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A vortex sheet model is applied to study vortex ring formation at the edge of a circular tube, for
accelerating piston velocitiesUp;tm. We determine properties of the vortex ring as afunction of
the piston motion and investigate the extent to which similarity theory for planar vortex sheet
separation applies. For piston strokes up to half the tube diameter, we find that the ring diameter,
coresizeand circulation arewell predicted by theplanar similarity theory. Theaxial ring translation
is asuperposition of an upstream component predicted by the theory and adownstream component
which is linear in the piston stroke. The front of the fluid volume exiting the tube is also linear in
the piston stroke and travels with 75% of the piston velocity. The core size decreases and the
distribution of fluid near thecorebecomesmoreasymmetric as theparameterm increases. © 1996
American Institute of Physics. @S1070-6631~96!02407-5#

I. INTRODUCTION

A typical experiment of vortex ring formation at a tube
opening is shown in Fig. 1~a!. It consists of a circular tube
immersed in fluid and apiston inside the tube which moves,
ejecting fluid from the opening. This causes the boundary
layer on the inner tube wall to separate at the edge as an
axisymmetric shear layer, which then rolls up and forms a
vortex ring. One objective of vortex ring experiments has
been to describe the ring properties as afunction of the gen-
erating conditions ~Shariff and Leonard1!. For the tube ge-
ometry, the relevant condition is the piston velocity. In this
paper we use anumerical vortex sheet model to investigate
the dependence of the ring trajectory, circulation, size and
shape on accelerating piston velocities of the form
Up(t);tm.

Theoretical predictions based on similarity theory have
been obtained for the planar flow shown in Fig. 1~b!. Here,
flow around the edge of a semi-infinite flat plate causes the
separation and roll-up of a planar shear layer. After an initial
time-interval the viscous shear layer thickness is small rela-
tive to the size of the roll-up and the separated layer is well
approximated by a vortex sheet. The vortex sheet represents
the layer by a surfacewhich moves in inviscid flow. There is
no length scale in the flow which implies that the vortex
sheet separation is self-similar. The scaling behavior of the
spiral center, sizeand circulation can bedetermined for start-
ing flows that satisfy a power law in time. Pullin2 discusses
the similarity theory for the planar flow and computes the
self-similar shape of the roll-up using a numerical method.

The similarity scaling laws depend on the form of the
potential flow around the plate. Near the edge, axisymmetric
potential flow out of a tube is similar to planar potential flow
around a plate. It is therefore plausible to assume that at
small times the axisymmetric separation in Fig. 1~a! is ap-
proximated by the planar separation in Fig. 1~b!. The planar
similarity theory can then be used to predict the vortex ring

trajectory, shape and circulation, for the case of power law
piston velocity ~Saffman3, Pullin4!. Didden5 performed an
experiment in which thepiston velocity wasconstant after an
initial start-up period. He observed that, while the radial ring
coordinate appeared to agree with planar similarity theory,
the axial coordinate did not. It has been unclear whether any
scaling law does describe the axial ring coordinate1. The dis-
crepancy observed by Didden is related to the following dif-
ferencebetween theplanar and theaxisymmetric flow. In the
planar case, the self-similar spiral center travels upstream
~with negative horizontal velocity! along astraight line @dot-
ted line in Fig. 1~b!# while in the axisymmetric case, the
vortex ring travels downstream ~with positive axial velocity!
along a curved trajectory5 @dotted curve in Fig. 1~a!#. The
axisymmetric flow thus does not resemble the planar self-
similar flow and it is not clear a priori to what extent the
planar similarity theory describes the axisymmetric flow.

Nitsche and Krasny6 developed an axisymmetric vortex
sheet model for vortex ring formation at the edge of a circu-
lar tubeand simulated theexperiment performed by Didden5.
Comparison with experimental measurements showed that
the model accurately recovers the formation process. In this
paper we apply the model to simulate vortex ring formation
for accelerating piston velocitiesUp;tm, wherewe consider
m50,1/2,1,2. Thecasem50 corresponds to thecasestudied
by Didden. Unlike alaboratory experiment, thecomputations
do not require astart-up flow and the prescribed piston ve-
locity profile can be satisfied exactly. Here we use the com-
putations to investigate the flow and determine the extent to
which it is described by planar similarity theory.

II. SIMILARITY THEORY

The scaling laws governing planar vortex sheet separa-
tion at the edge of a flat plate are derived in Pullin2. The
vortex sheet is embedded in an otherwise potential flow,
which Pullin took to grow in time as tm. To leading order
near the edge of the plate, the attached flow has velocity
potential

f~r ,u!52 iatmr 1/2 sin~u/2!. ~1!
a!Telephone: ~612! 624-6066; fax: ~612! 626-7370; electronic mail:
nitsche@ima.umn.edu
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Here, (r ,u) are polar coordinates centered at the edge and
a is a dimensional constant. From dimensional analysis of
thegoverning equations it follows that thecenter of thesepa-
rated spiral vortex sheet, zc5xc1 iyc , and the total shed
circulation G, satisfy

zc~ t !5v~m!F 3a/4m11G2/3t ~2/3!~m11!,

~2!

G~ t !5J~m!F3a4/4m11G1/3t ~4/3!~11m!21.

The numbersv,J are nondimensional and depend onm.
Under the scaling laws ~2!, the governing equations reduce
to an integro-differential equation independent of time. Pul-
lin solved this equation by approximating the shed vortex
sheet by a finite number of outer turns and representing the

FIG. 1. ~a! Axisymmetric vortex ring formation at the edge of a circular
tube. ~b! Planar vortex sheet separation at the edge of a flat plate.

FIG. 2. Computed solution at the indicated values of t̂, with d50.001 and
m50.

FIG. 3. Computed solution at t̂50.0002, with the indicated values of d
(m50).
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remaining inner spiral coreas apoint vortex. He recorded the
solution for a range of values of m. Krasny7 solved the time
dependent problem using a planar vortex sheet model and
found good agreement with Pullin’s solution.

Pullin4 applied the planar similarity theory to axisym-
metric flow out of a circular tube. For piston velocities

Up~ t !5Uot
m, ~3!

the velocity potential near the tube opening has the same
form as the planar potential ~1!. Using the dimensions of the
constant a in ~1! and acomputed estimate for themagnitude
of the potential, Pullin found that a5Uo(Do /2p)1/2, where
Do is the tube diameter. It is thus expected that the axisym-
metric separation approximately satisfies ~2! with this value
of a.

Following Pullin we introduce nondimensional vari-
ables,

t̂5
Ūot

Do
, Ĝ5

G

ŪoDo

, ẑc5
zc
Do

. ~4!

Here, Ūo is the average velocity at time t, Ūo

5 (1/t)*o
t Up(j)dj, and t̂ equals the nondimensional piston

stroke at time t. With this change of variables and the given
value of a, ~2! reduces to

ẑc5Czc
t̂ 2/3, Ĝ5CG t̂

1/3, ~5!

where Czc
5Cxc

1 iCyc
5v(m)(9/32p)1/3 and CG5J(m)

3(11m)(3/16p2)1/3. Throughout the rest of this paper, all
variables are nondimensionalized as in ~4!.

III. NUMERICAL METHOD AND SOLUTION

The axisymmetric vortex sheet model and its numerical
implementation are discussed in detail in Nitsche and
Krasny6 and wil l only be briefly described here. The tube
wall and back are modelled by a bound vortex sheet whose
strength is such that the induced flow is tangent to the wall
and equals the piston velocity in the rear of the tube. The
separated shear layer ismodelled by a freevortex sheet. Both
the bound and the free vortex sheet are discretized by circu-
lar vortex filaments. Vortex shedding is simulated by releas-
ing afilament from the edge at each time-step, with velocity
equal to the average velocity at the edge and circulation
given by Prandtl’s slip flow model for separation at a sharp
edge8. The spiral roll-up of the free vortex sheet is resolved
using the vortex blob method, in which a smoothing param-
eterd is introduced into the governing equations. The com-
putations are performed with d.0 and the vortex sheet is
obtained from the limit d→0.

Figures 2 and 3 show the solution computed for impul-
sively started piston motion, m50. Each plot shows a sec-
tion of the tube and acurve connecting the shed vortex fila-
ments. The coordinate system is as indicated in Fig. 1~a!.
Figure 2 shows the solution computed with a fixed value of
d. The vortex sheet shed from the edge rolls up into aspiral.
As time increases, the spiral grows and the number of spiral
turns increases. To resolve the roll-up at small times, the
flow is computed with smaller values of d. As an example,

Fig. 3 shows the solution at t̂50.0002 computed with a de-
creasing sequence of d. We note thatd, which scales as a
length, has also been nondimensionalized.

IV. COMPARISON WITH SIMILARITY THEORY

We investigate the behavior of various quantities as a
function of the nondimensional piston stroke t̂. Figure 4
shows the definition of the vortex center coordinates
xc ,yc , the spiral half diameter ds , and the distance L trav-
elled by a particle initially on the axis in the tube exit plane.
The dashed curve denotes the position of a material curve
initially across the tube opening. Together with the free vor-
tex sheet ~solid curve!, thedashed curve thereforebounds the
fluid initially inside the tube from the fluid initially outside
the tube. G is the total circulation shed from the edge at time
t. Figures 5–7 describe the computed behavior of these
quantities, for impulsively started piston motion, m50. The
variables yc , ds , L and G are monotonically increasing in
time and are treated first; the axial ring coordinate xc is
treated separately. The shape of the roll-up as a function of
m is discussed last.

A. Radia l coordinate y c , spira l diameter d s ,
circulatio n G and distance L

Figure 5shows log-log plots of the computed quantities
ŷc , d̂s , Ĝ and L̂, vs the piston stroke t̂. For each quantity,
various curves are shown, corresponding to values of d
P @0.00002,0.02#. For each valueof d, the curve is not plot-
ted at early times for which no spiral turns have yet formed.
The curves converge to an envelopewhich appears linear for
t̂,0.5. Thus, the quantities obey a power law at these times,

q̂5Cqt̂
pq. ~6!

Each subplot also shows aline whose slope closely approxi-
mates the one of the envelope. In the cases ~a,b,c! the slope
of the line is the value predicted by planar similarity theory.
Similarity theory does not give aprediction for the quantity

FIG. 4. Sketch showing definitions. xc , yc : spiral center coordinates, ds :
spiral half diameter, L: distance travelled by aparticle initially on theaxis in
the tube exit plane.
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L̂( t̂) shown in ~d!, but the slope pL51 appears to fit the data
well. The computations for m51/2,1,2 arenot shown but the
behavior is qualitatively the same as the case m50 shown
here, with the curves differing by a vertical shift. This indi-
cates that the exponents pq are independent of m but the
constants Cq depend on m.

To quantify the power law behavior observed in Fig. 5,
we find the values pq and Cq which best approximate the
data in aleast squaressense. The least squaresapproximation
is performed over the interval t̂ P @0.000005,0.5#, which is
the same interval over which the lines in Fig. 5 are drawn.
The results for m50,1/2,1,2 are shown in Table I. Columns
2–5 in Table I record the powers pq , columns 6–9 record
the constantsCq for the indicated quantities q. The values in
parenthesesare thevalues computed by Pullin2 for theplanar
separation at theedgeof a flat plate. They were inferred from
his Figs. 8–9 ~for ds) and Figs. 11–13 ~for J and
v5rne

ixn). Note that Table I describes the behavior of non-
dimensional variables as a function of the piston stroke t̂ .
The behavior of the dimensional variables in time t can be
recovered from ~4! and ~5! and the definition of Ūo .

The computed powers pyc, pds and pG in Table I agree

well with the similarity theory predictions of 2/3, 2/3 and
1/3, respectively. The constants Cq agree well with the val-
ues for planar separation computed by Pullin. The constants
Cyc

for small m and the constants ds are within 10%, the

constantsCG arewithin 2% of Pullin’s computed planar val-
ues. As m increases, Cyc

increasingly differs from Pullin’s

FIG. 5. Log-log plots, for values of d P @0.00002,0.02# andm50, vs t̂. ~a! ŷc , ~b! d̂s , ~c! Ĝ, ~d! L̂.

FIG. 6. Computed vortex ring trajectory ~solid curve! and extension of the
initial upstream trajectory ~dashed line!. The arrows denote the departure
from the initial trajectory. The horizontal line denotes the edge of the tube.
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values. This is attributed mainly to the fact that with increas-
ing m the flow becomes harder to compute.

Thevalues recorded in Table I show that yc , ds and G in
the axisymmetric flow are quantitatively well described by
the self-similar planar flow. This is trueup to timeswhen the
piston stroke is half the tube diameter, even though at these
times the ring has travelled downstream and the flow does
not resemble the self-similar flow.

The front of the volumeof fluid exiting the tube satisfies

L̂'0.75t̂, ~7!

for all values of m presented. Equivalently, it travels with
approximately 75% of the piston velocity. Since the front is
fairly flat, this implies that approximately 25% of thecolumn
of fluid leaving the tube opening is displaced and entrained
by the vortex ring. To my knowledge there are no experi-
mental records of this behavior of L. A theoretical explana-
tion for the behavior remains to be found.

B. Axia l coordinate x c

Figure 6shows an envelope of the computed vortex ring
trajectory. Almost immediately after leaving the edge of the
tube the ring travels downstream ~with positive axial veloc-

ity!. However, the computations show that the ring first trav-
els upstream ~with negative axial velocity! for a short time.
The axial coordinate xc is therefore negative at these initial
small times, and positive at later times. Figure 7~a! shows a
log-log plot of the absolute value ux̂cu vs t̂, computed with
m50 and various values of d P @0.00002,0.02#. The figure
shows clearly that the ring first travels upstream within the
time-interval marked by x̂c,0. This time-interval is small.
The piston stroke at which the ring crosses the tube exit
plane after its initial upstream motion, indicated by the
dashed vertical line, is t̂ o'0.001.

Figure 7~a! also shows several lines with indicated
slopes. The initial upstream motion is seen to satisfy
x̂c; t̂ 2/3, as predicted by similarity theory. The large time
downstream motion appears to approach linear behavior in
the piston stroke. Note that in the transition from x̂c'0 to
the large time linear behavior, the ring may appear to satisfy
x̂c; t̂ p for variousp, depending on what time-interval is con-
sidered. This may partially explain the differing experimen-
tal results observed. Didden5 quotes a rough estimate of
p51.5, Weigand and Gharib9 observe p'1.1. One also
needs to consider that in these experiments the piston under-

FIG. 7. Log-log plots vs t̂ (m50). ~a! ux̂cu, ~b! â5 x̂c2Cxc
t̂ 2/3, where Cxc

is estimated from the small time behavior in ~a!.

TABLE I. Exponentspq and constantsCq for the indicated variables q̂5Cqt̂
pq. Thevaluescomputed by Pullin2

for self-similar planar flow around a flat plate are given in parentheses.

m pyc pds pG pL Cyc
Cds

CG CL

0 0.673 0.658 0.327 1.003 0.199 ~0.18! 0.138 ~0.15! 0.70 ~0.70! 0.756
1/2 0.679 0.658 0.324 1.001 0.178 ~0.16! 0.121 0.93 ~0.93! 0.739
1 0.684 0.661 0.321 1.004 0.172 ~0.14! 0.116 ~0.13! 1.16 ~1.17! 0.732
2 0.686 0.659 0.320 1.007 0.165 ~0.13! 0.111 1.63 ~1.67! 0.736
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goes an initial start-up period and does not satisfy Up;tm

over the time interval studied.
The initial upstream self-similar behavior observed in

Fig. 7~a! is indicated by thedashed line in Fig. 6. Thearrows
in Fig. 6 denote the difference between the observed trajec-
tory and the initial upstream trajectory. This difference
â5 x̂c2Cxc

t̂ 2/3 is plotted in Fig. 7~b!, vs t̂. The value for
Cxc

used here is arough estimateobtained from Fig. 7~a! and
is recorded in Table II . The log-log curves in Fig. 7~b! are
almost linear, suggesting that â also satisfies a power law,
â5Ca t̂

pa. A least squares approximation of the envelope,
defined as theminimum over all values of d, gives estimates
for Ca and pa . The values for pa recorded in Table II sug-
gest that the downstream componentâ is linear in the piston
stroke and

x̂c'2Cxc
t̂ 2/31Ca t̂. ~8!

Thismay beunderstood as follows. Graham10 noted that near
the edge, potential flow out of an opening generally has, to
first order, a singular component given by ~1! and to second
order, a regular component. The potential may be written as
f(z)52c1z

1/21c2z, where z5reiu. The first term in ~8! is
induced by the singular component of the potential. The sec-
ond term in ~8!, the downstream componentâ, is induced
both by the regular component of the potential as well as by
the self-induced vortex ring velocity. These two factors are
not present in self-similar planar vortex sheet separation. The
similarity theory therefore does not account for the behavior
of â. An explanation for the linear behavior observed here,
â; t̂, remains to be found.

We remark that the upstream ring motion observed in
our computations occurs at such small times that in a typical
experiment, the flow is most likely dominated by viscous
effects during these times. It has however been observed in
experiments that the ring does not leave the exit plane at the
edge of the tube but at a slightly larger diameter5,9.

C. Shape of the roll-up

The valuesCxc
, Cyc

, Ca , pa recorded in Tables I and II
imply that the piston stroke t̂ o at which the ring leaves the
exit plane and the ring diameter at this time increase with
m. The values also imply that the upward angle at which the
ring leaves the edge decreases with increasing m. This can
be observed in Fig. 8a, which shows the computed vortex
sheet for m50,1/2,1,2 at a small time during which the ring

TABLE II . Estimates for the axial coordinate x̂c52Cxc
t̂ 2/31Ca t̂

pa. The
values computed by Pullin for the self-similar planar flow are given in
parentheses.

m Cxc
Ca pa

0 0.027 ~0.041! 0.34 1.07
1/2 0.038 ~0.061! 0.25 1.05
1 0.040 ~0.064! 0.22 1.06
2 0.041 ~0.070! 0.19 1.07

FIG. 8. ~a! Computed solution at t̂50.0002, with d50.00004 and the indicated values ofm. ~b! Pullin’s solution for the self-similar planar roll-up at the edge
of a plate ~reproduced from Pullin2!.
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is still travelling upstream. For comparison, Fig. 8~b! shows
Pullin’s2 solution for the self-similar planar roll-up at the
edge of a flat plate, withm50,1,`. The outer spiral turns in
Figs. 8~a! and 8~b! are in good agreement. In both cases the
ellipticity of the roll-up increases with m, the size of the
roll-up decreases, and the angle at which the vortex leaves
the edge decreases. This angle is larger in Fig. 8~a! than in
Fig. 8~b!. This is related to the differences in Cxc

between
the present computations and Pullin’s values recorded in
Table II . These differences are attributed mainly to the fact
that at the initial timesconsidered in Fig. 7, even though they
are small, the axisymmetric ring has already departed from
self-similar flow.

Some of the features observed in Fig. 8~a! are also ob-
served at large times, when the ring has travelled down-
stream. Figure 9 shows the solution for piston
stroke t̂50.5, near the end of the time-interval described by
the scaling behavior observed in Figs. 5 and 7. Thematerial
curve which initially lies across the opening is also shown.
Both the ellipticity of the roll-up and its til t with respect to
the horizontal increasewithm. The front of the fluid volume
exiting the tube changes littl e with m, although one already
observes asmall departure from ~7!. The size of the roll-up
decreases with increasing m. At the same time, the distribu-
tion of outer and inner fluid entrained in the roll-up becomes
more asymmetric. For larger m, more of the entrained fluid
consists of fluid originally inside the tube, and less of fluid
originally outside the tube.

V. SUMMARY

A vortex sheet model was applied to simulate axisym-
metric vortex ring formation at the edge of a circular tube.
We investigated the dependence of the ring trajectory, circu-
lation, size and shape on the piston velocity, for accelerating
velocities Up;tm and m50,1/2,1,2. The results are com-
pared with theoretical predictions for self-similar planar vor-
tex sheet separation at the edge of a flat plate. The computed
behavior is recorded as afunction of the piston stroke t̂. We

find that for piston strokes up to half the tube diameter and
for all valuesof m considered, theaxisymmetric flow ischar-
acterized as follows.

~1! The radial ring coordinate yc , the core size ds and
thecirculation G arewell described by theself-similar planar
flow around a flat plate. Appropriately nondimensionalized,
they¬ obey¬ the¬ predicted¬ scaling¬ behavior¬ ŷc ,
d̂s; t̂ 2/3,Ĝ; t̂ 1/3. Furthermore, they agreequantitatively with
the planar values computed by Pullin. The agreement holds
even after the ring has travelled downstream and theaxisym-
metric flow no longer resembles the planar self-similar flow.

~2! The front of the fluid exiting the tube travels with
approximately 75% of the piston velocity, L̂50.75t̂. This
behavior has not been previously reported.

~3! The axial coordinate xc is asuperposition of an up-
stream component predicted by similarity theory and a
downstream component which is linear in the piston stroke,
x̂c52Cxc

t̂ 2/31Ca t̂. As mentioned in the Introduction,
Didden5 observed adiscrepancy between experimental mea-
surements and similarity theory predictions for the axial vor-
tex ring coordinate. The present results show that the axial
coordinate does satisfy the similarity predictions at very
small times but is soon dominated by a downstream compo-
nent not present in the theory. Thedownstream component is
induced by the ring’s self-induced velocity and the regular
component of the starting potential flow.

~4! The shape of the rolled-up vortex sheet changeswith
m. Asm increases it becomes more elliptical and decreases
in size. The distribution of fluid entrained by the ring be-
comes more asymmetric. For larger values of m, a larger
portion of the entrained fluid consists of fluid initially inside
the tube.
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