 GeV)2 against which to measure m v or q2 in 
P 

approaching the scaling region. This model gives then a qualitative understanding 

of the fact that in’ ep inelastic scattering the scaling pcoperty is already observed 

at relatively modeiate energies. 

In the context of this model we may ask what will be the bshavior of inelastic 

transitions induced by very virtual photons to specific final states (a. g., “y” -t p - A , 

or - p + r, etc. ). In order to fotm such states it is necessary to add specific fihal 

state interaction channels such as illustrated schematically in Figure 10 for 

“y” + p - p + some fixed meson channel, Aside from spin factors and their accom- 

panying numerator polynomials, the amplitude for this graph wil I have the same 

asymptotic behavior for large q2 as in Figure 2 for the elastic form factor. The 

large momentum q can ride along the virtual bare proton line, marked P’ , in 
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both diagrams since the proton’s decreasing wave functions introduce more than 

enough powers of momentum to converge the loop integrals. Therefore, the added 

propagator and vertices connected with meson wave functions in Figure 10 have no 

effect on the power dependence of the asymptotic behavior; aside from spin factors 
22 

, 

the structure functions for such “exclusive” reactions will show form factors decreas- 

23 
ing with increasing q* . 

B. The bound-state model constructed in the previous sections can also be applied 

to calculating additional observables-in particular spin-dependent effects for scat- 

tering of polarized electrons from polarized targets 
24 

and neutrino and antineutrino 

deep inelastic cross sections. Near the threshold region, i.e., near x = 1 , the 

two-particle state of ( P X0) will dominate in our model due to the threshold factor 

of (1 -x) 
3 

relative to the (1 -x) 
5 

factor for the three-particle contributions. In 

the scaling region it contributes a large polarization asymmetry A, defined as the 

difference divided by the sum of cross sections for parallel and antiparallel spin 

directions of the incident electron relative to the target nucleons. Let El and E2 

be, respectively, the electron energies in the laboratory before and after scattering, 

and 8 the scattering angle. One finds using g = (u + rni) 
-1 

do - da E 
A= tt ti = 

El + 
2 

I 

3(1-x)2-x$ 

dut + + do 
tC 

v + x m p cos* Q/2 
1 

3(1-x)2+x-$ l 

!I P 

(5. 1) 

The first factor is essentially kinematical; the second one is limited in magnitude to 

be less than unity by positivity conditions 
25 

on the structure functions when W L’Of 
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as it is in this model with a spin 3 charged constituent. One sees that the asym- 

metry depends sensitively on the parameter (p/mp). For (p/mp) << 1 , the 

second factor is close to unity for O< 

1 

= x < 1 - 0 (p/mp) , dropping rapidly to 

zero at x P 1 - 3-’ (p/m ) and then reversing sign. 
P 

For a single free spin 3 con- 

’ stituent we would expect the asymmetry to be unity; the above behavior reflects 

the very massive virtual character of the intermediate constituent that is apparent 

inQ.39)as x=1. For small x values we must also include the three-particle 

wave function and our model predicts maximal asymmetry if there are no charged 

zero-spin constituents and WL = 0 . For neutrino processes we find near x - 1 , 

in analogy with the proton-neutron ratio shown in Figure 9, that the v to 3 ratio 

on proton targets vanishes. This is because the bare proton constituent can lower 

but not raise its charge by one unit by absorbing a negatively charged intermediate 

boson W- as j - e+ + W- , but not a positively charged intermediate boson W+ 

as v -+ e- + W+. The prediction cf spin asymmetries and of v , 3 differences 

can be further refined in terms of the ratio, R , of longitudinal to transverse photon 

interactions which we have for simplicity set to zero in the present analysis. 

C. As we shall discuss in the following, there remain several important questions 

whose answers lie outside the scope of the present model. In common with all parton 

(and quark) models, there exists the difficult problem of “Where and what are the 

constituents that are bound together forming the physical nucleon?“. Since these 

constituents are assigned point-like electromagnetic vertices, in order to give a 

meaningful calculation for the structure functions and electromagnetic form factors 

of the physical nucleon, they differ from observed hadrons (viz., nucleons and their 
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low-lying resonances; pions, etc.). We have no complete or persuasive theory of 

the nature and reality of these constituents. Nevertheless, it seems reasonable to 

think that they should “dress” themselves before emerging, as illustrated by the 

schematic diagram given in Figure 10. According to this picture, the asymptotic 

state describing the initial hadronic state at time T -+ - 00 is the physical proton. 

At any finite time T when the virtual photon hits, it interacts only with the bare 

charged constituents. These bare constituents are not, however, contained in the 

complete spectrum of asymptotic free-particle states emerging at T- + co after the 

scattering. To answer the question as to what is going on dynamically in the outgoing 

region, one needs to construct a more complete theory, and this we are not proposing 

to do here. 

The problem that we are facing is not a new one in physics. It occurs, for 

example, in nuclear physics. The deuteron is a stable bound state, and has as 

its bound constituents the neutron and proton; however, when the neutron emerges 

from a disintegrated deuteron, it decays in z 18 minutes. Because of the weak 

binding of the deuteron (-0. 1% packing fraction) and the long decay time of the 

neutron due to the weakness of the P-decay coupling, there is no difficulty in 

understanding the physical processes involved. However, when we study the dynamics 

of the proton’s structure we are up against strong binding (Z 100% packing fraction) 

and presumably very short “dressing times”, or “decay times”, for the constituents 

so that simple approximate intuitive physical pictures fail us. Nevertheless, as a 

formal solution, one may adopt the naive approach that the bare constituents are sim- 

ply ordinary unstable particles. For example, this instability may be caused by 
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postulating the bare constituents to be somewhat heavier, say within a factor of 

two, than the corresponding physical particles; in addition, their decays are assumed 

to be extremely fast so as to escape detection. Such an approach is clearly formally 

sound, though physically unsatisfactory. 

As an alternative suggestion, one may adopt the physically attractive picture 

that the relation between a bare constituent and its corresponding physical “composite” 

particle is almost identical to that between a bare particle and a physical “elementary” 

particle in the usual field theory. The bare particles have point-like vertices, while 

the physical particles have q *-dependent form factors; both the spectrum of all bare 

particles and the spectrum of all physical particles are complete, and therefore any 

calculation of the total cross section summing over all final channels of physical par- 

ticles can also be obtained by summing over all final channels of bare particles. The 

bare particle concept is useful in the Heisenberg equation of motion description, since 

on account of their point-like vertices the interactions between bare particles are 

local; however, in terms of observations in the asymptotic region of a collision process, 

only the physical particles actually emerge. At present, it is still an open question 

as to how one might develop a complete theory, so that such relations could indeed 

exist between the bare constituents and their corresponding physical composites. 

D. The question of final state multiplicity is an important one, though it is clear 

that no complete answer is possible unless the question raised in the preceding com- 

ment is resolved. Nevertheless, it is conceivable that some partial answers could 

be derived by using, for example, the simple (and artificial) field-theory model in 

which all bare particles are described by elementary fields and the bare nucleon is 
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regarded simply as an unstable particle. [If one wishes, one may either regard 

the bare mesons as the physical ones except for renormalizations, or as unstable 

particles like the bare nucleon. ] There are then at least three different mechanisms 

that might contribute to final state multiplicity: (i) the multi-particle bound-state 

channels in the physical nucleon state, such as the (PITIT) , ( 1 KIT) channels dis- 

cussed in section IV, (ii) the decay of th e b are nucleon after its separation from the 

physical composite system and (iii) the radiation of additional quanta (called gluons 

for convenience, as in section II. F) associated with whatever fields are responsible 

for the binding potential for the bound state. For large values of s = - (p+q)* , 

the first two mechanisms are expected to lead to a final state multiplicity indepen- 

dent of s , while the third mechanism, at least for soft quanta radiation and in the 

eikonal approximation, might give a final state multiplicity that increases logarith- 

mically with s . One may then conjecture that the total final state multiplicity N 

in, say, ep inelastic scattering is approximately given by, for large s , 

N = a(x) + b(x) In (s/m) (5.2) 

where a (x) and b (x) are independent of s but depend on the scaling variable x 

as well as on the nature of the particular physical particle under consideration, such 

as the pion multiplicity or the kaon multiplicity. 

In the simple bound-state model considered in this paper only the above mechan- 

ism (i) is explicitly taken into account. It is clear that mechanism (ii) does not alter the 

(total) deep inelastic cross-section, since one sums over all final hadronic channels. 

With respect to mechanism (iii) the over-all picture has a familiar analogue in atomic 

physics, in which case the quantum responsible for the binding force is the electro- 
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magnetic radiation. One may either simply ignore the final photon radiation and 

directly evaluate the cross section for, say, the photo-disintegration of the atom, 

or one may do the same calculation, but properly take into account all final soft 

photon radiation. Under the Bloch-Nordsieck approximation, these two approaches 

. lead to the same cross section, provided all final chanrels are summed over. 

The above remark is correct if one includes only soft radiation. In the case 

of atomic physics, the inclusion of hard photons in the final state would lead to de- 

partures from the Bloch-Nordsieck approximation; in the present case, as we shall 

discuss, it may lead to violations of the scaling property. 

E. We now turn to another important question: whether the scaling property is 

an exact law of nature in the high energy (scaling) limit, or just an approximate 

one which holds only in some intermediate energy range. For definiteness, let 

us consider the forv+ord Compton scattering amplitude. As shown in section II. F, 

under the ladder approximation, the absorptive part due to those on-mass-shell 

intermediate states consisting of the bare constituents plus a number of gluons 

can be neglected in the scaling limit. As a generalization of the ladder approx- 

imation we may also include crossed graphs; i.e., diagrams in which the gluons 

being exchanged between different bare constituents are absorbed and emitted in 

arbitrary sequence. If the contribution of these crossed graphs is calculated iter- 

atively using a bound-state wave function based on a ladder model that satisfies (1.3), 

it is not difficult to see that the same conclusion holds and the radiation of real gluons 

can be neglected. 

If these were the only diagrams, then the scaling property could be an exact 
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law. However, there are other diagrams, such as those connected with renormaliz- 

ations in which the gluons are exchanged between the same bare constituent. Unlike 

the case of either ladder diagrams or soft radiation, these gluon renormalization 

and radiative correction diagrams are typically divergent in the ultra-violet region. 

If or when these gluon renormalization contributions become important we 

may expect deviations to occur from the scaling prediction. On the one hand, they 

may behave in analogy to the case of electromagnetic radiative corrections, where 

it is known that there should be deviations from the scaling property 

- 0 [,a In (4*/m* 11; in the case that the gluon is, say, a spin 0 meson, since the 

renormalization diagrams have the same logarithmic divergence as the corresponding 

electromagnetic ones, one may expect a similar deviation from the scaling property 

- 0 [E In (q2/m2)] . Th e magnitude of E is proportional to the probability of 

hard gluon (or meson) radiation, which can be rather small. The present experi- 

mental data is consistent with E 5 10 
-1 

. In any case, just based on the electro- 

magnetic radiative correction, one should have e 2 a . The scaling property is, 

therefore, not an exact one in the mathematical high energy limit, but is only ap- 
-. 

proximately valid in the range including the one presently accessible to experimen- _ _-.-__ - - - 

tal study 

1 < q* in (GeV)* < exp (E ) = exp (a-‘). 
-1 < 

(5.3) 

Alternatively, the possibility remains that the sum total of the gluon radiative 

corrections may be, simply, to give rise to a form factor of the constituent itself that 

decreases with increasing momentum transfer q and tends to zero for large q* in 
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analogy to the observed hadronic structure. If such is the case, we may expect to 

observe modifications from scaling leading to structure functions decreasing at suffic- 

iently high momentum transfers q* such that q*< R* > is not longer negligible 

where < R* > denotes a mean square radius of the charge constituents (i. e., “bare” 

‘particles). Evidently the extension of the kinematic range of experimental study for 

the structure functions will be of exceedingly great interest and importance. 

F. Although the physical description and motivation of the bound-state model des- 

cribed in this paper are very different, there are related studies of the proton’s 

structure in deep inelastic scattering that have similar mathematical features. In 

particular, Landshoff, Pol kinghorne and Short 
26 

present a parton model in which the 

virtual photon is assumed to be absorbed on a point-like parton current and the phys- 

ical input is given in terms of the properties of the parton-proton scattering amplitude. 

Their major assumption is that the off-mass-shell parton-proton scattering amplitude 

decreases sufficiently rapidly with increasing parton mass. In their model this assump- 

tion provides the necessary convergence properties that we introduced via the wave 

function g (u) - l/u in our bound-state model. 

The phenomenological model of West 
27 

is very much in the same spirit as 

this. Again it introduces electromagnetic interactions with point-like partons and 

makes a convergence or “smoothness” assumption on the parton-proton scattering 

amplitude. West derives in this way the same relation between elastic and inelastic 

structure functions that we have given earlier. What is introduced as the dependence 

of the pat-ton-proton scattering amplitude on the mass of the virtual parton in West’s 

approach corresponds to the bound-state wave function of the physical proton in our 

approach. 
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Appendix A 

In this Appendix, we shall show that the Fourier transform of the ground- 

state wave function * 
P 

(k) is regular at the origin in the coordinate space 

x = 0, and therefore 

$ *,(k) d4k is finite. 

It is convenient to start with the Bethe - Salpeter equation ( 2.12) . For 

simplicity, let us consider the special case 

p=M and 
mP 

= 0 ; 

(A.1 ) 

i.e., the bound state is of zero mass and its two constituents P and X0 are 

of the same mass M . [ It is straightforward, though somewhat tedious, to extend 

the arguments given below to the general case p # M and mp # 0. ] 

20 
Following Wick , we first rotate the real axis in the complex k, -plane 

counter -clockwise to the imaginary axis, thus changing k, real to k, = i k 
4 

imaginary. By using (A. 2) and by setting the total 4-momentum p 
V 

= 0 , 

one may write Eq. (2.12) in the Euclidean space as 

2 

0 v &-+ M)(+-M2)F(x) = - x “v(x) F(x) 

V ax 
IJ 

(A.3) 

where v (x) and “r (x) are, respectively, the Fourier transforms of V(k) 

and rp = o u4 

“v(x) = J V(k) ei k*x [ d4k I (A.4 
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m = $ rp=o (0 e 
ik*x C d4k 1 tA.5) 

and [ d4k] = dk, dk2 dk3 dk4 is real. The spinor dependence of 

j;: (4 can be separated by introducing two c -number functions f, (x) and 

f* (4 : 

T: (x) = f, y5 + M -’ (Y p & ) f* y5 
tJ 

(A.6) 

in which the factor y5 is due to the assumed pseudoscalar nature of X0 . If 

X0 were a scalar, then y5 would be replaced by unity. For the ground state, 

f, and f2 depend only on 

2 2 2 
r = (x, + x2 + x3 + x4 

2 ):. (A.7) 

Eq. (A. 2) reduces then to two coupled ordinary differential equations 

d2 
( 2 + ; k-M’) [M’f, + (-$+ 

dr 

=aM;f, 

and (A.81 

+ f2’ ] =-XM-‘vf,’ 

where 
df2 

5’ = dr . (A-9) 

From (A.6) , one sees that F (x) depends only on f, and f2’ , but not on 

f2 explicitly. Since both equations in (A.8) are of third order in (d/d r ) , 

there should be six independent solutions for T: (x) . 
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According to the standard procedures for the eigenvalue problem of 

a Sturm - Lionvi I le equation, in order to determine whether the eigenstate r” (x) 

is regular at r = 0 or not, one has to show that (A. 8) has three regular 

solutions at r = 0 , say I? 
1 , 5 8 r3 8 and three regular solutions at r = 00, 

. say ra , rb and rc . The bound state F (x) can be written as a sum 

r” (Jo = ar 1 + Pr2 + r3 l 
(A.10) 

one then adjusts the three parameters a , P and the eigenvalue X so that 

F (x) is regular at r = co ; i.e. 

F(X) = ar, + brb + c rc o (A.1 1) 

To show that there are three regular solutions at r = 43 , let us assume, 

for simplicity, the covariant potential V to be superpositions of Yukawa - like 

forms with non-zero masses [ i.e., in (1.1) , O(K’ ) is not proportional to 

6 (K2) 1 . Therefore, as r 4 00 , v” -. 0 exponentially. At large r (A.8) 

becomes simply the free equation. One can readily verify that for V = 0 -the six 

independent solutions consist of three regular ones 

(a) f, = r-’ Hi’) (i M r ) -* constant l r 
-3/Z 

ew (- Mr), 

(b) f, = 0 , 

fi = -’ Hi’) (i M r ) -c 
-3/Z 

r constant . r exp (-M r) 
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(c) f, = r-’ G 1”) (i M r ) - constant l r” exp(-Mr) 

I dfl 
5” dr 8 

and three irregular ones 

(d) f, = r-’ H1(2) (iMr ) + constant l ,-3/‘exp(Mr) 

dfl 
f2’= - dr 

(e) f, = 0 

I 
f2=r 2 

-’ ,, (‘1 
(i M r ) -, constant l r 

-3/Z 
ev Wr ) 

and 

(f) f, = r-’ G 1”) (i M r ) + constant l r-’ exp (M r ) 

dfl 
f2’= - dr 

where H (1) 
1 

, Hi’) , Hi’) and H2(‘) are the standard Hankel 

functionsz8, and G 1’ i ) (i = 1 or 2 ) , besides satisfying the above 

asymptotic behavior, is also the solution of the following inhomogeneous 

Bessel equation : 

[ 
d2 

-+;;+(l-$1 G1(i)(z) = H?(z) 

dz2 

(A.12) 

Z 

Our next task is to investigate the behavior at small r . On account of 
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(1.2), as r + 0 , v” is proportional to r 
-2 

. Without any loss of 

generality, we may choose M = 1 and define the coupling constant x so 

that 

V- 4r-’ as r-0. (A.13) 

As we shall see, as r -, 0 there are indeed three regular solutions given by 

(i) f, -c c, r2 , f2’ + c2 r3 

(ii) f, - c, r2 In r , f2’ +cr 2 

I 

and (iii) f, -c c, 8 
f2 + c2 

r In r ; 
/ 

in addition there are three irregular solutions 

(iv) f, + c, In r , fpl - c2 r-’ 

(V) f, + C, r-’ , f2’ -, c2 r-’ ln r 

and 

(vi) f, -, c, r-“In r , f2’ -c c2 rB3 . 

where c 
1 

and c2 denote the appropriate constants. 

The derivation of these results follows the standard method. The first 

regular solution is obtained through the usual indicial equation by expanding 

I 

fl 
and f 

2 
as power series in r . One finds 
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fl 
= s(r) = r 

2 T s 2n 
r 

0 n 

I 

f2 
= t(r) = r 

3 ; t 2n 
r 

0 n 

(A. 14) 

To obtain the second regular solution, one assumes f, and f2’ to be given, 

respectively, by In r times the first regular solution plus a power series in r . 

The result is 

fl 
= (Inr)s+ r 41a r 2n 

0 n 

and 

I a3 

f2 
= (In r ) t + r 2 bn rzn 

0 

where s and t are given by (A. 14) and a b can be easily determined 
t-r’ n 

by substituting (A. 15) into (A.8) . 

To derive the third regular solution, one assumes 

fl 
= (In r)’ s + (In r ) u, + v, 

(A.16) 

and 
I 

f2 
= (In r )’ t -I- (In r ) u2 + v2 

where u 
i 

and v i (’ = 1’ and 2) are power series in r . It can be readily 

verified that these power series expansions are of the form 

4* 
a0 

“’ = r 

22 (u,)~ rzn , 

0 

V, = z (v,ln rzn 

0 

(A.17) 

02 
2n 

u2 = r 
2 bJ2jn rzn and v = 

0 
2 
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More explicitly, this third regular solution is given by, as r + 0, 

f,-, l+g ’ X2 r2 (lnr)’ + O(r2) 

and (AX’) 

I 

‘A f2 “T r Inr + $(-3X+ 4)r -. & X2(X+2)r3(ln r)’ 

+ 0 (r31nr). 

According to (A. lo), the bound-state wave function is a linear function 

of the above three regular solutions, (A. 14)-(A. 16). From the explicit form of 

these solutions, one sees that as r-, 0 the third regular solution dominates over 

the other two; thus, (A. 18) holds for the bound-state wave function as well. By 

using (A.6 ) and (A.18) one sees that F (0) exists, and therefore, on account 

of (2. lo), 

*p(k) = rpo up 8 

the Fourier transform of the bound-state wave function qp&) 

yp(x) E J (II,(k) eik*x d4k (A.19) 

is regular at the origin; consequently, (2.8) and (2.9) hold. 

We note that in a 4-dimensional Euclidean space the Fourier transform 

of any function h(r) 8 regular at both r = 0 and co, satisfies 

Se 
ik*x h(r) d4r = - 4a2 kw4 YJ, (kr) [ 3h’+5r h”+r’h”‘] dr 

0 

(A.20) 
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where Jo is the zeroth order Bessel function. Thus, for example, by setting 

h =f2, which according to (A. 18) is 

c - &Xr”Inr -t- O(r2) ’ 

where c is a constant, and by using (A. 20), one finds that, through partial inte- 

- 
gration, as k2 + co : 

Se 
i k*x 

f2 d4r = -16r’X k-6 + O(k-8) . 

It is then straightforward to show that as k2 -c a0 the bound state solution 

r (k) satisfies 
P 

rp P) = constant (-i 7-k) y5 k 
-6 

+0(kS61n k2) (A.22) 

The explicit form (A. 18) enables one to determine not only the leading behavior, 

but also the form of the next order correction term 0 (k -61nk2). By using (A. 22), 

one may also directly establish (2.9) and (2.37). 
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Appendix B 

To establish the identity (2. ZI), one may first differentiate both (2.6) and 

(2. 16) with respect to k 
V8 

keeping pv fixed; next multiply them, respectively, by 

$0 = ,tw $-h) on the left and ep&) = K;‘(k) qp@) on the right; and then 

add these two equations together. This leads to 

.Np(k) [-e 1, +p&) d4k 
V 

= - i x $ Tp(k) qp(k’) --&r + & V(k- k’) d4k d4ki 

V V 1 

and, therefore, (2.21) is proved. 

To establish (2.22), one may first differentiate (2.6) with respect to p 
V’ 

keeping kv fixed; next multiply on the left by VP(k) ; and then integrate over d4k . 

After using (2. 16), one finds 

J- qp(kl -’ a Kp(k) 
1 1 $ (k) dk = i $ J VP(k) V(k-k’) qp&‘) d4k d4k1 aP kP 

V V 

(B. 2) 

Since X = h(mG) and 

[+ KP”]k + -ii&- [+ Kp@)jp = [+ Kp&)lX = -iYvW2+lJ2); 

(2.22) follows on account of (B. Z), (2.20) and (2.21). 
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Appendix C 

In this appendix, we give the detailed derivation of why the amplitude I ’ , 
V 

defined by (2.32), can be neglected in the scaling limit. It is useful to determine 

in (2.32) the integration domain in which the integrand does not approach zero in 

the scaling limit. Let us first examine the denominator. We observed that because 

of the wave function qp(kin) and the propagators [- i y* (p-X’) - MI-’ fXi2+ $‘]” 

in the integrand in (2.32) this domain is restricted to 

X 
12 

= 0 (m*) and (P-X’)~ = O(m2) , cc. 1) 

and because of the denominator in the propagator 

C -iy.p’- Ml-’ = - [P12+ M2]-’ [-i ye P’ + M] (C* 2) 

there is the additional constraint 

PI2 = (p +q - X’)’ = O(m’) (C. 3) 

where m denotes collectively the relevant masses m 
P’ 

M and p. In the laboratory 

frame, the first two constraints (C. 1) imply that each of the four components of X’ 
IJ 

should be restricted to 

X’ 
P 

= O(m) . (C-4) 

The additional constraint (C.3) then implies that in the scaling limit of q2-+co, 

-tP’d’” but keeping the scaling variable 

X = q2/(-2p l q) finite , (Co 5) 
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the components Xi and Xi are further related by 

X’- x’ 
3 

= (1-x)mp + 0 2 

( J 

(C. 6) 
0 

cl2 

where the z-axis is chosen to be parallel to 4,. These constraints (C.4) and (C.6) 

restrict the integration region of interest to a volume 

J d4X’ = O(m6/q2); (C. 7) 

in this region, all denominators in the integrand of (2.32) are finite in the scaling limit. 

Next, we have to determine in this region the magnitude of the numerator in (2.32). 

On account of (2.33) and (1. Z), at large 4-momentum-transfer-squared (k’ - k )2 the 

scattering matrix < k 1 T 
P+4 

i k’ > , like V (k’- k) , decreases as (k’- k)-2 . This, 

together with (C.4) and (C.6), implies that in the laboratory frame the final 4-momenta 

are restricted to 

X = O(m) and P = 
IJ v qcI 

+ O(m) . 

Since the virtual momentum P’ = q 
P tJ 

+ 0 (m) as well, in the integral (2.32), after 

using (C. Z), one has the numerator factor 

“pl y4 <klT 
P+9 

) k’> (-iy*P’+M) = 

<K 1 T 
P+9 

1 k> uJ y4(-i y*P+M)+O(m) , 

which is also 0 (m) . Therefore, one finds that the integrand in (2.32) remains finite 

in the integration region (C. 7) and, consequently, the integral over this region is 

proportional to the volume which approaches zero in the scaling limit. Outside this 



69. 

region (C. 7), the integrand itself approaches zero at least as 0 (qm2) ; furthermore, 

the corresponding integral is dominated by the region in which (C.4) remains valid, 

but, in place of (C.3), Pi2 = 0 (q*) . Since the integration over X’ is a supercon- 

vet-gent one, the integral (2.32) remains convergent (in fact remains superconvergent) 

if the propagator with the large virtual momentum P’ is taken outside the integral. 

It then follows that the entire integral I J goes to zero in the scaling limit and there- 

fore can be neglected. 
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Appendix D 

To establish (2.52) ‘t I is convenient to start from (2.51) and to use the lab- 

oratory frame with the z-axis parallel,to q . One has then 
At. 

and 

vu 2 

“1 =- F1, = 
F 

22 

= v c-l2 
v2+ q2 

c F1l + 9 4’ F331 

0 1) 

. 

It is easy to see that in the scaling limit F33 remains finite, and therefore 

vu 2 
- 2xm U 

P 1’ 
Consequently, one needs only to investigate F, , , or A,, and 

B1l l 

Because of the rapid convergence property of the bound-state wave function, the 

integral (2.47)for A,, is determined only by its value over the domain in which 

X2 = 0 (m2) and (p-X)2 = 0 (m’) . (D; 2) 

These constraints imply that in the laboratory frame all components of X 
tJ 

are 0 (m) . 

Similarly, in the same laboratory frame the integral (2.48) for B,, is determined only 

by its value over the domain in which 

X = 0 (m) and X’ 
IJ P 

= O(m) . 0 3) 

For A,1 , the magnitude of the integrand in (2.47) is proportional to the 

appropriate matrix element of 

C -iy* P-M]” = (P2 +M2)-’ [i ye q +0(m)] CD.41 
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in which the numerator on the right hand side is 0 (v) . If P2 = 0 (q2) , then (D.4) 

is 0 (m-l) , and the integrand in (2.47) remains finite in the scaling limit. On the 

other hand, if P2 = 0 (m2) , then (D.4) is 0 (v/m’) . However, in the latter case, 

on account of P2 = (p + q - X)2 , the components of Xp in the laboratory frame 

must be further restricted to 

xo - x3 
= (l-x)mp + O(m2/v) ; (D. 5) 

consequently, although the integrand in (2.47) is 0 (v) , the relevant integration 

volume J d4X is 0 (m5/v) . Thus, one finds that A,, remains finite and non-zero 

in the scaling limit. 

To study the magnitude of Bl, , it is convenient to use (2.33) and formally 

expand B 
11 

as a power series in the coupling constant X of the binding potential V . 

We write 

CD 

B1l = 
x 

1 xn B1nl 
(D.6) 

n= 

in which, e, g., the first term X B ’ , , is given by the same expression (2.48) except 

that < k 1 T 
P+4 

I k’ > is replaced by i XV (k’ - k) . The magnitude of the resulting 

integrand for Bi, is proportional to the appropriate matrix element of the product 

c -i y-P- M]-’ [-i 7. p’ - M-J-’ = (p’+ M2)“(p’2+ MS)-’ 

[-iy*P+M] [-i y*P’+M] e 

0 7) 

Because of (2.49) and (D.3), th e numerator on the right hand side of (D. 7) is equal to 

-q’+O(m) [-iy l q] + O(m2) w IC is 0 (q’) in the scaling limit. If P2 = 0 (q’) h’ h 
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and Pi2 = 0 (q2), then (D.7) is 0 (qg2) . If P2 = 0 (m*) but Pi2 = 0 (q’), then 

(D.7) is 0 (m-2) but, in addition to (D,3), the components of X are further con- 
IJ 

strained by (D.5), so that the relevant integration volume J d4X is 0 (m5/v ) . 

Similarly, if PI2 = 0 (m*) then the relevant integration volume J d4X’ is reduced 

io 0 (m5/v) . Putting all these together, one finds that 

1 

Bll 
- o(v-‘) 

in the scaling limit. By following the same reasoning, it can be readily established 

that for !Z & 1 , apart from possible In (v/m) factors, 

B21 
11 

- O(v’ll) and 
B2b-1 

11 
- 0 (3) . 

Thus, in the scaling limit, 

F1l + A,,hq) + A,,(~,-4 0 8) 

from which, by taking the imaginary part, (2.52) follows. We note that, like the 

diagram I ’ 
V 

in Figure 3, the diagram Bxv in Figure 4 is needed for maintaining 

gauge invariance but can be neglected in the scaling limit. 
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Appendix E 

To complete the proof for the sum rule (2.53), we follow closely the steps 

17 
taken by Adler , making sure that all the assumptions used in the usual derivation 

are indeed valid in the present case. In the laboratory frame, the amplitude F ’ 
hv ’ 

defined by (2.54), may be written as 

Fi~(P,q) = ‘ i j a,(428V) + qi qj a2(q2,4 8 

F;‘4(pt 9) = 4; b (q2,V) 8 F;;(p,q) = - qi b (q2,-v) (E. 1) 

and 

F44 (PI q) = c(q2,v) 

where the subscripts i and j denote the space-components. These four functions a 
1’ 

a2f 
b and c are related through the divergence condition (2.56). By setting the 

subscript 1 in (2.56) to be, respectively, the time and the appropriate space components 

one finds that 

and 

vc-i(q2+v2)b = 2 (E. 2) 

a, + (q2 +v2) a2 + iv b = 0 (E. 3) 

in which, on account of (2.55), a,(q2,v), a2(q2,v) and c (q’,v) are odd in v , 

but b (q’,v) is even in v . 

It is convenient to define 

f (q2,v) s v-’ q2(a, + q2 a,) (E-4) 
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which is even in v . By using the explicit expressions (2.47) and (2.48), one can 

readily prove that a 
1’ a2, 

b and c are all regular at v = 0 . At a fixed q2 , 

as v -+ 0 Eq. (E.3) implies v -’ q2(a,+q2a2)+ -ibq2 which, in turn, on account 

of (E. 2), approaches 2 . Thus, one finds that at v = 0 

f (42, 0) = 2 . 6 5) 

Next, we shall show that at a fixed q2 

f(q2, 4 - 0 (v-‘) as v-+m . 6 6) 

This can be established by following almost exactly the same arguments used in Appen- 

dix Dfor A,, and B,, , except that instead of the scaling limit, one now takes the 

limitof v+ 0D while keeping q2 fixed. We note that (D.3) remains valid. Since in 

the laboratory frame P = q + 0 (m) , 
P P 

the numerator on the right hand side of (D.4) 

remains 0 (v) , as before. Thus, (D.4) is 0 (m-l) if P2 = 0 (mv) , in which case 

the corresponding integration volume J d4X = 0 (m4) . If P2 = 0 (m2) , then (D.4) 

is 0 (v) , but the corresponding integration volume is 0 (m5/v) , because of (D. 5). 

Consequently, in the laboratory frame A,,(p,q) is finite in the limit v -, 03 . 

Furthermore, the same limit holds if v - -co . The difference A,,(p,q) - A,,(p, -4) 

is, therefore, 0 (v-l) . Similar arguments and conclusions can be readily extended to 

the differences A33(P, q)- A33(~, -q), B’,(p,q) - B’,(p, -q) and 

B33(p, q) - B33( p, -q) . By using (2.54), (2.57) and (E.3) , one establishes the 

asymptotic condition (E. 6). 

Since f (q 2, v) is an even function in v , one may consider the complex 
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z = v2 plane, and regard f as a function of z , keeping q2 fixed. In this complex 

plane, f has a pole at 

Z = v 
2 & 

0 
[s’/( 2 mp) 1” 

and a cut along the real axis extending from v 2. to co where 
mm 

V 
min 

= (2mp)-’ [q2 + (M + u)’ - mi] . 

(E. 7) 

(E. 8) 

To study the discontinuity of f across the cut, it is only necessary to investigate the 

absorptive part of F’ 
XV 

for v > 0 . By using (2.47) and (2.48)’ one sees that for 

v > 0 the absorptive parts of F’ 
XV 

and F 
XV 

are equal where F 
XV 

is the forward 

Compton amplitude defined by (2.46). It follows then that the discontinuity of f 

across the cut is simply 2 i Im (v U2) where U2 is defined by (2.5 1). The standard 

Cauchy theorem and the asymptotic condition (E.6) lead to, for z away from these 

singularities, 

-’ f(q’,z) = f(q’, v,‘, + Tr ;; dv2(v2 - z)-’ Im (v U2) . 
6 9) 

min 

Upon setting z = 0 and changing the variable v to x = q2/(2mpv) while keeping 

q2 fixed, (E.9) b ecomes, on account of (E.5)’ 

X 

-1 
max 

1 = 4 f(q2,v,‘) + IT J 
-1 

x dx Irn (v U2) (E. 10) 

0 

where x max = 1 - q-2 [(M+ p)2 - ml ] . By repeating exactly the same argument 

used in the preceding Appendix, one can show that (2.52) can also be written, at a 

fixed x , as 

Im (vU2) = 71 (v W2) [ 1 + 0 (m’ q-2) ] . 
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As q2+ 00, one has f (q2, vz) - 0 since it is proportional to the square of the 

elastic electromagnetic form factor. Moreover, x -+ 1 and at fixed x 
max 

h-i b U2 > - 7+W2) i 

(E. 10) becomes then simply the Adler sum rule (2.53). 
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Captions 

Figure 1. Graphical representation of the Bethe-Salpeter equation for the bound- 

state wave function qp(k) and its conjugate Tp(k) . [See Eqs. (2.6) 

and (2.16). ] Th e as d h ed iine denotes the covariant potential V . 

Figure 2. Diagrams for electromagnetic form factors and the normalization con- 

dition (2.22). 

Figure 3. Diagrams for deep inelastic ep scattering for the bound-state solution 

of a simple Bethe-Salpeter equation. [See Eqs. (2.3 1) and (2.32). ] 

The dashed line denotes the covariant potential V . 

Figure 4. Diagrams for forward Compton scattering. [See Eqs. (247) and (2.48). ] 

Figure 5. A diagram for a virtual photon -, i; + anything. 

Figure 6. Feynman diagrams for p + p + X0 and “y” + p - p + X0, 

assuming that the physical proton is an elementary particle instead of a 

bound-state composite. LSee Eqs. (3. lo), (3.11) and (3.14). ] 

Figure 7. Diagrams for deep inelastic ep scattering in the simple phenomenological 

model calculation. [See Eqs. (4.4)-(4.7). ] 

Figure 8. 2 mpWl versus w = x 
-1 

. The experimental data are taken from Bloom 

et al., Ref. 2, and the theoretical curve is plotted by using Eq. (4.20) 
-- 

and choosing a = 1.4 and p = 0.22 . 
P P 
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Figure 9. The ratio (W, )n/(W, ) versus x . The theoretical curve is obtained 
P 

by using Eqs. (4.20) and f$. 27)’ and choosing /3 p= p, and ap= 1.4 . 

Figure 10. A schematic diagram for “y” + p + p + mesons. 
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