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ABSTRACT: Polycrystalline graphene is a patchwork of coalescing graphene grains of varying
lattice orientations and size, resulting from the chemical vapor deposition (CVD) growth at
random nucleation sites on metallic substrates. The morphology of grain boundaries has
become an important topic given its fundamental role in limiting the mobility of charge carriers
in polycrystalline graphene, as compared to mechanically exfoliated samples. Here we report
new insights to the current understanding of charge transport in polycrystalline geometries. We
created realistic models of large CVD-grown graphene samples and then computed the
corresponding charge carrier mobilities as a function of the average grain size and the
coalescence quality between the grains. Our results reveal a remarkably simple scaling law for
the mean free path and conductivity, correlated to atomic-scale charge density fluctuations
along grain boundaries.
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T he properties of polycrystalline materials are dictated by
their grain size and by the atomic structure at the grain

boundaries. These effects are particularly pronounced in low-
dimensional materials, such as graphene.1 This topic is of
current technological relevance since chemical vapor deposition
(CVD) growth of graphene on metallic substrates2−5 is
simultaneously initiated at different nucleation sites, which
leads to samples with randomly distributed grains of varying
lattice orientations.6 As a result, grain boundaries (GB) dictate
the electrical transport performance in CVD-graphene.7

Effects of structural defects on the electronic, mechanical,
and transport properties of graphene have recently been
analyzed theoretically.8,9 Moreover, several theoretical studies
have reported on the effect of a single GB on electronic,10,11

magnetic,12 chemical,13 and mechanical14−16 properties of
graphene. However, very few studies13,16 have discussed more
complex forms of GBs (not restricted to infinite linear
arrangements of dislocation cores), which would better
correspond to the experimentally observed structures.6,17,18

Due to experimental challenges, only a few experimental
works19 have systematically investigated the impact of grain
boundaries on electronic transport, mainly confirming the
reduced conductivity as compared to single-crystalline samples.
Very recent electrical measurements on individual grain
boundaries in CVD-graphene also reported that a good
interdomain connectivity is a fundamental geometrical require-
ment for improved transport capability.20 However, to date

little is known about the global contribution of complex
distributions of GBs to measured charge mobilities.21

Here, we provide a comprehensive theoretical picture of the
relationship between a polycrystalline morphology and the
resulting charge transport properties. We explored large models
(up to 278 000 atoms) of polycrystalline graphene samples with
varying misorientation angles, realistic carbon ring size
statistics, and nonrestricted GB structures. For this purpose,
we used an efficient computational approach that is particularly
well suited for large samples of low-dimensional systems.22 We
calculated charge mobilities in these samples using a tight-
binding (TB) Hamiltonian and an efficient real space (order-N)
quantum transport method, which enabled us to establish a
surprisingly simple scaling law for transport properties for
samples with well interconnected grains. The law relates the
mean free path and conductivity of the sample to its average
grain size. This scaling property is inferred from the observed
electron−hole density fluctuations that develop at the atomic
scale along the boundaries. For poorly connected samples, we
observed greatly reduced mobilities, which agrees with
experimental results.20 These findings offer unprecedented
insight into the transport fingerprints of polycrystalline
graphene samples.
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Our model structures were created using the method
outlined in ref 16: (1) Nucleation sites for a selected number
of randomly oriented graphene grains are randomly placed on a
predefined two-dimensional simulation cell; (2) Atoms are
randomly added to the reactive sites at the edges of the grains
until two grains meet, at which point the growth is locally
terminated; (3) When no reactive sites are free, the structure is
heated to 3000 K for 50 ps within a molecular dynamics
simulation to allow the grain boundary structures to overcome
the most spurious atomic configurations; (4) The structure is
quenched during a 10 ps simulation run to enable the lattice to
obtain its equilibrium size (zero pressure). Since a prerequisite
to the efficient calculation of electronic properties in this study
was that the structures had to be flat, at this point, we removed
small corrugations which appeared after the aforementioned
preparation steps. To this end, the structures were repeatedly
stretched, gradually forced toward zero in the third dimension
(by scaling down the z-coordinates), and again relaxed
(allowing atomic reconstruction at each step), which removed
the largest portion of nonflat configurations. A few remaining
nonflat and physically implausible configurations (overlapping
atoms, coordination numbers higher than 3) were removed
manually, and a final relaxation and optimization step was
carried out. This resulted in flat structures occupying local
energy minima and suitable for the present study.
During the sample preparation, the carbon−carbon inter-

actions were modeled using the reactive bond order potential
by Brenner et al.30 and the temperature and pressure control
were handled using the Berendsen method.31 Most of the
structures were approximately 60 × 60 nm2 in size and
contained ∼138 000 atoms with the exception of one structure
which was significantly larger (87 × 87 nm2, ∼278 000 atoms).
Structure with the smallest grains contained 22 of them,
whereas all other structures contained 11 grains. Periodic
boundaries were used in all calculations.
For electronic and transport calculations, we used a π−π*

orthogonal TB model, described by a single pz-orbital per
carbon site, with nearest neighbors hopping γ0 and zero onsite

energies. A distance criterion to search for the first nearest
neighbors was set empirically to 1.15 × aCC, where aCC is the
nearest neighbor distance in pristine graphene. The local
fluctuations in bond lengths are small enough to keep a
constant value of γ0 for the transfer integral. The density of
states (DOS) was computed using the Lanczos recursion
method with N = 1000 recursion steps and an energy
resolution η = 0.01γ0 ≃ 0.03 eV. For LDOS calculations we

used the spectral measure operator δ(E − ̂ ) projected on
state |i⟩ (where i is the site index).
We computed the local charge density deficiency δi (or self-

doping) for each GB site i defined as:

∫δ ρ ρ= −
−∞

E E E[ ( ) ( )]di

E

itot
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(1)

where ρtot and ρi are the total DOS (per carbon atom) of the
polycrystalline graphene sample and the LDOS on carbon site i,
respectively. ECNP denotes the charge neutrality point.
To capture the different transport regimes, we employed a

real-space order-N quantum wavepacket evolution approach to
compute the Kubo−Greenwood conductivity,22,23 from which
the zero-frequency conductivity for carriers at energy E is given
by
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where ρ(E) is the density of states and ΔX2(E,t) is the mean
quadratic displacement of the wave packet at energy E and time
t:
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from which the diffusion coefficient Dx(E,t) = d/dt(ΔX2(E,t))
contains all information about multiple scattering effects,
providing the quantum conductivity in the long time limit
through eq 2. Assuming an isotropic system in x- and y-
directions, the 2D diffusion coefficient becomes D(t) = Dx(t) +

Figure 1. (a) Three structures with uniform grain size distribution and increasing average grain sizes (13.0, 18.0, and 25.5 nm). GBs are marked with
dark lines. (b) Larger magnification of the area marked with a white rectangle in panel a, showing a typical example of the grain boundaries. Carbon
ring-size statistics for the same sample (showing the ratio of nonhexagonal rings) are presented in the upper right corner. (c) Two additional samples
with average grain size of 18 nm: one sample with broken boundaries (“br-18 nm”) and another one with random grain size distribution (“avg-18
nm”). (d) Higher magnification of the area marked with a white rectangle in panel c, showing the structure of “broken” boundaries in sample “br-18
nm”. The statistics of nonhexagonal rings are shown in the lower right corner. All scale bars are 10 nm.
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Dy(t) = 2Dx(t). D(t) always starts with a short-time ballistic
motion followed by a saturation value (Dmax(E)), from which
semiclassical quantities (elastic mean free path e(E) and the
semiclassical conductivity σsc) are estimated as e(E) =
Dmax(E)/2v(E) and σsc(E) = 1/4(e2ρ(E)Dmax(E)), respectively
(with v(E) being the carrier velocity). When disorder is strong
enough, Dx(E,t) decays as a result of quantum interferences, the
strength of which will either drive the electronic system to weak
localization or to the strong Anderson localization regime.
As has been shown before,16 our models for polycrystalline

graphene resemble experimentally observed structures: atomic-
resolution and diffraction-filtered electron microscopy experi-
ments have revealed that the grains stitch together predom-
inantly via pentagon−heptagon pairs6,17,18 in arrangements of
large number of small grains forming an intricate patchwork
interconnected by tilt boundaries.6,18 For this study, we created
samples with three different average grain sizes (average
diameter ⟨d⟩ ≈ 13, 18, and 25.5 nm) and uniform grain size
distributions (Figure 1a). As seen in Figure 1b, the atomic
structure at the GBs consists predominantly of five- and seven-
membered carbon rings and assumes meandering shapes similar
to the experimentally observed ones. We also created one
sample with ⟨d⟩ ≈ 18 nm and “broken” (poorly connected)
boundaries (“br-18 nm”), and one sample with ⟨d⟩ ≈ 18 nm
and nonuniform d-distribution (“avg-18 nm”) (see Figure
1c,d).
We begin by discussing the electronic density of states

(DOS) as a function of energy (E) for the different samples
(Figure 2a). We noticed very little variation away from the

charge neutrality point (E = 0), except for a slight broadening
of van Hove singularities at E = ± γ0, where γ0 = −2.9 eV is the
nearest neighbor hopping energy. This suggests that GBs
induce weak disorder and that the polycrystalline samples
mostly preserve the electron−hole symmetry. However, a larger
difference can be seen at the charge neutrality point (Figure
2b), where all of the polycrystalline structures show an
enhanced density of zero energy modes.24 As expected, the
largest difference relative to pristine graphene was observed
with the “br-18 nm” sample (the one with poorly connected
grains), reflecting a higher density of “midgap” states.24,25

To better understand the deviations from the pristine
graphene for the well-connected structures, we next identified
atoms residing at GBs of the “18 nm” sample by searching for
atoms for which the bond length of at least one nearest
neighbor differs from the carbon spacing in pristine graphene
(aCC = 1.42 Å) by 0.03 Å or more. We then calculated the local
charge density deficiency δi (or self-doping) for each GB site. In
Figure 2c we present the atomic structure of the electron−hole
density fluctuations (δi variations greater than 10−4 electrons
per atom) formed at a small area around one GB. These self-
doping effects stem from local fluctuations in the electrostatic
potential. Experiments on exfoliated graphene deposited over
silicon dioxide26,27 have shown similar potential inhomogene-
ities; however, these were spread over a much longer scale
(∼30 nm) and were induced by proximity effects generated by
charges trapped in the oxide. In our case, averaging over all
carbon atoms belonging to the grain boundaries of the 18 nm
sample gave ⟨δ⟩GB = 0.008 electrons per atom, which
corresponds to a mean carrier density of ⟨n(E = 0)⟩ ≃ 6.1 ×

1011 cm−2. (δ fluctuates between −0.096 and 0.08 electrons per
carbon atom, or, respectively, 6.1 × 1012 and −7.3 × 1012

cm−2.) The local charge density fluctuations occur on a length
scale only a few times larger than the lattice spacing, which is
very small compared to that in supported exfoliated graphene,
suggesting a much stronger local scattering efficiency. We point
out that our results show no straightforward correlation
between the self-doping value and the local defected
morphology of the lattice.
Figure 2d shows the plot of the corresponding local DOS

(LDOS) of three selected atoms at the boundary (A1, A2, and
A3). All of them show increased contributions of midgap
states,24,25 significantly reduced van Hove singularities, and a
markedly enhanced electron−hole asymmetry, owing to the
odd-membered carbon rings.22 They also exhibit strong
resonant peaks, which are characteristic of quasi-localized
electronic states in the vicinity of defects. The local electronic
configuration along the GB also strongly differs from one site to
another, an effect arising from an interference effect between
coherent wave functions of the connected adjacent grains. In
clear contrast, an atom only four lattice vectors away from the
boundary (A4) shows a LDOS nearly indistinguishable from
that of the pristine graphene (Figure 2e). A comparison to the
average LDOS calculated for all atoms at the GBs reveals that
the changes in the DOS seen in the polycrystalline samples
(Figure 2a) arise locally from the atomic configurations of the
GBs itself.
Next, we discuss the transport properties of the samples.

Figure 3a shows the time dependency of the diffusion
coefficient D(t) at the Dirac point for all samples. On the
one hand, the well-connected samples display a very slow time-
dependent decay of D(t) after the saturation value, indicating
weak contribution of quantum interferences. On the other

Figure 2. (a) DOS for pristine graphene (PG) and the structures
presented in Figure 1. (b) Higher magnification of the DOS close to
the charge neutrality point (E = 0, area marked with a rectangle in
panel a). (c) Atomic structure of one of the boundaries in sample “18
nm”, showing the electron−hole density fluctuations at GB sites that
develop due to local variations in the charge density δi: local electron
doping (δi < −1 × 10−4 e/atom) is shown in blue and local hole
doping (δi > 1 × 10−4 e/atom) in red. (d) Local DOS for atoms A1,
A2, and A3 marked in panel c. (e) Local DOS for atom A4 marked in
panel c as compared to the average DOS for pristine graphene (PG)
and average LDOS for all atoms at GBs in the same sample (GB).
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hand, the poorly connected sample “br-18 nm” exhibits a much
faster decay, eventually driving the electronic system to a strong
localization regime (as observed in some transport measure-
ments19). We next deduced the mean free path e(E) from the
maximum values of D(t) (Figure 3b). Genuine electron−hole
asymmetry is apparent in e(E), but only for energies |E|>3 eV
(far from the experimentally relevant energy window). At lower
energies around the charge neutrality point (|E| < 1 eV), e(E)
changes, albeit only weakly, for all samples.
The sample with broken boundaries, “br-18 nm”, shows the

shortest e < 5 nm and the weakest dependence on energy,
except for a pronounced dip at E = 0. Interestingly, the curves
for the two well-connected samples with similar ⟨d⟩ but
different d-distributions (“18 nm” and “avg-18 nm”) are very
similar and clearly different from samples with either smaller or
larger grains. However, this difference can be accounted for by a
constant factor. Remarkably, it turns out that √2 × e

13 nm ≈
e
18 nm and√2 × e

18 nm ≈ e
25.5 nm (see the scaled values in Figure

3b), which correspond exactly to the differences in the average
grain sizes in these samples (√2 × 13 ≈ 18 and √2 × 18 ≈
25.5). Moreover, the grain-size distribution does not enter into
this scaling behavior ( e

18 nm ≈ e
avg‑18 nm). Hence, we have

identified a remarkably simple scaling law that links the average
grain size to transport length scales in polycrystalline graphene
with randomly oriented grains.
The computed semiclassical conductivity σsc(E) exhibits

energy-dependent variations similar to e(E), as can be seen in

Figure 3c. We also point out the linear dependency of σsc with
charge density in the vicinity of the Dirac point. Again, the
same scaling law (presented above for the mean free path)
applies: the ratio of σsc for two samples with different average
grain sizes matches closely with the ratio of the ⟨d⟩ values
themselves. One additional interesting feature seen in Figure 3c
is that the conductivity remains much higher than the minimum
value 4e2/πh (horizontal line), which fixes the theoretical limit
in the diffusive regime, as derived within the self-consistent
Born approximation valid for any type of disorder.9 This
indicates that polycrystalline graphene remains a good
conductor, even for the poorly connected structure “br-18 nm”.
Localization length of electron states (ξ(E)) can now be

estimated using the values for e and σsc. Scaling analysis (ξ(E)
= e(E)exp(πhσsc(E)/2e

2)28) reveals that ξ ≃ 1−10 μm over a
large energy window around the charge neutrality point. This
contrasts with the values (on the order of 10 nm) obtained for
graphene structures with ∼1% structural defects, strongly
bonded adatoms, or other types of short-range impurities.22,29

Finally, we move on to the charge carrier mobility μ(n)
(Figure 3d). As expected, the poorly connected sample “br-18
nm” shows the lowest mobility (reduced by a factor of about
three when compared to the well-connected samples with
similar ⟨d⟩). We point out that the computed values are valid
down to the charge neutrality point (that is, to the smallest
charge density n(E)), since we accounted for the disorder-
induced finite DOS, which yields a nonzero charge density (and
thus no singularity at 1/n(E)). Table 1 gives the mobilities at
several charge densities for all studied samples. It is worth
observing that the scaling law also roughly applies to charge
mobilities versus average grain size, since the superimposed
effect of density of states changes the ratio only by a few
percent (for instance, at n = 2.5 × 1012 cm−2, μ18 nm/μ13 nm ≈
1.37).
If we extrapolate the mobility for well-connected grains

according to our scaling law to a grain size of 1 μm and a charge
density of n = 3 × 1011 cm−2 as in the best samples of ref 20, we
obtain 300 000 cm2 V−1 s−1, which is about ten times higher
than the measured values. This discrepancy suggests that
substrate-related disorder effects, as well as supplementary
defects introduced during the transfer process, should account
for an even greater limitation for charge mobilities than the
actual GB morphology.
The existence of more disordered grain boundaries as

reported in refs 20 and 32 or samples with overlapping grains,
as observed in ref 33 yield to lower mobility values, which has
been partly illustrated here with the structural model “br-18
nm”. More experimental data is however needed before proper
atomistic structural models, capturing the essential geometrical
features of those more fragmented structures of polycrystalline
graphene, can be constructed.
In conclusion, we have created polycrystalline graphene

samples with nonrestricted grain boundary structures and
realistic misorientation angles and ring statistics. These samples
enabled us to discover a simple relationship between the

Figure 3. (a) Diffusion coefficient (D(t)) for the samples presented in
Figure 1. (b) Mean free path e(E) for equivalent structures with scaled

e(E) for samples with ⟨d⟩ ≈ 13 nm and ⟨d⟩ ≈ 25.5 nm, showing the
scaling law. (c) Semiclassical conductivity (σsc(E)) for all samples and
as scaled for the same cases as above. (d) Charge mobility (μ(E) =
σsc(E)/en(E)) as a function of the carrier density n(E) in each of the
samples (n(E) = 1/S∫ 0

Eρ(E)dE, S being a normalization factor).

Table 1. Mobilities for All Samples at Selected Charge Densities

mobilities (cm2/(V s)) 13 nm 18 nm avg-18 nm 25.5 nm br-18 nm

μ(n = 2.5 × 1011 cm−2) 5.1 × 103 7 × 103 6.8 × 103 104 4 × 103

μ(n = 2.5 × 1012 cm−2) 510 700 685 950 360

μ(n = 2.5 × 1013 cm−2) 69 105 104 150 45
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average grain size and charge transport properties. The disorder
scattering strength in polycrystalline graphene was found to
depend on the atomic structure of GBs (inducing quasi-bound
states at resonant energy) and wave function mismatch
between the grains, which generate strongly fluctuating, but
highly localized electron−hole density fluctuations along the
interfaces between grains. Our results significantly improve the
present theoretical understanding on the influence of the
detailed morphology of polycrystalline materials to their
measurable electronic properties. They offer the possibility
for estimating charge mobilities in suspended CVD-graphene
samples based on the average grain sizes and quality of the GBs.
Furthermore, they establish quantitative foundations for
estimating the intrinsic limits of charge transport in polycrystal-
line graphene, which is of prime importance for graphene-based
applications in the future.
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