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ABSTRACT

Massive volumes of big RDF data are growing beyond the
performance capacity of conventional RDF data manage-
ment systems operating on a single node. Applications
using large RDF data demand efficient data partitioning
solutions for supporting RDF data access on a cluster of
compute nodes. In this paper we present a novel semantic
hash partitioning approach and implement a Semantic
HAsh Partitioning-Enabled distributed RDF data man-
agement system, called Shape. This paper makes three
original contributions. First, the semantic hash partitioning
approach we propose extends the simple hash partition-
ing method through direction-based triple groups and
direction-based triple replications. The latter enhances the
former by controlled data replication through intelligent
utilization of data access locality, such that queries over
big RDF graphs can be processed with zero or very small
amount of inter-machine communication cost. Second, we
generate locality-optimized query execution plans that are
more efficient than popular multi-node RDF data manage-
ment systems by effectively minimizing the inter-machine
communication cost for query processing. Third but not
the least, we provide a suite of locality-aware optimization
techniques to further reduce the partition size and cut
down on the inter-machine communication cost during dis-
tributed query processing. Experimental results show that
our system scales well and can process big RDF datasets
more efficiently than existing approaches.

1. INTRODUCTION
The creation of RDF (Resource Description Frame-

work) [5] data is escalating at an unprecedented rate, led
by the semantic web community and Linked Open Data
initiatives [3]. On one hand, the continuous explosion of
RDF data opens door for new innovations in big data and
Semantic Web initiatives, and on the other hand, it easily
overwhelms the memory and computation resources on
commodity servers, and causes performance bottlenecks in
many existing RDF stores with query interfaces such as
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SPARQL [6]. Furthermore, many scientific and commercial
online services must answer queries over big RDF data
in near real time and achieving fast query response time
requires careful partitioning and distribution of big RDF
data across a cluster of servers.

A number of distributed RDF systems are using Hadoop
MapReduce as their query execution layer to coordinate
query processing across a cluster of server nodes. Several
independent studies have shown that a sharp difference in
query performance is observed between queries that are
processed completely in parallel without any coordination
among server nodes and queries that require even a small
amount of coordination. When the size of intermediate
results is large, the inter-node communication cost for
transferring intermediate results of queries across multiple
server nodes can be prohibitively high. Therefore, we argue
that a scalable RDF data partitioning approach should be
able to partition big RDF data into performance-optimized
partitions such that the number of queries that hit partition
boundaries is minimized and the cost of multiple rounds of
data shipping across a cluster of sever nodes is eliminated
or reduced significantly.

In this paper we present a semantic hash partitioning ap-
proach that combines locality-optimized RDF graph parti-
tioning with cost-aware query partitioning for scaling queries
over big RDF graphs. At the data partitioning phase, we
develop a semantic hash partitioning method that utilizes
access locality to partition big RDF graphs across multiple
compute nodes by maximizing the intra-partition process-
ing capability and minimizing the inter-partition communi-
cation cost. Our semantic hash partitioning approach in-
troduces direction-based triple groups and direction-based
triple replications to enhance the baseline hash partitioning
algorithm by controlled data replication through intelligent
utilization of data access locality. We also provide a suite of
semantic optimization techniques to further reduce the par-
tition size and increase the opportunities for intra-partition
processing. As a result, queries over big RDF graphs can be
processed with zero or very small amount of inter-partition
communication cost. At the cost-aware query partitioning
phase, we generate locality-optimized query execution plans
that can effectively minimize the inter-partition communi-
cation cost for distributed query processing and are more
efficient than those produced by popular multi-node RDF
data management systems. To validate our semantic hash
partitioning architecture, we develop Shape, a Semantic
HAsh Partitioning-Enabled distributed RDF data manage-
ment system. We experimentally evaluate our system to un-
derstand the effects of various system parameters and com-
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Figure 1: RDF and SPARQL

pare against other popular RDF data partitioning schemes,
such as simple hash partitioning and min-cut graph parti-
tioning. Experimental results show that our system scales
well and can process big RDF datasets more efficiently than
existing approaches. Although this paper focuses on RDF
data and SPARQL queries, we conjecture that many of our
technical developments are applicable to scaling queries and
subgraph matching over general applications of big graphs.

The rest of the paper proceeds as follows. We give a brief
overview of RDF, SPARQL and the related work in Sec-
tion 2. Section 3 describes the Shape system architecture
that implements the semantic hash partitioning. We present
the locality-optimized semantic hash partitioning scheme in
Section 4 and the partition-aware distributed query process-
ing mechanisms in Section 5. We report our experimental
results in Section 6 and conclude the paper in Section 7.

2. PRELIMINARY

2.1 RDF and SPARQL
RDF is a standard data model, proposed by World Wide

Web Consortium (W3C). An RDF dataset consists of RDF
triples and each triple has a subject, a predicate and an ob-
ject, representing a relationship, denoted by the predicate,
between the subject and the object. An RDF dataset forms
a directed, labeled RDF graph, where subjects and objects
are vertices and predicates are labels on the directed edges,
each emanating from its subject vertex to its object vertex.
The schema-free model makes RDF attractive as a flexible
mechanism for describing entities and relationships among
entities. Fig. 1(a) shows an example RDF graph, extracted
from the Lehigh University Benchmark (LUBM) [8].

SPARQL [6] is a SQL-like standard query language for
RDF, recommended by W3C. SPARQL queries consist of
triple patterns, in which subject, predicate and object may
be a variable. A SPARQL query is said to match subgraphs
of the RDF data when the terms in the subgraphs may be
substituted for the variables. Processing a SPARQL query
Q involves graph pattern matching and the result of Q is
a set of subgraphs of the big RDF graph, which match the
triple patterns of Q.

SPARQL queries can be categorized into star, chain and
complex queries as shown in Fig. 1(b). Star queries often
consist of subject-subject joins and each join variable is the
subject of all the triple patterns involved. Chain queries of-
ten consist of subject-object joins (i.e., the subject of a triple
pattern is joined to the object of another triple pattern) and
their triple patterns are connected one by one like a chain.
We refer to the remaining queries, which are combinations
of star and chain queries, as complex queries.

2.2 Related Work
Data partitioning is an important problem with applica-

tions in many areas. Hash partitioning is one of the dom-
inating approaches in RDF graph partitioning. It divides
an RDF graph into smaller and similar sized partitions by
hashing over the subject, predicate or object of RDF triples.
We classify existing distributed RDF systems into two cat-
egories based on how the RDF dataset is partitioned and
how partitions are stored and accessed.

The first category generally partitions an RDF dataset
across multiple servers using horizontal (random) partition-
ing, stores partitions using distributed file systems such as
Hadoop Distributed File System (HDFS), and processes
queries by parallel access to the clustered servers using
distributed programming model such as Hadoop MapRe-
duce [20, 12]. SHARD [20] directly stores RDF triples in
HDFS as flat text files and runs one Hadoop job for each
clause (triple pattern) of a SPARQL query. [12] stores RDF
triples in HDFS by hashing on predicates and runs one
Hadoop job for each join of a SPARQL query. Existing
approaches in this category suffers from prohibitively high
inter-node communication cost for processing queries.

The second category partitions an RDF dataset across
multiple nodes using hash partitioning on subject, object,
predicate or any combination of them. However, the parti-
tions are stored locally in a database, such as a key-value
store like HBase or an RDF store like RDF-3X [18] and ac-
cessed via a local query interface. In contrast to the first
type of systems, these systems only resort to distributed
computing frameworks, such as Hadoop MapReduce, to per-
form cross-server coordination and data transfer required
for distributed query execution, such as joins of interme-
diate query results from two or more partition servers [7,
9, 19, 15]. Concretely, Virtuoso Cluster [7], YARS2 [9],
Clustered TDB [19] and CumulusRDF [15] are distributed
RDF systems which use simple hashing as their triple par-
titioning strategy, but differ from one another in terms of
their index structures. Virtuoso Cluster partitions each in-
dex of all RDBMS tables containing RDF data using hash-
ing. YARS2 uses hashing on the first element of all six al-
ternately ordered indices to distribute triples to all servers.
Clustered TDB uses hashing on subject, object and pred-
icate to distribute each triple three times to the cluster of
servers. CumulusRDF distributes three alternately ordered
indices using a key-value store. Surprisingly, none of the
existing data partitioning techniques by design aim at mini-
mizing the amount of inter-partition coordination and data
transfer involved in distributed query processing. Thus most
existing work suffers from the high cost of cross-server coor-
dination and data transfer for complex queries. Such heavy
inter-partition communication incurs excessive network I/O
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Figure 2: System Architecture

operations, leading to long query latencies.
Graph partitioning has been studied extensively in several

communities for decades [10, 13]. A typical graph parti-
tioner divides a graph into smaller partitions that have min-
imum connections between them, as adopted by METIS [13,
4] or Chaco [10]. Various efforts on graph partitioning have
been dedicated to partitioning a graph into similar sized
partitions such that the workload of servers hosting these
partitions will be better balanced. [11] promotes the use of
min-cut based graph partitioner for distributing big RDF
data across a cluster of machines. It shows experimentally
that min-cut based graph partitioning outperforms the sim-
ple hash partitioning approach. However, the main weak-
nesses of existing graph partitioners are the high overhead
of loading the RDF data into the data format of graph par-
titioners and the poor scalability to large datasets. For ex-
ample, we show in Section 6 that it is time consuming to
load large RDF datasets to a graph partitioner and also the
partitioner crashes when RDF datasets exceed a half bil-
lion triples. Orthogonal to graph partitioning efforts such
as min-cut algorithms, several vertex-centric programming
models are proposed for efficient graph processing on a clus-
ter of commodity servers [17, 16] or for minimizing disk
IOs required by in-memory graph computation [14]. Con-
cretely, [17, 14] are known for their iterative graph compu-
tation techniques that can speed up certain types of graph
computations. The techniques developed in [16] partition
heterogeneous graphs by constructing customizable types of
vertex blocks.

In comparison, this is the first work, to the best of our
knowledge, which introduces a semantic hash partitioning
method combined with a locality-aware query partitioning
method. The semantic hash partitioning method extends
simple hash partitioning by combining direction-based
triple grouping with direction-based triple replication.
The locality-aware query partitioning method generates
semantic hash partition-aware query plans, which minimize
inter-partition communication cost for distributed query
processing.

3. OVERVIEW
We implement the first prototype system of our seman-

tic hash partitioning method on top of Hadoop MapReduce
with the master server as the coordinator and the set of slave
servers as the workers. Fig. 2 shows a sketch of our system
architecture.

Data partitioning. RDF triples are fetched into the data
partitioning module hosted on the master server, which par-
titions the data stored across the set of slave servers. To
work with big data that exceeds the performance capacity
(e.g., memory, CPU) of a single server, we provide a dis-
tributed implementation of our semantic hash partitioning
algorithm to perform data partitioning using a cluster of
servers. The semantic hash partitioner performs three main
tasks: (i) Pre-partition optimizer prepares the input RDF
dataset for hash partitioning, aiming at increasing the access
locality of each baseline partition generated in the next step.
(ii) Baseline hash partition generator uses a simple hash par-
titioner to create a set of baseline hash partitions. In the
first prototype implementation, we set the number of parti-
tions to be exactly the number of available slave servers. (iii)
Semantic hash partition generator utilizes the triple replica-
tion policies (see Section 4) to determine how to expand
each baseline partition to generate its semantic hash parti-
tion with high access locality. We utilize the selective triple
replication optimization technique to balance between the
access locality and the partition size. On each slave server,
either an RDF-specific storage system or a relational DBMS
can be installed to store the partition generated by the data
partitioning algorithms, process SPARQL queries over the
local partition hosted by the slave server and generate par-
tial (or intermediate) results. RDF-3X [18] is installed on
each slave server of the cluster in Shape.
Distributed query processing. The master server also
serves as the interface for SPARQL queries and performs dis-
tributed query execution planning for each query received.
We categorize SPARQL query processing on a cluster of
servers into two types: intra-partition processing and in-
ter -partition processing.

By intra-partition processing, we mean that a query Q
can be fully executed in parallel on each server by locally
searching the subgraphs matching the triple patterns of Q,
without any inter-partition coordination. The only inter-
server communication cost required to process Q is for the
master server to send Q to each slave server and for each
slave server to send its local matching results to the master
server, which simply merges the partial results received from
all slave servers to generate the final results of Q.
By inter-partition processing, we mean that a query Q as

a whole cannot be executed on any partition server, and it
needs to be decomposed into a set of subqueries such that
each subquery can be evaluated by intra-partition process-
ing. Thus, the processing of Q requires multiple rounds
of coordination and data transfer across a set of partition
servers. In contrast to intra-partition processing, the com-
munication cost for inter-partition processing can be ex-
tremely high, especially when the number of subqueries is
not small and the size of intermediate results to be trans-
ferred across a network of partition servers is large.

4. SEMANTIC HASH PARTITIONING
The semantic hash partitioning algorithm performs data

partitioning in three main steps: (i) Building a set of triple
groups which are baseline building blocks for semantic hash
partitioning. (ii) Grouping the baseline building blocks to
generate baseline hash partitions. To further increase the
access locality of baseline building blocks, we also develop
an RDF-specific optimization technique that applies URI
hierarchy-based grouping to merge those triple groups whose
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anchor vertices share the same URI prefix prior to gener-
ating the baseline hash partitions. (iii) Generating k-hop
semantic hash partitions, which expands each baseline hash
partition via controlled triple replication. To further balance
the amount of triple replication and the efficiency of query
processing, we also develop the rdf:type-based triple filter
during the k-hop triple replication. To ease the readability,
we first describe the three core tasks and then discuss the
two optimizations at the end of this section.

4.1 Building Triple Groups
An intuitive way to partition a large RDF dataset is to

group a set of triples anchored at the same subject or object
vertex and place the grouped triples in the same partition.
We call such groups triple groups, each with an anchor ver-
tex. Triple groups are used as baseline building blocks for
our semantic hash partitioning. An obvious advantage of us-
ing the triple groups as baseline building blocks is that star
queries can be efficiently executed in parallel using solely
intra-partition processing at each sever because it is guar-
anteed that all required triples, from each anchor vertex, to
evaluate a star query are located in the same partition.

Definition 1. (RDF Graph) An RDF graph is a di-
rected, labeled multigraph, denoted as G = (V,E,ΣE , lE)
where V is a set of vertices and E is a multiset of directed
edges (i.e., ordered pairs of vertices). (u, v) ∈ E denotes a
directed edge from u to v. ΣE is a set of available labels
(i.e., predicates) for edges and lE is a map from an edge to
its label (E → ΣE).

In RDF datasets, multiple triples may have the same sub-
ject and object and thus E is a multiset instead of a set. Also
the size of E (|E|) represents the total number of triples in
the RDF graph G.

For each vertex v in a given RDF graph, we define three
types of triple groups based on the role of v with respect
to the triples anchored at v: (i) subject-based triple group
(s-TG) of v consists of those triples in which their subject is
v (i.e., outgoing edges from v) (ii) object-based triple group
(o-TG) of v consists of those triples in which their object is
v (i.e., incoming edges to v) (iii) subject-object-based triple
group (so-TG) of v consists of those triples in which their
subject or object is v (i.e., all connected edges of v). We
formally define triple groups as follows.

Definition 2. (Triple Group) Given an RDF graph
G = (V,E,ΣE , lE), s-TG of vertex v ∈ V is a set of
triples in which their subject is v, denoted by s-TG(v)
= {(u,w)|(u,w) ∈ E, u = v}. We call v the anchor vertex
of s-TG(v). Similarly, o-TG and so-TG of v are defined
as o-TG(v) = {(u,w)|(u,w) ∈ E,w = v} and so-TG(v)
= {(u,w)|(u,w) ∈ E, v ∈ {u,w}} respectively.

We generate a triple group for each vertex in an RDF graph
and use the set of generated triple groups as baseline build-
ing blocks to generate k-hop semantic hash partitions. The
subject-based triple groups are anchored at subject of the
triples and are efficient for subject-based star queries in which
the center vertex is the subject of all triple patterns (i.e.,
subject-subject joins). The total number of s-TG equals to
the total number of distinct subjects. Similarly, o-TG and
so-TG are efficient for object-based star queries (i.e., object-
object joins), in which the center vertex is the object of
all triple patterns, and subject-object-based star queries, in

which the center vertex is the subject of some triple patterns
and object of the other triple patterns (i.e., there exists at
least one subject-object join) respectively.

4.2 Constructing Baseline Hash Partitions
The baseline hash partitioning takes the triple groups gen-

erated in the first step and applies a hash function on the an-
chor vertex of each triple group and place those triple groups
having the same hash value in the same partition. We can
view the baseline partitioning as a technique to bundle dif-
ferent triple groups into one partition. With three types of
triple groups, we can construct three types of baseline parti-
tions: subject-based partitions, object-based partitions and
subject-object-based partitions.

Definition 3. (Baseline hash partitions) Let G =
(V,E,ΣE , lE) denote an RDF graph and TG(v) denote the
triple group anchored at vertex v ∈ V . The baseline hash
partitioning P of graph G results in a set of n partitions, de-
noted by {P1, P2, . . . , Pn} such that Pi = (Vi, Ei,ΣEi

, lEi
),⋃

i
Vi = V ,

⋃
i
Ei = E. If Vi = {v|hash(v) = i, v ∈

V }
⋃
{w|(v, w) ∈ TG(v), hash(v) = i, v ∈ V } and

Ei = {(v, w)|v, w ∈ Vi, (v, w) ∈ E}, we call the base-
line partitioning P the s-TG hash partitioning. If
Vi = {v|hash(v) = i, v ∈ V }

⋃
{u|(u, v) ∈ TG(v), hash(v) =

i, v ∈ V } and Ei = {(u, v)|u, v ∈ Vi, (u, v) ∈ E}, we call
the baseline partitioning P the o-TG hash partitioning.
In the above two cases, Ei

⋂
Ej = ∅ for 1 ≤ i, j ≤ n,

i 6= j. If Vi = {v|hash(v) = i, v ∈ V }
⋃
{w|(v, w) ∈

TG(v) ∨ (w, v) ∈ TG(v), hash(v) = i, v ∈ V } and
Ei = {(v, w)|v, w ∈ Vi, (v, w) ∈ E}, we call the base-
line partitioning P the so-TG hash partitioning.

We can verify the correctness of the baseline partitioning by
checking the full coverage of baseline partitions and the dis-
joint properties for subject-based and object-based baseline
partitions. In addition, we can further improve the par-
tition balance across a cluster of servers by fine-tuning of
triple groups with high degree anchor vertex. Due to space
constraint, we omit further discussion on the correctness
verification and quality assurance step in this paper.

4.3 Generating Semantic Hash Partitions
Using a hash function to map triple groups to baseline

partitions has two advantages. It is simple and it generates
well balanced partitions. However, a serious weakness of
simple hash-based partitioning is the poor performance for
complex non-star queries.

Considering a complex SPARQL query asking the list of
graduate students who have taken a course taught by their
CS advisor in Fig. 1(c), its query graph consists of two star
query patterns chained together: one consists of three triple
patterns emanating from variable vertex ?student, and the
other consists of two triple patterns emanating from vari-
able vertex ?professor. Assuming that the original RDF
data in Fig. 1(a) is partitioned using the simple hash par-
titioning based on s-TGs, we know that the triples with
predicates advisor and takes emanating from their subject
vertex Stud1 are located in the same partition. However,
it is highly likely that the triple teacherOf and the triple
works emanating from a different but related subject vertex
Prof1, the advisor of the student Stud1, are located in a
different partition, because the hash value for Stud1 is dif-
ferent from the hash value of Prof1. Thus, this complex
query needs to be evaluated by performing inter-partition
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processing, which involves splitting the query into a set of
subqueries as well as cross-server communication and data
shipping. Assume that we choose to decompose the query
into the following two subqueries: 1) SELECT ?student
?professor ?course WHERE {?student advisor ?professor .
?student takes ?course . ?student rdf:type GradStud . } 2)
SELECT ?professor ?course WHERE {?professor teacherOf
?course . ?professor works CS .}. Although each subquery
can be performed in parallel on all partition servers, we need
to ship the intermediate results generated from each sub-
query across a network of partition servers in order to join
the intermediate results of the subqueries, which can lead to
a high cost of inter-server communication.

Taking a closer look at the query graph in Fig.1(c), it is in-
tuitive to observe that if the triples emanating from the ver-
tex Stud1 and the triples emanating from its one hop neigh-
bor vertex Prof1 are residing in the same partition, we can
effectively eliminate the inter-partition processing cost and
evaluate this complex query by only intra-partition process-
ing. This motivates us to develop a locality-aware semantic
hash partitioning algorithm through hop-based controlled
triple replication.

4.3.1 Hopbased Triple Replication

The main goal of using hop-based triple replication is to
create a set of semantic hash partitions such that the num-
ber of queries that can be evaluated by intra-partition pro-
cessing is increased and maximized. In contrast, with the
baseline partitions only star queries can be guaranteed for
intra-partition processing.

Fig. 3 presents an intuitive illustration of the concept and
benefit of the semantic hash partitioning. By the baseline
hash partitioning, we have five baseline partitions P1, P2,
P3, P4 and P5 and three queries shown in Fig. 3(a). For
brevity, we assume that the baseline partitions are gener-
ated using s-TGs or o-TGs in which each triple is included
in only one triple group. Clearly, Q2 is an intra-partition
query and Q1 and Q3 are inter-partition queries. Evaluat-
ing Q1 requires to access triples located in and nearby the
boundaries of the three partitions: P1, P3 and P4. One way
to process Q1 is to use the baseline partitions. Thus, Q1

should be split into three subqueries, and upon completion
of the subqueries, their intermediate results are joined using
Hadoop jobs. The communication cost for inter-partition
processing depends on the number of subqueries, the size of
the intermediate results and the size of the cluster (number
of partition servers involved).

Alternatively, we can expand the triple groups in each
baseline partition by using hop-based triple replication and
execute queries over the semantic hash partitions instead.
In Fig. 3(b), the shaded regions, P1’ and P5’, represent a
set of replicated triples added to partition P1 and P5 respec-
tively. Thus, P1 is replaced by its semantic hash partition,

denoted by P1
⋃

P1’. Similarly, P5 is replaced by P5
⋃

P5’.
With the semantic hash partitions, all three queries can be
executed by intra-partition processing without any coordi-
nation with other partitions and any join of intermediate
results, because all triples required to evaluate the queries
are located in the expanded partition.

Before we formally introduce the k-hop semantic hash par-
titioning, we first define some basic concepts of RDF graphs.

Definition 4. (Path) Given an RDF graph G =
(V,E,ΣE , lE), a path from vertex u ∈ V to another vertex
w ∈ V is a sequence of vertices, denoted by v0, v1, . . . , vk,
such that v0 = u, vk = w, ∀m ∈ [0, k − 1] : (vm, vm+1) ∈ E.
We also call this path the forward direction path. A reverse
direction path from vertex u to vertex w is a sequence
of vertices, denoted by v0, v1, . . . , vk, such that v0 = u,
vk = w, ∀m ∈ [0, k − 1] : (vm+1, vm) ∈ E. A bidirection
path from vertex u to vertex w is a sequence of vertices,
denoted by v0, v1, . . . , vk, such that v0 = u, vk = w,
∀m ∈ [0, k − 1] : (vm, vm+1) ∈ E or (vm+1, vm) ∈ E. The
length of the path v0, v1, . . . , vk is k.

Definition 5. (Hop count) Given an RDF graph G =
(V,E,ΣE , lE), we define the hop count from vertex u ∈ V
to vertex v ∈ V , denoted by hop(u, v), as the minimum
length of all possible forward direction paths from u to v. We
also define the hop count from vertex u to edge (v, w) ∈ E,
denoted by hop(u, vw), as “1 + hop(u, v)”. The reverse hop
count from vertex u to vertex v, reverse hop(u, v), is the
minimum length of all possible reverse direction paths from
u to v. The bidrection hop count from vertex u to vertex v,
bidirection hop(u, v), is the minimum length of all possible
bidirection paths between u to v. The hop count hop(u, v)
is zero if u = v and ∞ if there is no forward direction path
from u to v. Similar exceptions exist for reverse hop(u, v)
and bidirection hop(u, v).

Now we introduce k-hop expansion to control the level
of triple replication and balance between the query perfor-
mance and the cost of storage. Concretely, each expanded
partition will contain all triples that are within k hops from
any anchor vertex of its triple groups. k is a system-defined
parameter and k = 2 is the default setting in our first pro-
totype. One way to optimize the setting of k is to utilize
the statistics collected from representative historical queries
such as frequent query patterns.

We support three approaches to generate k-hop semantic
hash partitions based on the direction of triple expansion: i)
forward direction-based, ii) reverse direction-based, and iii)
bidirection-based. The main advantage of using direction-
based triple replication is to enable us to selectively replicate
the triples within k hops. This selective replication strategy
offers a configurable and customizable means for users and
applications of our semantic hash partitioner to control the
amount of triple replications desired. This is especially use-
ful when considering a better tradeoff between the gain of
minimizing inter-partition processing and the cost of local
storage and local query processing. Furthermore, by en-
abling direction-based triple expansion, we provide k-hop
semantic hash partitioning with a flexible combination of
tripe groups of different types and k-hop triple expansion to
baseline partitions along different directions.

Let G = (V,E,ΣE , lE) be the RDF graph of the original
dataset and {P1, P2, . . . , Pm} denote the baseline partitions
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Figure 4: Semantic hash partitions from Stud1

on G. We formally define the k-hop forward semantic hash
partitions as follows.

Definition 6. (k-hop forward semantic hash parti-
tion) The k-hop forward semantic hash partitions on
G are expanded partitions from {P1, P2, . . . , Pm}, by
adding (replicating) triples that are within k hops from
any anchor vertex in each baseline partition along
the forward direction, denoted by {P k

1 , P
k
2 , . . . , P

k
m},

where each baseline partition Pi = (Vi, Ei,ΣEi
, lEi

)
is expanded into P k

i = (V k
i , Ek

i ,ΣEk

i

, lEk

i

) such that

Ek
i = {e|e ∈ E, ∃vanchor ∈ Vi : hash(vanchor) =

i and hop(vanchor, e) ≤ k}, and V k
i = {v|(v, v′) ∈ Ek

i

or (v′′, v) ∈ Ek
i }.

We omit the formal definitions of the k-hop reverse and
bidirection semantic hash partitions, in which the only dif-
ference is using reverse hop(vanchor, e) and bidirection
hop(vanchor, e), instead of using hop(vanchor, e), respectively.

Fig. 4 illustrates three direction-based 2-hop expansions
from a triple group with anchor vertex Stud1 shown in
Fig. 4(a). Fig. 4(b) shows the 2-hop forward semantic hash
partition, where dotted edges represent replicated triples by
2-hop expansion from the baseline partition. Fig. 4(c) shows
the 2-hop reverse semantic hash partition (i.e., from object
to subject). Fig. 4(d) shows the semantic hash partition
generated by 2-hop bidirection expansion from Stud1.

4.3.2 Benefits of khop semantic hash partitions

The main idea of the semantic hash partitioning approach
is to use a flexible triple replication scheme to maximize
intra-partition processing and minimize inter-partition
processing for RDF queries. Compared to existing data
partitioning algorithms that produce disjoint partitions,
the biggest advantage of using the k-hop semantic hash
partitioning is that, by selectively replicating some triples
across multiple partitions, more queries can be executed
using intra-partition processing.

We employ the concept of eccentricity, radius and center
vertex to formally characterize the benefits of the k-hop se-
mantic hash partitioning scheme. Let G = (V,E,ΣE , lE)
denote an RDF graph.

Definition 7. (Eccentricity) The eccentricity ǫ of a
vertex v ∈ V is the greatest bidirection hop count from

v to any edge in G and formally defined as follows:

ǫ(v) = max
e∈E

bidirection hop(v, e)

The eccentricity of a vertex in an RDF graph shows how
far a vertex is from the vertex most distant from it in the
graph. In the above definition, if we use the forward or
reverse hop count instead, we can obtain the forward or
reverse eccentricity respectively.

Definition 8. (Radius and Center vertex) We define the
radius of G, r(G), as the minimum (bidirection) eccentric-
ity of any vertex v ∈ V . The center vertices of G are
the vertices whose (bidirection) eccentricity is equal to the
radius of G.

r(G) = min
v∈V

ǫ(v), center(G) = {v|v ∈ V, ǫ(v) = r(G)}

When the forward or reverse eccentricity is used to define
the radius of an RDF graph G, we refer to this radius as the
forward or reverse direction radius respectively.

Now we use the query radius to formalize the gain of the
semantic hash partitioning. Given a query Q issued over a
set of k-hop semantic hash partitions, if the radius of Q’s
query graph is equal to or less than k, then Q can be exe-
cuted on the partitions by using intra-partition processing.

Theorem 1. Let {P k
1 , P

k
2 , . . . , P

k
m} denote the semantic

hash partitions of G, generated by k-hop expansion from
the baseline partitions {P1, P2, . . . , Pm} on G, GQ denote
the query graph of a query Q and r(GQ) denote the radius
of the query graph GQ. Q can be evaluated using intra-
partition processing over {P k

1 , P
k
2 , . . . , P

k
m} if r(GQ) ≤ k.

We give a brief sketch of proof. By the k-hop forward (or
reverse or bidirection) semantic hash partitioning, for any
anchor vertex u in baseline partition Pi, all triples which
are within k hops from u along the forward direction (or
reverse or bidirection) are included in P k

i . Therefore, it is
guaranteed that all required triples to evaluate Q from u
reside in the expanded partition if r(GQ) ≤ k.

4.3.3 Selective khop Expansion

Instead of replicating triples by expanding k hops in an
exhaustive manner, we promote to further control the k-
hop expansion by using some context-aware filters. For ex-
ample, we can filter out some rdf:type-like triples that are
rarely used in most of queries in the k-hop reverse expansion
step to reduce the total number of triples to be replicated,
based on the two observations. First, rdf:type predicate is
widely used in most of RDF datasets to represent member-
ship (or class) information of resources. Second, there are
few object-object joins where more than one rdf:type-like
triples are connected by an object variable, such as {Greg
type ?x. Brian type ?x .}. By identifying such type of
uncommon case, we can set a triple filter that will not repli-
cate those rdf:type-like triples if their object vertices are
the border vertices of the partition. However, we keep the
rdf:type-like triples when performing forward direction ex-
pansion (i.e., from subject to object), because those triples
are essential to provide fast pruning of irrelevant results due
to the fact that the rdf:type-like triples in the forward
direction typically are given as query conditions for most
SPARQL queries. Our experimental results in Section 6
display significant reduction of replicated triples compared
to the k-hop semantic hash partitioning without the object-
based rdf:type-like triple filter.
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4.3.4 URI Hierarchybased Optimization

In an RDF graph, URI (Uniform Resource Identifier)
references are used to identify vertices (except literals
and blank nodes) and edges. URI references usually have
a path hierarchy, and URI references having a common
ancestor are often connected together, presenting high
access locality. We conjecture that if such URI refer-
ences (vertices) are placed in the same partition, we may
reduce the number of replicated triples because a good
portion of triples that need to be replicated by k-hop
expansion from a vertex v are already located in the
same partition of v. For example, the most common
form of URI references in RDF datasets are URLs (Uni-
form Resource Locators) with http as their schema, such as
“http://www.Department1.University2.edu/FullProfessor2/
Publication14”. The typical structure of URLs is “http :
//domainname/path1/path2/ . . . /pathN#fragmentID”.
We first extract the hierarchy of the domain name based
on its levels and then add the path components and the
fragment ID by keeping their order in the full URL path.
For instance, the hierarchy of the previous example URL,
starting from the top level, will be “edu”, “University2”,
“Department1”, “FullProfessor2”, “Publication14”. Based
on this hierarchy, we measure the percentage of RDF triples
whose subject vertex and object vertex share the same
ancestor for different levels of the hierarchy. If, at any level
of the hierarchy, the percentage of such triples is larger than
a system-supplied threshold (empirically defined) and the
number of distinct URLs sharing this common hierarchical
structure is greater than or equal to the number of partition
servers, we can use the selected portion of the hierarchy from
the top to the chosen level, instead of full URI references, to
participate in the baseline hash partitioning process. This is
because the URI hierarchy-based optimization can increase
the access locality of baseline hash partitions by placing
triples whose subjects are sharing the same prefix structure
of URLs into the same partitions, while distributing the
large collection of RDF triples across all partition servers
in a balanced manner. We call such preprocessing the URI
hierarchy optimization.

In summary, when using a hash function to build the base-
line partitions, we calculate the hash value on the selected
part of URI references and place those triples having the
same hash value on the selected part of URI references in
the same partition. Our experiments reported in Section 6
show that with the URI hierarchy optimization, we can ob-
tain a significant reduction of replicated triples at the k-hop
expansion phase.

4.3.5 Algorithm and Implementation

Algorithm 1 shows the pseudocode for our semantic hash
partitioning scheme. It includes the configuration of param-
eters at the initialization step and the k-hop semantic hash
partitioning, which carries out in multiple Hadoop jobs. The
first Hadoop job will perform two tasks: generating triple
groups and generating baseline partitions by hashing anchor
vertices of triple groups. The subsequent Hadoop job will
generate k-hop semantic hash partitions (k ≥ 2).

We assume that the input RDF graph has loaded into
HDFS. The map function of the first Hadoop job reads each
triple and emits a key-value pair in which the key is sub-
ject (for s-TG) or object (for o-TG) of the triple and the
value is the remaining part of the triple. If we use so-TG

Algorithm 1 Semantic Hash Partitioning

Input: an RDF graph G, k, type (s-TG, o-TG or so-TG), direction
(forward, reverse or bidirection)
Output: a set of semantic hash partitions

1: Initially, semantic partitions are empty
2: Initially, there is no (anchor, border) pair

Round=1 // generating baseline partitions
Map

Input: triple t(s, p, o)
3: switch type do

4: case s − TG: emit(s, t)
5: case o − TG: emit(o, t)
6: case so − TG: emit(s, t), emit(o, t)
7: end switch

Reduce

Input: key: anchor vertex anchor, value: triples

8: add (hash(anchor), triples)
9: if k = 1 then

10: output baseline partitions P1, . . . , Pn

11: else

12: read triples

13: emit (anchor, borderSet)
14: Round = Round + 1
15: end if

16: while Round ≤ k do //start k-hop triple replication
Map

Input: (anchor, border) pair or triple t(s, p, o)
17: if (anchor, border) pair is read then

18: emit(border, anchor)
19: else

20: switch direction do

21: case forward: emit(s, t)
22: case reverse: emit(o, t)
23: case bidirection: emit(s, t), emit(o, t)
24: end switch

25: end if

Reduce

Input: key: border vertex border, value: anchors and triples

26: for each anchor in anchors do

27: add (hash(anchor), triples)
28: if k < Round then

29: read triples

30: emit (anchor, borderSet)
31: end if

32: end for

33: if k = Round then

34: output semantic partitions Pk

1 , . . . , Pk

n

35: end if

36: Round = Round + 1
37: end while

for generating baseline partitions, the map function emits
two key-value pairs, one using its subject as the key and the
other using its object as the key (line 3-7). Next we generate
triple groups based on the subject (or object or both subject
and object) during the shuffling phase such that triples with
the same anchor vertex are grouped together and assigned
to the partition indexed by the hash value of their anchor
vertex. The reduce function records the assigned partition
of the grouped triples using the hash value of their anchor
vertex (line 8). If k = 1, we simply output the set of seman-
tic hash partitions by merging all triples assigned to the
same partition. Otherwise, the reduce function also records,
for each anchor vertex, a set of vertices which should be ex-
panded in the next hop expansion (line 9-15). We call such
vertices border vertices of the anchor vertex. Concretely, for
each triple in the triple group associated with the anchor
vertex, the reduce function records the other vertex (e.g.,
the object vertex if the anchor vertex is the subject) as a
border vertex of the anchor vertex because triples anchored
at the border vertex may be selected for expansion in the
next hop.

In the next Hadoop job, we implement k-hop semantic
hash partitioning by controlled triple replication along the
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Figure 5: Calculating query radius

given expansion direction. The map function examines each
baseline partition and reads a (anchor vertex, border vertex)
pair, and emits a key-value pair in which the key is the
border vertex and the value is the anchor vertex (line 17-
25). During the shuffling phase, a set of anchor vertices
which have the same border vertex are grouped together.
The reduce function adds the triples connecting the border
vertex to the partition if they are new to the partition and
records the partition index of the triple using the hash value
of the anchor vertex (line 27). If k = 2, we output the set of
semantic partitions obtained so far. Otherwise, we record a
set of new border vertices for each anchor vertex and repeat
this job until k-hop semantic hash partitions are generated
(line 28-31).

5. DISTRIBUTED QUERY PROCESSING
The distributed query processing component consists of

three main tasks: query analysis, query decomposition and
generating distributed query execution plans. The query
analyzer determines whether or not a query Q can be exe-
cuted using intra-partition processing. All queries that can
be evaluated by intra-partition processing will be sent to the
distributed query plan execution module. For those queries
that require inter-partition processing, the query decom-
poser is invoked to split Q into a set of subqueries, each can
be evaluated by intra-partition processing. The distributed
query execution planner will coordinate the joining of in-
termediate results from executions of subqueries to produce
the final result of the query.

5.1 Query Analysis
Given a query Q and its query graph, we first examine

whether the query can be executed using intra-partition pro-
cessing. According to Theorem 1, we calculate the radius
and the center vertices of the query graph based on Defini-
tion 8, denoted by r(Q) and center(Q) respectively. If the
dataset is partitioned using the k-hop expansion, then we
evaluate whether r(Q) ≤ k holds. If yes, the query Q as a
whole can be executed using the intra-partition processing.
Otherwise, the query Q is passed to the query decomposer.

Fig. 5 presents three example queries with their query
graphs respectively. We place the eccentricity value of each
vertex next to the vertex. Since the forward radius of the
query graph in Fig. 5(a) is 2, we can execute the query using
intra-partition processing if the query is issued against the
k-hop forward semantic hash partitions and k is equal to or
larger than 2. In Fig. 5(b), the forward radius of the query
graph is infinity because there is no vertex which has at least
one forward direction path to all other vertices. Therefore,
we cannot execute the query over the k-hop forward seman-
tic hash partitions using intra-partition processing regard-
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Figure 6: Query decomposition

less of the hop count value of k. This query is passed to the
query decomposer for further query analysis. Fig. 5(c) shows
the eccentricity of vertices in the query graph under the bidi-
rection semantic hash partitions. The bidirection radius is
2 and there are two center vertices: ?x and ?y. Therefore
we can execute the query using intra-partition processing if
k is equal to or larger than 2 under the bidirection semantic
hash partitions.

5.2 Query Decomposition
The first issue in evaluating a query Q using inter-

partition processing is to determine the number of sub-
queries Q needs to be decomposed into. Given that there
are more than one way to split Q into a set of subqueries,
an intuitive approach is to first check whether Q can be
decomposed into two subqueries such that each subquery
can be evaluated using intra-partition processing. If there
is no such decomposition, then we increase the number
of subqueries by one and check again to see whether the
decomposition enables each subquery to be evaluated by
intra-partition processing. We repeat this process until a
desirable decomposition is found.

Concretely, we start the query decomposition by putting
all vertices in the query graph of Q into a set of candidate
vertices to be examined in order to find such a decompo-
sition having two subqueries. For each candidate vertex v,
we find the largest subgraph from v, in the query graph of
Q, which can be executed using intra-partition processing
under the current k-hop semantic hash partitions. For the
remaining part of the query graph, which is not covered by
the subgraph, we check whether there is any vertex whose
expanded subgraph under the current k-hop expansion can
fully cover the remaining part. If there is such a decompo-
sition, we treat each subgraph as a subquery of Q. Other-
wise, we increase the number of subqueries by one and then
repeat the above process until we find a possible decompo-
sition. If we find several possible decompositions having the
equal number of subqueries, then we choose the one in which
the standard deviation of the size (i.e., the number of triple
patterns) of subqueries is the smallest, under the assump-
tion that a small subquery may generate large intermediate
results. We leave as future work the query optimization
problem where we can utilize additional metadata such as
query selectivity information.

For example, in Fig. 5(b) where the query cannot be exe-
cuted using intra-partition processing under the forward se-
mantic hash partitions, assume that partitions are generated
using the 2-hop forward direction expansion. To decompose
the query, if we start with vertex ?x, we will get a decompo-
sition which consists of two subqueries as shown in Fig. 6(a).
If we start with vertex Prof, we will also get two subqueries
as shown in Fig. 6(b). Based on the smallest subquery stan-
dard deviation criterion outlined above, we choose the latter
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Algorithm 2 Join Processing
Input: two intermediate results, join variable list, output variable
list
Output: joined results
Map

Input: one tuple from one of the two intermediate results
1: Extracts a list of values, from the tuple, which are corresponding

to the join variables
2: emit(join values, the remaining values of the tuple)

Reduce

Input: key: join values, value: two sets of tuples
3: Generates the Cartesian product of the two sets
4: Projects only columns that are included in the output variables
5: return joined (and projected) results

because two subqueries are of the same size.

5.3 Distributed Query Execution
Intra-partition processing steps: Let the number of

partition servers be N . If the query Q can be executed using
intra-partition processing, we send Q to each of the N parti-
tion servers in parallel. Upon the completion of local query
execution, each partition server will send the partial results
generated locally to the master server, which merges the re-
sults from all partition servers to generate the final results.
The entire processing does not involve any coordination and
communication among partition servers. The only commu-
nication happens between the master server and all its slave
servers to ship the query to all slave servers and ship partial
results from slaves to the master server.

Inter-partition processing steps: If the query Q can-
not be executed using intra-partition processing, the query
decomposer will be invoked to split Q into a set of sub-
queries. Each subquery is executed in all partitions using
intra-partition processing and then the intermediate results
of all sub-queries are loaded into HDFS and joined using
Hadoop MapReduce. To join the two intermediate results,
the map function of a Hadoop job reads each tuple from
the two results and extracts a list of values, from the tu-
ple, which are corresponding to the join variables. Then
the map function emits a key-value pair in which the key
is the list of extracted values (i.e., join key) and the value
is the remaining part of the tuple. Through the shuffling
phase of MapReduce, two sets of tuples sharing the same
join values are grouped together: one is from the first inter-
mediate results and the other is from the second interme-
diate results. The reduce function of the job generates the
Cartesian product of the two sets and projects only columns
that are included in the output variables or will be used in
subsequent joins. Finally, the reduce function records the
projected tuples. Algorithm 2 shows the pseudocode for our
join processing during inter-partition processing. Since we
use one Hadoop job to join the intermediate results of two
subqueries, more subqueries usually imply more query pro-
cessing and higher query latency due to the large overhead
of Hadoop jobs.

6. EXPERIMENTAL EVALUATION
This section reports the experimental evaluation of our

semantic hash partitioning scheme using our prototype sys-
tem Shape. We divide the experimental results into four
sets: (i) We present the experimental results on loading
time, redundancy and triple distribution. (ii) We conduct
the experiments on query processing latency, showing that

by combining the semantic hash partitioning with the intra-
partition processing-aware query partitioning, our approach
reduces the query processing latency considerably compared
to existing simple hash partitioning and graph partitioning
schemes. (iii) We also evaluate the scalability of our ap-
proach with respect to varying dataset sizes and varying
cluster sizes. (iv) We also evaluate the effectiveness of our
optimization techniques used for reducing the partition size
and the amount of triple replication.

6.1 Experimental Setup and Datasets
We use a cluster of 21 physical servers (one master server)

on Emulab [22]: each has 12 GB RAM, one 2.4 GHz 64-bit
quad core Xeon E5530 processor and two 250GB 7200 rpm
SATA disks. The network bandwidth is about 40 MB/s.
When we measure the query processing time, we perform five
cold runs under the same setting and show the fastest time
to remove any possible bias posed by OS and/or network
activity. We use RDF-3X version 0.3.5, installed on each
slave server. We use Hadoop version 1.0.4 running on Java
1.6.0 to run various partitioning algorithms and join the
intermediate results generated by subqueries.

We experiment with our 2-hop forward (2f ), 3-hop for-
ward (3f ), 4-hop forward (4f ), 2-hop bidirection (2b) and
3-hop bidirection (3b) semantic hash partitions, with the
rdf:type-like triple optimization and the URI hierarchy
optimization, expanded from the baseline partitions on
subject-based triple groups. To compare our semantic hash
partitions, we have implemented the random partitioning
(rand), the simple hash partitioning on subjects (hash-s),
the simple hash partitioning on both subjects and objects
(hash-so), and the graph partitioning [11] with undirected
2-hop guarantee (graph). For fair comparison, we apply the
rdf:type-like triple optimization to graph.
To run the vertex partitioning of graph, we also use the

graph partitioner METIS [4] version 5.0.2 with its default
configuration. We do not directly compare with other parti-
tioning techniques which do not use the RDF-specific stor-
age system to store RDF triples, such as SHARD [20], be-
cause it is reported in [11] that they are much slower than the
graph partitioning for all benchmark queries. The random
partitioning (rand) is similar to using HDFS for partition-
ing, but more optimized in the storage level by using the
RDF-specific storage system.

For our evaluation, we use eight datasets of different sizes
from four domains as shown in Table. 1. LUBM [8] and
SP2Bench [21] are benchmark generators and DBLP [1],
containing bibliographic information in computer science,
and Freebase [2], a large knowledge base, are the two real
RDF datasets. As a data cleaning step, we remove any
duplicate triples using one Hadoop job.

Table 1: Datasets
Dataset #Triples #subjects #rdf:type triples

LUBM267M 267M 43M 46M

LUBM534M 534M 87M 92M

LUBM1068M 1068M 174M 184M

SP2B200M 200M 36M 36M

SP2B500M 500M 94M 94M

SP2B1000M 1000M 190M 190M

DBLP 57M 3M 6M

Freebase 101M 23M 8M

6.2 Data Loading Time
Table 2 shows the data loading time of the datasets for

different partitioning algorithms. Due to the space limit, we
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report the results of the largest dataset among three bench-
mark datasets. The data loading time basically consists of
the data partitioning time and the partition loading time
into RDF-3X. For graph, one additional step is required to
run METIS for vertex partitioning. Note that the graph
partitioning approach using METIS fail to work on larger
datasets, such as LUBM534M, LUBM1068M, SP2B500M
and SP2B1000M, due to the insufficient memory. The ran-
dom partitioning (rand) and the simple hash partitioning
on subjects (hash-s) have the fastest loading time because
they just need to read each triple and assign the triple to
a partition randomly (rand) or based on the hash value of
the triple’s subject (hash-s). Our forward direction-based
approaches have fast loading time. The graph partitioning
(graph) has the longest loading time if METIS can process
the input dataset. For example, it takes about 25 hours to
convert the Freebase dataset to a METIS input format and
about 44 minutes to run METIS on the input. Note that
our converter (from RDF to METIS input format), imple-
mented using Hadoop MapReduce, is not the problem of this
slow conversion time because, for LUBM267M, it takes 38
minutes (33 minutes for conversion and 5 minutes for run-
ning METIS), much faster than the reported time (1 hour)
in [11].

Table 2: Partitioning and Loading Time (in min)
Algorithm METIS Partitioning Loading Total

LUBM1068M

single server - - 779 779

rand - 17 47 64

hash-s - 19 34 53

hash-so - 84 131 215

graph fail N/A N/A N/A

2-forward - 94 32 126

3-forward - 117 32 149

4-forward - 133 32 165

2-bidirection - 121 61 182

3-bidirection - 396 554 950

SP2B1000M

single server - - 665 665

rand - 16 39 55

hash-s - 16 28 44

hash-so - 74 81 155

graph fail N/A N/A N/A

2-forward - 89 34 123

3-forward - 111 34 145

4-forward - 127 34 161

2-bidirection - 109 53 162

3-bidirection - 195 135 330

Freebase

single server - - 73 73

rand - 2 4 6

hash-s - 2 3 5

hash-so - 5 9 14

graph 1573 38 52 1663

2-forward - 9 4 13

3-forward - 11 4 15

4-forward - 14 4 18

2-bidirection - 22 17 39

3-bidirection - 59 75 134

DBLP

single server - - 34 34

rand - 2 2 4

hash-s - 2 1 3

hash-so - 4 3 7

graph 452 22 35 509

2-forward - 7 2 9

3-forward - 8 2 10

4-forward - 10 2 12

2-bidirection - 13 8 21

3-bidirection - 36 35 71

6.3 Redundancy and Triple Distribution
Table 3 shows, for each partitioning algorithm, the ratio of

the number of triples in all generated partitions to the total
number of triples in the original datasets. The random par-
titioning (rand) and the simple hash partitioning on subjects
(hash-s) have the ratio of 1 because there is no replicated
triple. This result shows that our forward direction-based
approaches can reduce the number of replicated triples con-

siderably while maintaining the hop guarantee. For exam-
ple, even though we expand the baseline partitions to satisfy
4-hop guarantee (forward direction), the replication ratio is
less than 1.6 for all the datasets. On the other hand, this
result also shows that we should be careful when we expand
the baseline partitions using both directions. Since the orig-
inal data can be almost fully replicated on all the partitions
when we use 3-hop bidirection expansion, the number of
hops should be decided carefully by considering the tradeoff
between the overhead of local processing and inter-partition
communication. We leave how to find an optimal k value,
given a dataset and a set of queries, as future work.

Table 3: Redundancy (Ratio to original dataset)
Dataset 2f 3f 4f 2b 3b hash-so graph

LUBM267M 1.00 1.00 1.00 1.67 8.87 1.78 3.39

LUBM534M 1.00 1.00 1.00 1.67 8.73 1.78 N/A

LUBM1068M 1.00 1.00 1.00 1.67 8.66 1.78 N/A

SP2B200M 1.18 1.19 1.19 1.76 3.81 1.78 1.32

SP2B500M 1.16 1.17 1.17 1.70 3.58 1.77 N/A

SP2B1000M 1.15 1.15 1.16 1.69 3.50 1.77 N/A

DBLP 1.48 1.53 1.55 5.35 18.28 1.86 5.96

Freebase 1.18 1.26 1.28 5.33 17.18 1.87 7.75

Table. 4 shows the coefficient of variation (the ratio of the
standard deviation to the mean) of generated partitions in
terms of the number of triples to measure the dispersion of
the partitions. Having uniformly distributed triples across
all partitions is one of the key performance factors because
the large partitions in the skewed distribution can be perfor-
mance bottlenecks during query processing. Our semantic
hash partitioning approaches have almost perfect uniform
distributions. On the other hands, the results indicate that
partitions generated using graph are very different in size.
For example, among the partitions generated using graph
for DBLP, the largest partition is 3.8 times bigger than the
smallest partition.

Table 4: Distribution (Coefficient of Variation)
Dataset 2f 3f 4f 2b 3b hash-so graph

LUBM267M 0.01 0.01 0.01 0.00 0.01 0.20 0.26

LUBM534M 0.01 0.01 0.01 0.00 0.01 0.20 N/A

LUBM1068M 0.01 0.01 0.01 0.00 0.01 0.20 N/A

SP2B200M 0.00 0.00 0.00 0.00 0.00 0.01 0.05

SP2B500M 0.00 0.00 0.00 0.00 0.00 0.01 N/A

SP2B1000M 0.00 0.00 0.00 0.00 0.00 0.01 N/A

DBLP 0.00 0.00 0.00 0.00 0.00 0.09 0.50

Freebase 0.00 0.00 0.00 0.00 0.00 0.16 0.24

6.4 Query Processing
For our query evaluation of the three LUBM datasets, we

report the results of all 14 benchmark queries provided by
LUBM. Among the 14 queries, 8 queries (Q1, Q3, Q4, Q5,
Q6, Q10, Q13 and Q14) are star queries. The forward radii
of Q2, Q7, Q8, Q9, Q11 and Q12 are 2, ∞, 2, 2, 2 and 2
respectively. Their bidirection radii are all 2. Due to the
space limit, for the other datasets, we report the results of
one star query and one or two complex queries including
chain-like patterns. We pick three queries among a set of
benchmark queries provided by SP2Bench and create star
and complex queries for the real datasets. Table 5 shows the
queries used for our query evaluation. The forward radii of
SP2B Complex1 and Complex2 are ∞ and 2 respectively.
The bidirection radii of SP2B Complex1 and Complex2 are
3 and 2 respectively.

Fig. 7 shows the query processing time of all 14 benchmark
queries for different partitioning approaches on LUBM534M
dataset. Since the results of our 2-hop forward (2f ), 3-hop
forward (3f ) and 4-hop forward (4f ) partitions are almost
the same, we merge them into one. Our forward direction-
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Table 6: Query Processing Time (sec)
Dataset 2f 3f 4f 2b 3b hash-s hash-so random graph single server

SP2B200M Star 64.367 67.995 71.013 69.076 344.701 58.556 129.423 834.99 73.928 500.825

SP2B200M Complex1 222.962 224.025 225.316 226.977 659.767 1257.993 2763.815 2323.422 223.598 fail

SP2B200M Complex2 42.697 53.125 56.387 52.393 136.136 208.383 357.72 341.831 49.785 431.441

SP2B500M Star 183.413 187.017 197.716 197.605 967.291 166.922 378.614 1625.757 N/A fail

SP2B500M Complex1 487.078 493.477 522.398 529.83 1272.774 3365.152 7215.617 5613.11 N/A fail

SP2B500M Complex2 112.99 115.269 116.955 125.736 410.66 449.633 921.241 703.548 N/A 1690.236

SP2B1000M Star 456.121 479.469 482.588 459.583 2142.445 413.237 685.492 2925.019 N/A fail

SP2B1000M Complex1 897.884 911.012 917.834 1006.927 2391.878 6418.564 14682.103 11739.827 N/A fail

SP2B1000M Complex2 258.611 265.821 270.21 282.414 905.218 808.229 1986.949 1353.028 N/A fail

DBLP Star 12.875 12.91 13.589 17.938 41.184 3.617 5.328 56.006 30.509 22.711

DBLP Complex 3.48 3.571 3.726 9.9 31.659 61.281 74.186 117.481 20.866 21.384

Freebase Star 10.666 11.151 11.954 22.06 129.111 8.234 9.024 143.602 105.413 42.608

Freebase Complex1 6.989 7.78 8.069 13.681 71.443 54.361 61.783 57.537 25.408 43.592

Freebase Complex2 63.804 66.87 67.281 80.484 501.563 216.555 238.568 568.919 195.98 23212.521

Table 5: Queries
LUBM All 14 benchmark queries

SP2B Star Benchmark Query2 (without Order by and Optional)
Select ?inproc ?author ?booktitle ?title ?proc ?ee
?page ?url ?yr Where { ?inproc rdf:type
Inproceedings . ?inproc creator ?author .
?inproc booktitle ?booktitle . ?inproc
title ?title . ?inproc partOf ?proc . ?inproc
seeAlso ?ee . ?inproc pages ?page . ?inproc
homepage ?url . ?inproc issued ?yr }

SP2B Complex1 Benchmark Query4 (without Filter)
Select DISTINCT ?name1 ?name2 Where { ?article1
rdf:type Article . ?article2 rdf:type Article .
?article1 creator ?author1 . ?author1 name ?name1 .
?article2 creator ?author2 . ?author2 name ?name2 .
?article1 journal ?journal . ?article2 journal ?journal }

SP2B Complex2 Benchmark Query6 (without Optional)
Select ?yr ?name ?document Where { ?class
subClassOf Document . ?document rdf:type ?class .
?document issued ?yr . ?document creator ?author .
?author name ?name }

DBLP Star Select ?author ?name Where { ?author rdf:type
Agent . ?author name ?name }

DBLP Complex Select ?paper ?conf ?editor Where { ?paper partOf
?conf . ?conf editor ?editor . ?paper creator ?editor }

Freebase Star Select ?person ?name Where { ?person gender male .
?person rdf:type book.author . ?person rdf:type
people.person . ?person name ?name }

Freebase Select ?loc1 ?loc2 ?postal Where { ?loc1
Complex1 headquarters ?loc2 . ?loc2 postalcode ?postal . }

Freebase Select ?name1 ?name2 ?birthplace ?inst Where {
Complex2 ?person1 birth ?birthplace .

?person2 birth ?birthplace .
?person1 education ?edu1 . ?edu1 institution ?inst .
?person2 education ?edu2 . ?edu2 institution ?inst .
?person1 name ?name1 . ?person2 name ?name2 .
?edu1 rdf:type education . ?edu2 rdf:type education }
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Figure 7: Query Processing Time (LUBM534M)

based partitioning approaches (2f, 3f and 4f ) have faster
query processing time than the other partitioning techniques
for all the benchmark queries except Q7 in which inter-
partition processing is required for 2f, 3f and 4f. Our 2-
hop bidirection (2b) approach also has good performance
because it ensures intra-partition processing for all bench-
mark queries.

For Q7, since our forward direction-based partitioning ap-
proaches need to run one Hadoop job to join the intermedi-
ate results of two subqueries and the size of the intermediate
results is about 2.4 GB (much larger compared to the final
result size of 907 bytes), its query processing time for Q7 is
very slow compared to other approaches (2b and 3b) using
intra-partition processing. However, our approaches (2f, 3f
and 4f ) are faster than the simple hash partitioning (hash-
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Figure 8: Scalability with varying dataset sizes
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Figure 9: Scalability with varying cluster sizes

s and hash-so) which requires two Hadoop jobs to process
Q7. Recall that the graph partitioning does not work for
LUBM534M because METIS failed due to the insufficient
memory.

Table 6 shows the query processing times of the other
datasets. The fastest query processing time for each query
is marked in bold. Our forward direction-based partitioning
approaches (2f, 3f and 4f ) are faster than the other par-
titioning techniques for all complex queries. For example,
for SP2B1000M Complex1, our approach 2f is about 7, 16
and 13 times faster than hash-s, hash-so and random re-
spectively. Note that executing SP2B1000M Complex1 fails
on a single server due to the insufficient memory and graph
does not work for SP2B1000M. Our 2-hop bidirection (2b)
approach also has comparable query processing performance
with 2f, 3f and 4f. Even though our 3-hop bidirection (3b)
approach is much slower than 2f, 3f, 4f and 2b due to its
large partition size, it is faster than random for most queries.
For star queries, hash-s is slightly faster than our approaches
because it is optimized only for star queries and there is no
replicated triple.

6.5 Scalability
We evaluate the scalability of our partitioning approach

by varying dataset sizes and cluster sizes. Fig. 8 shows that
the increase of the query processing time of star queries Q6,
Q13 and Q14 is almost proportional to the dataset size. For
Q7, under the 2-hop bidirection (2b) expansion, the query
processing time increases only slightly because its results do
not change by the dataset size. On the other hand, under
the 2-hop forward (2f ) expansion, there is a considerable in-
crease in the query processing time because the intermediate
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results increase according to the dataset size even though the
final results are the same regardless of the dataset size.

Fig. 9 shows the results of scalability experiment with
varying numbers of slave servers from 5 to 20 on LUBM267M
dataset. For star queries whose selectivity is high (Q1, Q3,
Q4, Q5 and Q10), the processing time slightly decreases
with an increasing number of servers due to the reduced
partition size. For star queries with low selectivity (Q6,
Q13 and Q14), the decrease of the query processing time is
almost proportional to the number of slave servers.

6.6 Effects of optimizations
Table 7 shows the effects of different optimization tech-

niques under the 2-hop bidirection (2b) expansion in terms
of the replication ratio. Without any optimization, large
partitions are generated because lots of triples are repli-
cated and so it will considerably increase the query pro-
cessing time. Using the rdf:type-like triple optimization,
we can reduce the partition size by excluding rdf:type-like
triples during the expansion. The result of applying the
URI hierarchy optimization shows that we place close ver-
tices in the same partition and so prevent the replication of
many triples. By combining both optimization techniques,
we substantially reduce the partition size and so increase the
performance of query processing.

Table 7: Effects of optimizations (Replication Ratio)
Dataset No Opt. rdf:type URI hierarchy Both

LUBM1068M 11.46 8.46 4.94 1.67

SP2B1000M 6.95 3.70 5.12 1.69

DBLP 7.24 5.35 N/A 5.35

Freebase 6.88 5.33 N/A 5.33

7. CONCLUSION
In this paper we have shown that when data needs to be

partitioned across multiple server nodes, the choice of data
partitioning algorithms can make a big difference in terms
of the cost of data shipping across a network of servers. We
have presented a novel semantic hash partitioning approach,
which starts with the simple hash partitioning and expands
each partition by replicating only necessary triples to in-
crease access locality and promote intra-partition processing
of SPARQL queries. We also developed a partition-aware
distributed query processing facility to generate locality-
optimized query execution plans. In addition, we provide
a suite of locality-aware optimization techniques to further
reduce the partition size and cut down on the inter-partition
communication cost during distributed query processing.
Our experimental results show that the semantic hash par-
titioning approach improves the query latency and is more
efficient than existing popular simple hash partitioning and
graph partitioning schemes.

The first prototype system for our semantic hash parti-
tioning does not support aggregate queries and update op-
erations. We plan to implement new features introduced
in SPARQL 1.1. Both rdf:type filter and URI hierarchy-
based merging of triple groups are provided as a configura-
tion parameter. One of our future work is to utilize statistics
collected over representative set of queries to derive a near-
optimal setting of k for k-hop semantic hash partitioning.
Finally, we conjecture that the effectiveness of RDF data
partitioning can be further enhanced by exploring differ-
ent strategies for access locality-guided triple grouping and
triple replication.
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