
Sequence analysis

Scaling read aligners to hundreds of threads on

general-purpose processors

Ben Langmead 1,2,*, Christopher Wilks1,2, Valentin Antonescu1 and

Rone Charles1

1Department of Computer Science and 2Center for Computational Biology, Johns Hopkins University, Baltimore,

MD 21205, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on February 10, 2018; revised on June 19, 2018; editorial decision on July 16, 2018; accepted on July 17, 2018

Abstract

Motivation: General-purpose processors can now contain many dozens of processor cores and

support hundreds of simultaneous threads of execution. To make best use of these threads, gen-

omics software must contend with new and subtle computer architecture issues. We discuss some

of these and propose methods for improving thread scaling in tools that analyze each read inde-

pendently, such as read aligners.

Results: We implement these methods in new versions of Bowtie, Bowtie 2 and HISAT. We greatly

improve thread scaling in many scenarios, including on the recent Intel Xeon Phi architecture. We

also highlight how bottlenecks are exacerbated by variable-record-length file formats like FASTQ

and suggest changes that enable superior scaling.

Availability and implementation: Experiments for this study: https://github.com/

BenLangmead/bowtie-scaling.

Bowtie: http://bowtie-bio.sourceforge.net.

Bowtie 2: http://bowtie-bio.sourceforge.net/bowtie2.

HISAT: http://www.ccb.jhu.edu/software/hisat

Contact: langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

General-purpose processors are now capable of running hundreds of

threads of execution simultaneously in parallel. Intel’s Xeon Phi

“Knight’s Landing” architecture supports 256–288 simultaneous

threads across 64–72 physical processor cores (Jeffers et al., 2016;

Sodani, 2015). With severe physical limits on clock speed (Waldrop,

2016), future architectures will likely support more simultaneous

threads rather than faster individual cores (Valero-Lara et al.,

2016). Indeed, clock speed on the many-core Xeon Phi processor

(1.3–1.5 Ghz) is about half that of more typical server processors.

While specialized (e.g. graphics) processors have been highly multi-

threaded for some time, this only recently became true for the

general-purpose processors that can boot standard operating sys-

tems and that typically power servers and desktops.

With these advances come new computer-architecture considera-

tions for programmers. Simply adding multithreading to a software

tool does not guarantee it will use threads well. In fact, it is not un-

common for a tool’s overall throughput to decrease when thread

count grows large enough (Lenis and Senar, 2017). So whereas past

genomics software efforts have focused on speed on a fixed (and

usually low) number of threads, future efforts should consider scal-

ing to much higher thread counts.

Here we tackle the problem of scaling read aligners to hundreds

of threads on general-purpose processors. We concentrate on the

Bowtie (Langmead et al., 2009), Bowtie 2 (Langmead and Salzberg,

2012) and HISAT (Kim et al., 2015) read alignment tools because

they are widely used and representative of a wider group of embar-

rassingly parallel tools, where computation is readily separable into

VC The Author(s) 2018. Published by Oxford University Press. 421

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(3), 2019, 421–432

doi: 10.1093/bioinformatics/bty648

Advance Access Publication Date: 18 July 2018

Original Paper

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://orcid.org/0000-0003-2437-1976
https://github.com/BenLangmead/bowtie-scaling/
https://github.com/BenLangmead/bowtie-scaling/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://www.ccb.jhu.edu/software/hisat/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/

independent tasks, one per sequencing read. Many other sequencing

analysis tools are also embarrassingly parallel, including tools for

error correction (Kelley et al., 2010; Song et al., 2014), quality as-

sessment and trimming (Bolger et al., 2014), and taxonomic assign-

ment (Segata et al., 2012; Wood and Salzberg, 2014).

We propose strategies that scale to hundreds of threads better

than alternative approaches like multiprocessing or the pipelined ap-

proach taken by BWA-MEM (Li, 2013). We explore how the

FASTQ file format (Cock et al., 2010), its unpredictable record

boundaries in particular, can impede thread scaling. We suggest a

way to change FASTQ files and similar formats that enable further

improvements in thread scaling while maintaining essentially the

same compressed file size.

1.1 Synchronization and locking

For embarrassingly parallel genomics tools, threads typically pro-

ceed by repeatedly (a) obtaining the next read from the input file, (b)

aligning the read, and (c) writing its alignment to the output file.

Interactions with input and output files must be synchronized; por-

tions of code related to reading and writing files must be protected

to allow only one thread at a time to work on a given file. Figure 1

illustrates threads operating in parallel while reading input in a

synchronized fashion. Failure to synchronize can lead to software

crashes and corrupt data. Synchronization is achieved with locks.

There are various lock types, which incur different types and

amounts of overhead. We confirm here that for many-core architec-

tures with non-uniform memory access (NUMA), choice of lock

type has a major impact on thread scaling (Bueso, 2014). We ex-

plore several lock types, demonstrate their relative merits, and sug-

gest types to be avoided (spin locks) and others that seem to scale

well to hundreds of threads (queueing and standard locks).

1.2 Multithreading versus multiprocessing

While we focus on making the best use of threads in a single process,

an alternative is to run multiple simultaneous processes, possibly

with many threads each. For example, a user with several FASTQ

files might align all using Bowtie 2 with the -p 100 argument, using

one process with 100 threads. Alternately, the user could divide the

input into 10 batches and run 10 simultaneous Bowtie 2 processes

each with -p 10. Either way, up to 100 threads run in parallel.

These multithreading (MT) and multiprocessing (MP)

approaches have trade-offs. MP can suffer from load imbalance:

some batches take longer to align than others. This negatively

impacts scaling since the job’s duration is determined by the longest-

running batch.

Imbalance can be mitigated by dynamic load balancing. Such a

scheme might divide the input into many batches, more than there

are processes. A load balancer launches the processes and continual-

ly feeds each process new input batches upon completion of the pre-

vious batch, until all batches are processed. For a large enough

number of batches, per-batch running times tend to average out,

making per-process running times more uniform. This incurs over-

head, since the dynamic load balancer must split inputs, launch and

feed processes, and combine outputs.

Another drawback of MP is that many data structures will be

copied across processes, yielding a higher total memory footprint

compared to MT. When the data structure is identical from process

to process (e.g. the genome index), this wastes valuable memory and

cache. Aligners with large indexes, e.g. GEM (Marco-Sola et al.,

2012) and SNAP (Zaharia et al., 2011), can easily exhaust available

memory (Lenis and Senar, 2017). Tools can work around this by

using memory mapping to maintain a single copy of these data struc-

tures shared by all processes. This is implemented in Bowtie, Bowtie

2 and HISAT using the --mm option.

The MP strategy also has a major advantage: by allowing each

process to focus on its own private input and output files, the overall

level of thread contention is reduced. That is, a single process has

fewer threads to synchronize. There are also NUMA-related reasons

why running multiple processes can aid thread scaling, e.g. by allow-

ing each process to have a copy of the genome index that is local to

its home NUMA node (Lenis and Senar, 2017).

The MT approach has many advantages. It achieves dynamic

load balancing without extra software beyond the aligner itself. It

achieves a low memory footprint (no duplicated data structures)

without the need for memory mapping. It is applicable regardless of

the number of input files, naturally handling the common case of a

single, large input file. For these reasons, we focus on improving

MT thread scaling in this study, using MP as a baseline.

1.3 Input and output

Improving speed and thread scaling can eventually reach a point

where the bottleneck shifts from the speed of computation to the

speed of input and/or output. Since we would like to observe

whether this occurs, all our experiments use real input and output.

As discussed later, while input and output speed are not bottlenecks

for most of our experiments, there are scenarios where output

becomes the bottleneck on very large numbers of threads.

1.4 Related work

Two prior studies (Misale, 2014; Misale et al., 2014) examined

Bowtie 2 thread scaling with synchronization and Non-Uniform

Memory Access (NUMA) as primary concerns. By adapting Bowtie

2 to the FastFlow (Aldinucci et al., 2017) parallel framework and by

Fig. 1. Four threads running simultaneously in an embarrassingly parallel set-

ting. Time progresses from top to bottom. Gray boxes show time spent wait-

ing to enter the critical section. Black boxes show time spent in the critical

section, which can be occupied by at most one thread at a time. At time t1

(dashed line), thread 1 is executing the critical section and all the other

threads are running. At time t2, thread 1 is still in the critical section and

threads 2 and 3 are waiting to enter. At time t3, thread 2 occupies the critical

section and thread 4 is waiting

422 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

making effective use of (a) thread pinning and (b) interleaving of

memory pages across NUMA sockets, the modifications improved

Bowtie 2’s thread scaling. Our suggestions for improving thread

scaling are complementary to these proposals.

Herzeel et al. (2014) re-parallelized sections of the BWA code

using the Cilk (Blumofe et al., 1995) programming language. They

noted a two-fold improvement in multi-threaded speedup, highlight-

ing the importance of NUMA and load balance issues. Lenis and

Senar examined performance of four read aligners, including Bowtie

2 and BWA-MEM on NUMA architectures (Lenis and Senar, 2017)

without modifications, and noted that a multiprocessing approach

that replicated the index data structure across NUMA nodes per-

formed the best. Our goal is to achieve similar improvements with a

purely multithreaded approach on modern hardware.

2 Materials and methods

2.1 Lock types

We begin by examining how lock types affect thread scaling.

Different lock types are appropriate for different situations. A spin-

lock uses a loop to repeatedly check if a lock is held. As soon as a

check indicates the lock is free, ownership is transferred to the

inquiring thread. The check and the transfer can happen simultan-

eously using an atomic operation (Anderson, 1990). In most imple-

mentations, a thread that fails to obtain a spinlock in a prescribed

time interval will go to sleep, allowing the operating system (OS) to

revive it when the lock is free. This avoids starvation, whereby the

lock-holding thread is slow to finish its work (and release the lock)

because waiting threads are using its resources. This, spinlocks are

optimistic: they work best when the lock can be obtained quickly.

Another common lock type is a standard lock; if a thread

attempts and fails to obtain a standard lock, it goes to sleep immedi-

ately, allowing the OS to revive it when the lock is free. While paus-

ing and reviving a thread incurs overhead, a standard lock cannot

starve other threads. Thus, a standard lock is pessimistic, working

best when the lock is unlikely to be available soon.

We might suppose that when active thread count is less than or

equal to the number of physical cores—a typical situation when a

user has dedicated access to a computer and desires speed—starva-

tion is not an issue and spinlocks are ideal. However, this suppos-

ition fails on modern many-core systems for reasons relevant to our

choice of lock type. One concern is that modern architectures have

many cores and caches connected in a NUMA architecture. That is,

there is a single addressable memory space for all threads, but it is

physically divided into partitions that might be attached to separate

cores in a multisocket system, as for the 2-socket Broadwell system

used in our evaluations, or both the partitions and the cores might

be connected via an interconnection network, as on the Xeon Phi.

Thread scaling is impacted in at least two ways: (a) threads using

different cores but accessing the same memory location will incur

different access latencies depending on the distance to the memory,

and (b) when several threads read and write the same location simul-

taneously, the system’s cache coherence protocol must step in to en-

sure all threads have a coherent view of memory. In short, thread

scaling suffers when added threads must access distant memories or

when they compete for the same memory locations as existing

threads. This affects locking in key ways that we revisit when discus-

sing the queueing lock.

Another issue arises when threads can co-exist on the same

physical processor. On Xeon Phi, up to four threads can run simul-

taneously on one processor, competing for its resources like its

arithmetic units and cache. A thread operating by itself on a proces-

sor moves at one speed, but slows when joined by a second thread,

slows still further when joined by third, etc. Thus, increasing thread

count incurs a mild but increasing starvation penalty even when free

thread “slots” remain. This puts optimistic locks at a disadvantage,

since their spinning behavior can needlessly starve productive

threads on the same processor.

In past versions, Bowtie, Bowtie 2 and HISAT used a spinlock

from the TinyThreadþþ library (http://tinythreadpp.

bitsnbites.eu). Since this scaled poorly (see Results), we

extended the three tools to use the open source Intel Thread

Building Blocks (TBB) library (Reinders, 2007). TBB provides vari-

ous lock types, including a queuing lock (Mellor-Crummey and

Scott, 1991) particularly appropriate for NUMA systems like the

Knight’s Landing and Broadwell systems used here. TBB also pro-

vides scalable replacements for standard heap memory allocation

functions (e.g. malloc/free, new/delete). This aids thread

scaling, since memory allocations require synchronization.

The TBB queuing lock implements an MCS lock (Mellor-

Crummey and Scott, 1991), which uses an in-memory queue to or-

ganize waiting threads. Like a spinlock, a waiting thread repeatedly

probes a variable in memory to learn when it has obtained the lock.

Unlike a spinlock, each waiting thread probes a separate queue

entry, each entry occupying a separate cache line. This greatly

reduces overhead. To elaborate, consider that an atomic operation

(e.g. atomic compare-and-swap) might modify a variable in mem-

ory, depending on the condition. Consequently, it is treated as a

memory write by the cache coherence infrastructure. A write modi-

fies a cache line, causing cache coherence messages to travel between

caches for threads that recently accessed the line. When this happens

in a loop, new messages are generated each iteration. When many

threads spin simultaneously, messages multiply, eventually reaching

a point where the messages flood the system bus and starve other

threads, including lock holder. This is called cache-line or hotspot

contention (Mellor-Crummey and Scott, 1991) and it is a major con-

cern on many-core and NUMA systems (Bueso, 2014). The queuing

lock reduces contention in two ways. First, since each thread spins

on a variable in a thread-specific cache line, the loop condition can

be a simple memory read rather than an atomic operation. This

reduces cache coherence messaging. Second, while a memory write

is still needed to hand the lock from one thread to another, only two

threads are involved in the hand-off, reducing the coherence mes-

sages exchanged.

We adapted the three tools to use four lock types: the (original)

TinyThreadþþ lock, standard TBB lock, TBB spinlock, and TBB

queuing lock. On the Linux systems we used for evaluation, the

standard TBB lock works by calling pthread_mutex_unlock,

which in turn uses the Linux futex (fast mutex) strategy. This strat-

egy first attempts to obtain the lock using a fast atomic operation

then, if unsuccessful (i.e. if the lock is held by another thread), places

it on a queue of paused threads until the lock is released.

The lock type is selected at compile time via preprocessing mac-

ros. These extensions are available as of the Bowtie v1.1.2, Bowtie 2

v2.2.9 and HISAT v0.1.6-beta software versions. Supplementary

Note S1 gives build instructions for the exact software versions

tested here.

2.2 Parsing strategies

We also examined how threads coordinate when reading FASTQ

(Cock et al., 2010) input or writing SAM output (Li et al., 2009).

These interactions are synchronized, i.e. protected by locks.

Scaling read aligners to hundreds of threads 423

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://tinythreadpp.bitsnbites.eu/
http://tinythreadpp.bitsnbites.eu/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

The name critical section is given to a portion of the software that

only one thread may execute at a time. The critical section for han-

dling input is called the input critical section and is protected by the

input lock; likewise for the output critical section and the output

lock.
We hypothesized that to improve thread scaling we should re-

structure the input and output critical sections. Our first goal was to

reduce the time spent in the critical section by deferring as much

computation until after the critical section as possible. Our second

goal was to reduce the total number of times the critical section was

entered. This reduces overhead incurred by locking and unlocking

upon entering and exiting.

The original strategy (O-parsing) both reads and parses a sequenc-

ing read in the critical section (CS). We developed three variants on

this approach (Table 1). In deferred (D) parsing, the CS reads a single

input record into a buffer. After the CS, the buffer is parsed into the

sequencing read data object. Batch deferred (B) parsing is like D-pars-

ing but handles batches of N reads at a time. The B-parsing critical

section loops N times, reading each record into a separate buffer.

After the CS, another loop parses each buffer into a sequencing read

object. This reduces by a factor ofN the total number of times the CS

is entered. A similar change is made to the output CS: alignment

records are written to the output stream in batches ofN reads.

Blocked deferred (L) parsing reads a chunk of exactly B input

bytes into a buffer, assuming that (a) no read spans a B-byte bound-

ary in the input file, such that no B-byte chunk contains a partial

input record, and (b) the number of reads per B-byte chunk is N for

all chunks (except perhaps the last), known ahead of time. These

assumptions do not hold for real FASTQ files, but we can easily

modify a FASTQ file to comply by appending extra space characters

to every Nth read until the following read begins at an B-byte

boundary (Fig. 2). The spaces are ignored by the aligner. This has

the effect both of enforcing the L-parsing assumptions and of mak-

ing it easier to parse paired-end files in a synchronized manner, since

a B-sized block taken from the same offset in both files is guaranteed

to containNmatching ends. As with B-parsing, the L-parsing output

critical section writes alignments in batches of B reads at a time.

2.3 Output striping

While most improvements proposed here reduce input synchroniza-

tion overhead, we also noted instances where output synchroniza-

tion was the bottleneck. Synchronized output is quite simple; no

parsing is involved. But it can still become a bottleneck since writing

is generally much slower than reading. On the Stampede 2 cluster,

for example, read throughput is about 3 GB/sec when reading from

solid-state or Lustre storage, whereas writing is about 450 MB/sec

for solid-state and 300 MB/sec for Lustre. To this end, we imple-

mented the ability to write striped output, i.e. multiple output SAM

files, each containing alignments for a subset of the reads. The par-

tial output files can simply be concatenated prior to further

Table 1. Pseudocode for four synchronized parsing strategies

Note: Red code is inside the critical section (CS). Original (O) parsing both reads and parses in the CS. Deferred parsing (D) uses the CS to read the next record

into a buffer, counting four newlines to find the record boundary, but defers parsing until after the CS. Batch deferred parsing (B) is like (D) but reads N reads at a

time. Block deferred parsing (L) reads a fixed-sized chunk of data (B bytes), assuming that no record spans a B-byte boundary. While the assumption for (L) is vio-

lated in practice for formats like FASTQ, it suggests a strategy for making formats more amenable to multithreaded parsing.

424 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

processing. This spreads contention for the output lock over several

locks, reducing contention and improving scalability.

2.4 Other aligner modifications

We also modified the aligners to minimize the incidence of heap

memory allocations wherever possible. This is because heap memory

allocations also require synchronization, thus negatively impacting

thread scaling. We also modified each of Bowtie, Bowtie 2 and

HISAT to cause each thread to report how much wall-clock time it

spends aligning reads with microsecond accuracy.

2.5 Multiprocessing

While our focus is on single-process multithreaded (MT)

approaches, multiprocessing (MP) is another avenue for improving

thread scaling. For this reason, our comparisons include an MP-

based “baseline” strategy. The MP baseline is measured for every

thread count T that is multiple of 16 by running T/16 processes,

each with 16 threads. For MP experiments involving Bowtie, Bowtie

2 or HISAT, we use memory mapping (--mm option) to limit overall

memory footprint.

3 Results

3.1 Configurations & jobs

We evaluate various read aligners and synchronization schemes by

running each “configuration” (combination of aligner and syn-

chronization scheme) using the same input data. For each configur-

ation, we perform a series of alignment jobs varying the number of

input reads and the number of simultaneous threads of execution in

direct proportion, thus keeping the number of reads per thread con-

stant. In this way, we are assessing weak scaling: how running time

varies with the number of threads for fixed per-thread workload.

We align to an index of the GRCh38 human genome reference

assembly (Church et al., 2015). We measure wall-clock running

time of each job, omitting time required for one-time setup tasks

such as index loading, since these influence thread scaling only

slightly when aligning large datasets. The number of reads per

thread (Supplementary Table S1) was chosen for each configuration

and system so that most jobs take 1min or longer. Any job taking

longer than 20min was aborted and omitted from the results. The

Linux top utility was run in the background to periodically measure

system load, processor utilization and memory footprint.

We evaluate Bowtie (Langmead et al., 2009), Bowtie 2

(Langmead and Salzberg, 2012) and HISAT (Kim et al., 2015) be-

cause they are widely used. We include a comparison to BWA-MEM

(Li, 2013) for the same reason. While we did not modify the newer

HISAT2 (http://ccb.jhu.edu/software/hisat2), the same

modifications should benefit that software as well. We ran HISAT

with the --no-spliced-alignment --no-temp-splicesite

options to disable gathering of splice-site evidence because our input

reads were from DNA sequencing experiments. Software used to

run the experiments and produce the figures and tables is located at

https://github.com/BenLangmead/bowtie-scaling.

3.2 Reads

We obtained sequencing reads from accessions ERR194147

(Platinum Genomes Project, Eberle et al., 2017), SRR069520 (1000

Genomes Project, Auton et al., 2015) and SRR3947551 (a low

coverage whole genome sequencing project, Rustagi et al., 2017).

All reads are 100 � 100nt (paired-end) from the Illumina HiSeq

2000 instrument. We downloaded the reads in FASTQ format,

selected a random subset of 100M from each of the three accessions,

then randomized the order of the resulting set of 300M reads to

avoid clustering of reads with similar properties. These constitute

the human_100_300M input read set. Bowtie is designed to align

shorter reads, so we also created set human_50_300M consisting of

the human_100_300M reads truncated to 50 nt at the 3’ end.

Unpaired alignment experiments use just the first-end FASTQ files.

Download links for these reads are in Supplementary Note S2.

3.3 Evaluation systems

Each job was run on three servers, which we call Broadwell, Skylake

and KNL for short. Broadwell is a dual-socket system with two Intel

Xeon E7-4830 v4 2.00GHz CPUs and 1 TB of DDR4 memory.

Both CPUs have 28 physical processor cores, enabling up to 112

threads of execution since each core supports 2 simultaneous

“hyperthreaded” threads. The system runs CentOS 6.8 Linux, ker-

nel v2.6.32, and is located at the Maryland Advanced Research

Computing Center (MARCC). Skylake is an Intel Xeon Platinum

8160 system with 192GB of memory and 48 physical processor

cores, enabling up to 96 threads of execution, 2 per core. This sys-

tem runs CentOS Linux release 7.4.1708, kernel v3.10.0, and is

located in the Stampede 2 cluster at the Texas Advanced Compute

Center (TACC) accessible via the XSEDE network. KNL is an Intel

Xeon Phi 7250 (Knight’s Landing) system with 96GB DDR4 mem-

ory (as well as a 16GB high-speed MCDRAM). The system has 68

physical processor cores, enabling up to 272 threads of execution, 4

per core. This system is also located in the Stampede 2 cluster and

the operating system and kernel are identical to the Skylake system.

Although these three platforms differ in architectural details—

e.g. in the number of simultaneous threads allowed—we test the

same parallelization schemes on all three. Since the three systems

support the same basic instruction set, we are running exactly the

same executables on all three.

In all experiments, FASTQ input is read from a local disk and

SAM output is written to the same local disk. In the case of the

Broadwell system, the disk is a magnetic 7200 RPM SATA hard

drive. In the case of Skylake and KNL, the disk is a local solid-state

drive.

(a) (b)

Fig. 2. Converting a standard pair of FASTQ files (a) to blocked FASTQ files

(b), where the number of bytes (B) and number of input reads per block (N)

are 64 and 2, respectively. Numbers left of vertical lines indicate byte offsets

for FASTQ lines, assuming newline characters (not shown) are one byte. For

(b), padding spaces are represented by solid blue rectangles. The first

64bytes of each file are colored blue and subsequent bytes are colored red.

Note that the two ends differ in length; end 1 is 10 bases long and end 2 is 9

bases long. This necessitates differing amounts of padding in the two FASTQ

files. But after padding, we are guaranteed that corresponding 64-byte blocks

from the files contain N corresponding reads

Scaling read aligners to hundreds of threads 425

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
http://ccb.jhu.edu/software/hisat2/
https://github.com/BenLangmead/bowtie-scaling/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

3.4 Varying lock type

As discussed in Section 2, we extended Bowtie, Bowtie 2 and HISAT

to use one of four lock types: a TinyThreadþþ spinlock, TBB

standard lock, TBB spinlock or TBB queueing lock. For each run,

we launched a single aligner process configured for multithreading

(MT), using the -p option to specify the number of simultaneous

threads, T. The MP baseline used the TBB queueing lock. When

plotting, we arranged thread count on the horizontal axis and max-

imum per-thread wall-clock time (i.e. time required to align all

reads) on the vertical axis. Because we vary the number of input

reads in direct proportion to thread count, ideal scaling would show

as a flat horizontal line, whereas worse-than-ideal scaling shows as

an upward-trending line. Since we omit runs that took over 20min,

some lines “fall off” the top of the plot.

Figure 3 shows how thread count affects running time for un-

paired alignment. Supplementary Figure S1 shows the same for

paired-end alignment. We observe that the MP baseline outper-

formed all multithreading modes (MT). Choice of lock type clearly

impacts scaling, seen most clearly in the Bowtie and HISAT configu-

rations. While no lock type performed best in all cases, the TBB

queueing lock tended to eventually outperform other MT configura-

tions at high thread count. This is clearest for HISAT and Bowtie.

There were also cases where the TBB standard lock outperformed

the queueing lock at the very highest thread counts, as seen in the

SkylakeþHISAT, KNLþBowtie 2 and BroadwellþBowtie results.

Table 2 shows peak throughputs (also represented by squares in

Fig. 3) for each lock type and the MP baseline. For 11 out of 18 com-

binations of aligner, test system and paired-end status, the queueing

lock has the second-highest peak throughput after the MP baseline.

In some cases, queueing lock performance deteriorated quickly

at the highest thread counts, e.g. for BroadwellþBowtie,

BroadwellþBowtie 2 and KNLþBowtie 2. This contrasts with the

0

250

500

750

0 25 50 75 100

T
h

re
a

d
 t
im

e

Skylake Bowtie

0

50

100

150

0 25 50 75 100

Skylake Bowtie 2

0

250

500

750

1000

0 25 50 75 100

Skylake HISAT

0

250

500

750

0 30 60 90

T
h

re
a

d
 t
im

e

Broadwell Bowtie

0

200

400

600

0 30 60 90

Broadwell Bowtie 2

0

250

500

750

1000

0 30 60 90

Broadwell HISAT

0

250

500

750

1000

0 100 200

threads

T
h

re
a

d
 t
im

e

KNL Bowtie

0

250

500

750

1000

0 100 200

threads

KNL Bowtie 2

0

250

500

750

1000

0 100 200

threads

KNL HISAT

TinyThread++ spin TBB spin TBB standard TBB queueing MP baseline

Fig. 3. Comparison of four lock types and multiprocessing baseline. Reads are unpaired. Results are shown for three aligners (rows) and three systems (columns).

Jobs that ran for over 20min are omitted. Squares indicate the point on each line yielding maximal total alignment throughput. These points are summarized in

Table 2

426 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

TBB standard lock, which deteriorated more slowly (and almost lin-

early) at high thread counts. This is likely due to starvation; at high

thread counts, threads share cores (up to 2 threads per cores on

Broadwell, 4 on KNL), so the optimistic queueing lock will tend to

spin fruitlessly on contended locks, starving the lock holder. This

problem is not shared by the pessimistic standard lock.

Even the best-scaling configuration—the MP baseline—had less

than perfect scaling. Increasing thread count increases contention

for shared resources, slowing all threads on average. For example,

higher thread count leads to greater contention for shared memory,

e.g. L1 and L2 caches, translation look-aside buffer, and arithmetic

and vector processing units. This is more obvious on the KNL sys-

tem where up to four threads can share a processor.

Divergence between the lock-type scaling behaviors was lower

for Bowtie 2 than for the other tools. This is likely because Bowtie 2

requires more time to align a single read. This spreads locking

attempts out over time and thereby reduces contention. Thus,

Bowtie 2’s lower divergence is consistent with the theory that differ-

ences come primarily from contention overhead.

In summary: while the MP baseline outperformed all MT config-

urations, the TBB queueing lock often scaled best, with the TBB

standard lock doing well or better in some situations.

Supplementary Table S2 shows how these peak throughputs trans-

late to wall-clock time required to align 100 nt reads covering the

human genome to 40-fold average depth; e.g. in the case of paired-

end KNLþBowtie 2, moving from the TBB spin lock to the queueing

lock reduces running time from about 26 h to about 19 h. We use

the queueing lock in subsequent Bowtie, Bowtie 2 and HISAT

experiments.

3.5 Varying parsing method

The gap between MP baseline and MT methods spurred us to exam-

ine input and output synchronization. We hypothesized the gap was

due to a combination of (a) length of time spent in these critical

sections, and (b) overhead of locking and unlocking. We tried

to close the gap using the strategies discussed in Section 2: deferred

(D-) parsing and batch (B-) parsing. B-parsing used a batch size of

32 in all experiments. Figure 4 shows running time versus thread

count for unpaired alignment using each strategy. Supplementary

Figure S2 shows the same for paired-end alignment. A clear ordering

exists among the strategies: B-parsing outperformed D-parsing,

which outperformed O-parsing. This was basically true in every

scenario tested. B-parsing scaled well enough to be competitive with

the MP baseline in multiple scenarios, e.g. for Bowtie 2 and for all

paired-end Bowtie and Bowtie 2 scenarios.

Table 3 shows peak throughputs (represented by squares in

Fig. 4) for each strategy the MP baseline. B-parsing had either the

highest or second-highest peak throughput in all scenarios except

paired-end KNLþBowtie 2, where it slightly underperformed D-

parsing. Moving from O-parsing to B-parsing for unpaired

KNLþBowtie 2 reduces extrapolated human-40x-coverage running

time from about 7h:10m to about 4h:40m, bringing it below BWA-

MEM’s 6h:40m running time (Supplementary Table S2).

The MP baseline had the highest peak throughput in 10 of 18

scenarios, including all the HISAT scenarios. There was still a wide

gap between the MP baseline and the best-performing MT configur-

ation in many scenarios, particularly for Bowtie and HISAT. As

when investigating lock type, we found divergence between parsing

strategies was lower for Bowtie 2 than for the other tools. This is

likely because Bowtie 2 spent more time aligning each read com-

pared to the others, reducing contention.

3.6 Final evaluations

Finally we compared B-parsing to block deferred (L-) parsing. L-

parsing’s critical section is the simplest, so we hypothesized it would

outperform B-parsing. But since L-parsing requires padded input,

using it in practice requires an initial pass to add the padding, which

Table 2. Peak throughputs for four lock types and multiprocessing baseline

Note: For each row, maximal peak throughput in thousands of reads per second (Krd/s) and number of threads that achieved the peak (Th) are reported.

For each combination of aligner, paired-end status and test system, the best and second-best throughputs are highlighted red and orange respectively.

Scaling read aligners to hundreds of threads 427

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

might itself become the bottleneck. We revisit L-parsing’s practical-

ity in the Discussion section.

To test block parsing (L) we created padded input sets (Fig. 2). We

created one new set called human_100_block_300M with the same

reads as human_100_300M but padding the FASTQ to achieve 12

KB blocks (B¼12288) and 44 reads per block (N¼44). Similarly, we

created a set called human_50_block_300M with the reads from

human_50_300M padded to achieve 12 KB blocks (B¼12288) and

70 reads per block (N¼70). N and B are specified to the aligner via

command-line options (--block-bytes and --reads-per-block).

We tested two versions of L-parsing, one that writes output to a

single SAM file and one that stripes output across 16 SAM files,

with each thread writing to an output file corresponding to the

thread ID modulo 16. The striped output mode was added after

noticing poor performance due to output lock contention at high

thread counts on KNL (Supplementary Fig. S3).

For Bowtie 2, we also compared to BWA-MEM v0.7.16a Li

(2013) with default arguments. BWA-MEM uses a pipelined multi-

threading strategy. Two master threads run simultaneously, each

cycling through three steps: (a) parsing a batch of input reads, (b)

aligning the batch, and (c) writing the output alignments for the

batch. Using a pthreads (Nichols et al., 1996) lock and condition

variable, the master threads are prevented from running the aligning

step at the same time; when one thread is aligning, the other is writ-

ing output or reading input. When in the alignment step, the master

thread spawns T worker threads, T given by the -t option. Worker

threads balance load using work stealing, synchronizing with atomic

operations. Batch size is determined by multiplying a number of in-

put bases (10 million) by T. We note that (a) these are large batches

compared to Bowtie 2, which uses a batch size of 32 reads for

B-parsing and at most 70 for L-parsing, and (b) that, while the batch

size is independent of thread count for Bowtie 2, it grows linearly

0

100

200

0 25 50 75 100

T
h
re

a
d
 t
im

e

Skylake Bowtie

0

30

60

90

0 25 50 75 100

Skylake Bowtie 2

0

200

400

0 25 50 75 100

Skylake HISAT

0

200

400

600

0 30 60 90

T
h
re

a
d
 t
im

e

Broadwell Bowtie

0

200

400

600

0 30 60 90

Broadwell Bowtie 2

0

250

500

750

0 30 60 90

Broadwell HISAT

0

250

500

750

0 100 200

threads

T
h
re

a
d
 t
im

e

KNL Bowtie

0

250

500

750

0 100 200

threads

KNL Bowtie 2

0

250

500

750

1000

0 100 200

threads

KNL HISAT

Original (O) Deferred (D) Batch deferred (B) MP baseline

Fig. 4. Comparison of three parsing strategies and multiprocessing baseline. Reads are unpaired. Jobs that ran for over 20min are omitted. Squares indicate the

point on each line yielding maximal total alignment throughput and these points are summarized in Table 3

428 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

with thread count in BWA-MEM. BWA-MEM experiments used the

same number of input reads as the Bowtie 2 experiments

(Supplementary Table S1). We also corrected an issue in the BWA-

MEM code that caused failures for thread counts over 214, a limit

we exceed on KNL (Supplementary Note S3).

Figure 5 shows the comparison for unpaired alignment and

Supplementary Figure S4 shows the same for paired-end align-

ment. Table 4 gives maximal peak throughput for each configur-

ation. While L- and B-parsing scaled similarly at low thread

counts, L-parsing maintained excellent scaling through higher

thread counts in most configurations. L-parsing with striped out-

put was either best or competitive for all scenarios. B-parsing

scaled substantially worse than L-parsing for HISAT and for un-

paired Bowtie.

Remarkably, L-parsing with striped output scaled better than the

MP baseline in all but a few cases, and best overall in 11 out of 18

cases. Thus, L-parsing with striped output is the only approach we

evaluated that improved on the MP baseline.

The 1-output and 16-output (striped) versions of L-parsing scale

similarly with the notable exception of KNLþHISAT, where the 1-

output versions scales substantially worse. This comports with the

fact that HISAT is the fastest of the aligners tested and therefore

generates output the most rapidly. This causes increased contention

for the output lock in the 1-output version. In the 16-output version,

the load is spread over 16 locks, reducing overall contention.

While BWA-MEM scaled well, both the B-parsing and L-parsing

Bowtie 2 configurations scaled better. This was particularly true on

the KNL system, where B-parsing achieved 33% (paired-end) and

45% (unpaired) higher throughput and L-parsing achieved 32%

(paired-end) and 44% (unpaired) higher throughput. When trans-

lated to extrapolated 40x-human running time, Bowtie 2’s unpaired

B-parsing mode finishes about 2 h faster than BWA-MEM, and its

paired-end B-parsing mode finishes about 4 h faster (Supplementary

Table S2). BWA-MEM’s larger input chunk size, together with the

chunk size’s linear scaling, also caused BWA-MEM’s memory foot-

print to grow much faster than Bowtie 2’s (Supplementary Fig. S5).

4 Discussion

General-purpose processors now support hundreds of simultaneous

threads of execution and future architectures will likely continue the

trend of squeezing more relatively slow threads onto a single chip.

Genomics software must adapt to high thread counts, slow individ-

ual threads, and system architectures that more closely resemble

small computer clusters—complete with interconnection network

and distributed storage—than simpler processors of the past.

We addressed how lock types, design of critical sections,

NUMA, starvation and other issues can impact thread scaling on

three Intel systems, including one based on the many-core Knight’s

Landing architecture. We greatly improved thread scaling for three

commonly used alignment tools: Bowtie, Bowtie 2 and HISAT. We

measured the effect of each candidate improvement, and also

showed that the improvements to Bowtie 2 allow it to scale more fa-

vorably than BWA-MEM with respect to both time and peak mem-

ory footprint. The TBB queueing lock and the B-parsing method are

the default as of Bowtie v1.2.0 and Bowtie 2 v2.3.0.

Bowtie and HISAT align reads more quickly than Bowtie 2

(Table 4), making their locks more contended and thread scaling

more difficult. This is reinforced by how much L-parsing improved

thread scaling for Bowtie and HISAT. This suggests that similar or

greater gains may be possible by adapting our methods to yet faster

tools such as pseudoaligners (Bray et al., 2016), quasi-mappers

(Srivastava et al., 2016) and tools that analyze at the k-mer level

(Wood and Salzberg, 2014).

There is also further room for improvement. Besides L-parsing,

which requires special padding, B-parsing was the best-scaling MT

strategy and it is now the default strategy in Bowtie and Bowtie 2.

But the MP baseline outperformed B-parsing in some scenarios, and

L-parsing outperformed it nearly always. We still seek MT methods

that scale like L-parsing but that work with standard, unpadded

inputs.

For further gains, it will be important to investigate more lock

types. The queueing (MCS) lock (Mellor-Crummey and Scott, 1991)

scaled best at high thread counts, likely because of reduced cache-

Table 3. Peak throughputs for three parsing strategies and multiprocessing baseline

Note: For each combination of aligner, paired-end status and test system, the best and second-best throughputs are highlighted red and orange respectively.

The TBB queueing lock is used in all cases.

Scaling read aligners to hundreds of threads 429

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

coherence communication. But other lock types could improve on

this in two ways. First: like the spinlock, the queueing lock is opti-

mistic. But when thread count and contention are high, pessimism is

more appropriate. It will be important to investigate lock types that

adapt their degree of optimism in inverse proportion to the lock con-

tention, e.g. the hierarchical backoff lock (Radovic and Hagersten,

2003). Secondly, while the queueing lock successfully reduces cache-

coherence communication, other locks go further in this regard. The

cohort lock (Dice et al., 2015) further reduces communication by

maximizing the chance that consecutive holders of the lock are phys-

ically proximate (i.e. on the same NUMA node), avoiding longer-

distance communication.

Genomics file formats, notably FASTQ and FASTA, have prop-

erties that impede thread scaling. Since records lack predictable

length, record boundaries must be identified in a synchronized man-

ner, i.e. inside a critical section. Our best scaling results were

achieved by forcing predictable FASTQ record boundaries (using

padding) and simplifying the input critical section to a single fixed-

size read. This padding is easy to add, regardless of the reads’

paired-end status or length (including mixed lengths within a file

and between paired ends) as long as the block size B accommodates

the longest read. While this suggests a strategy of pre-padding

FASTQ files prior to L-parsing alignment, that might simply move

the synchronization bottleneck into the padding step. It may be

worth the cost, though, if input files are to be re-used across multiple

L-parsing alignment jobs, amortizing the padding cost.

L-parsing padding consists of simple runs of space characters,

which are highly compressible. For our inputs, padding increased

uncompressed FASTQ file size by 9–14%, but gzipped FASTQ file

size increased just 1.0–1.5% (Supplementary Table S3). More gener-

ally, it is common to store sequencing reads in a compressed form,

then decompress—e.g. with gzip or the libz library—prior to

read alignment. But if decompression must be performed either up-

stream of the read aligner or in the aligner’s input critical section,

0

50

100

0 25 50 75 100

T
h
re

a
d
 t
im

e

Skylake Bowtie

0

50

100

0 25 50 75 100

Skylake Bowtie 2

0

50

100

0 25 50 75 100

Skylake HISAT

0

100

200

300

0 30 60 90

T
h
re

a
d
 t
im

e

Broadwell Bowtie

0

50

100

150

200

0 30 60 90

Broadwell Bowtie 2

0

100

200

300

0 30 60 90

Broadwell HISAT

0

250

500

750

0 100 200

threads

T
h
re

a
d
 t
im

e

KNL Bowtie

0

100

200

300

400

0 100 200

threads

KNL Bowtie 2

0

250

500

750

1000

0 100 200

threads

KNL HISAT

Batch (B) Block (L), 1 output Block (L), 16 outputs MP baseline BWA−MEM

Fig. 5. Unpaired-alignment comparison of B-parsing, L-parsing, L-paring with output striped across 16 files and the MP baseline. BWA-MEM is also evaluated and

compared to the Bowtie 2 configurations. Jobs that ran for over 20min are omitted. Squares indicate the run for each configuration yielding greatest overall

alignment throughput, also summarized in Table 4

430 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

decompression is liable to become a new thread-scaling bottleneck.

A possible workaround is similar to the idea behind D-parsing: in-

stead of both reading and decompressing in the critical section, de-

compression could be deferred until after the critical section. This

might be facilitated by block-compressed formats like BGZIP (Li,

2011). A question for future work is whether compressed inputs can

be used to reduce the space overhead of padding while still provid-

ing thread scaling similar to what we achieved here with L-parsing

and uncompressed inputs. A related question is whether compressed

output would mitigate bottlenecks of the kind we (mostly) avoided

with our multiple-output-file scheme (Supplementary Fig. S3).

Finally, we note that the threading model we consider here,

whereby all threads rotate through input, alignment and output

phases (Fig. 1), is just one possible model. We described the alterna-

tive model used in BWA-MEM in Section 3. Another popular model

is to relegate input parsing and output writing to separate special-

ized threads. The input thread only parses input, placing parsed

records onto a queue to be later retrieved by alignment threads.

Because only one thread reads input, no locking is needed. Similarly,

the output thread only writes output (without locking), receiving

alignment records from a queue populated by alignment threads.

Synchronization is still required, but it is limited to points where

items are added to or removed from queues. The tools examined

here can be adapted to use this alternate model, and we already did

so for Bowtie 1’s unpaired alignment mode. Results are mixed but

promising: a branch of Bowtie’s B-parsing code that relegates input

and output to separate threads achieves better thread scaling on

KNL, but worse on Skylake compared to standard B-parsing

(Supplementary Fig. S6). It will be important to compare and con-

trast such threading models, and to test how they interact with com-

pressed inputs and outputs, in future work.

5 Conclusion

We addressed the problem of scaling read aligners to hundreds of

threads on general-purpose processors. We concentrated on the

Bowtie, Bowtie 2 and HISAT tools since they are widely used and

representative of a wider group of embarrassingly parallel tools. We

explored key issues posed by these architectures and suggest solu-

tions and measure their effect on thread scaling. We achieved excel-

lent thread scaling to hundreds of threads, and we have officially

released versions of Bowtie and Bowtie 2 tools that implement these

ideas. We also suggested a small change to common genomics file

formats, e.g. FASTA and FASTQ, that can yield substantial add-

itional thread scaling benefits.

Acknowledgements

The authors are grateful to many at Intel and the Parallel Computing Center

program, for technical and administrative assistance, including John Oneill,

Ram Ramanujam, Kevin O’leary, Lisa Smith, and Brian Napier.

Funding

BL, VA and CW were partly supported by an Intel Parallel Computing Center

grant to BL. BL, CW and RC were supported by National Institutes of

Health/National Institute of General Medical Sciences grant R01GM118568

to BL. KNL and Skylake experiments used the XSEDE Stampede 2 resource

at the Texas Advanced Computing Center (TACC), accessed using XSEDE al-

location TG-CIE170020 to BL. This work used the Extreme Science and

Engineering Discovery Environment (XSEDE), supported by National Science

Foundation grant number ACI-1548562.

Conflict of Interest: none declared.

References

Aldinucci,M. et al. (2017) Fastflow: high-level and efficient streaming on mul-

ti-core. In: Pllana,S. and Xhafa,F. (eds) Programming Multi-Core and

Many-Core Computing Systems, Parallel and Distributed Computing. John

Wiley & Sons, p. 528.

Anderson,T.E. (1990) The performance of spin lock alternatives for

shared-money multiprocessors. IEEE Trans Parallel Distributed Systems, 1,

6–16.

Auton,A. et al. (2015) A global reference for human genetic variation.Nature,

526, 68–74.

Table 4. Peak throughputs for B-parsing, L-parsing, L-paring with output striped across 16 files, and the MP baseline

Note: BWA-MEM is also evaluated for the Bowtie 2 configurations. For each combination of aligner, paired-end status and test machine, the best and second-

best throughputs are highlighted in red and orange respectively.

Scaling read aligners to hundreds of threads 431

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty648#supplementary-data

Blumofe,R.D. et al. (1995) Cilk: An Efficient Multithreaded Runtime System.

In: PPOPP ’95 Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. Santa Barbara, California,

USA, Vol. 30, pp. 207–216. ACM, New York, NY, USA.

Bolger,A.M. et al. (2014) Trimmomatic: a flexible trimmer for illumina se-

quence data. Bioinformatics, 170.

Bray,N. et al. (2016) Near-optimal probabilistic RNA-seq quantification.

Nature Biotechnology, 34, 525.

Bueso,D. (2014) Scalability techniques for practical synchronization primi-

tives.Queue, 12, 40.

Church,D.M. et al. (2015) Extending reference assembly models. Genome

Biol., 16, 13.

Cock,P.J. et al. (2010) The Sanger FASTQ file format for sequences with qual-

ity scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38,

1767–1771.

Dice,D. et al. (2015) Lock cohorting: a general technique for designing numa

locks. ACM Trans. Parallel Comput., 1, 1.

Eberle,M.A. et al. (2017) A reference data set of 5.4 million phased human

variants validated by genetic inheritance from sequencing a three-generation

17-member pedigree.Genome Res, 27, 157–164.

Herzeel,C. et al. (2014) Resolving load balancing issues in bwa on numa multi-

core architectures. In Roman,W. (ed.) Parallel Processing and Applied

Mathematics. Springer-Verlag, Berlin, Heidelberg, pp. 227–236.

Jeffers,J. et al. (2016) Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition. Morgan Kaufmann.

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of

sequencing errors.Genome Biol., 11, R116.

Kim,D. et al. (2015) Hisat: a fast spliced aligner with low memory require-

ments.Nature Methods, 12, 357–360.

Langmead,B., and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2.Nature Methods, 9, 357–359.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

dna sequences to the human genome.Genome Biol., 10, R25.

Lenis,J., and Senar,M.A. (2017) A performance comparison of data and mem-

ory allocation strategies for sequence aligners on numa architectures.

Cluster Comput., 20, 1909–1924.

Li,H. (2011) Tabix: fast retrieval of sequence features from generic

tab-delimited files. Bioinformatics, 27, 718–719.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with bwa-mem. arXiv Preprint arXiv, 1303, 3997.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Marco-Sola,S. et al. (2012) The gem mapper: fast, accurate and versatile align-

ment by filtration.Nature Methods, 9, 1185–1188.

Mellor-Crummey,J.M., and Scott,M.L. (1991) Synchronization without con-

tention. ACM SIGPLANNotices, 26, 269–278.

Misale,C. (2014) Accelerating bowtie2 with a lock-less concurrency approach

and memory affinity. In Parallel, Distributed and Network-Based

Processing (PDP), 2014 22nd Euromicro International Conference on,

IEEE, pp 578–585.

Misale,C. et al. (2014) Sequence alignment tools: one parallel pattern to rule

them all? BioMed Research International, 2014, 1.

Nichols,B. et al. (1996) Pthreads Programming: A POSIX Standard for Better

Multiprocessing. O’Reilly Media, Inc.

Radovic,Z., and Hagersten,E. (2003) Hierarchical backoff locks for nonuni-

form communication architectures. In High-Performance Computer

Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International

Symposium on, IEEE, pp. 241–252.

Reinders,J. (2007) Intel Threading Building Blocks: Outfitting Cþþ for

Multi-Core Processor Parallelism. O’Reilly Media, Inc.

Rustagi,N. et al. (2017) Extremely low-coverage whole genome sequencing in

South Asians captures population genomics information. BMC Genomics,

18, 396.

Segata,N. et al. (2012) Metagenomic microbial community profiling using

unique clade-specific marker genes.Nature Methods, 9, 811–814.

Sodani,A. (2015) Knights landing (knl): 2nd generation intel
VR
xeon phi proces-

sor. InHot Chips 27 Symposium (HCS), 2015 IEEE, pages 1–24.

Song,L. et al. (2014) Lighter: fast and memory-efficient sequencing error cor-

rection without counting.Genome Biol., 15, 509.

Srivastava,A. et al. (2016) Rapmap: a rapid, sensitive and accurate tool for

mapping rna-seq reads to transcriptomes. Bioinformatics, 32, i192–i200.

Valero-Lara,P. et al. (2016) Multicore and manycore: Hybrid computing

architectures. Innovative Research and Applications in Next-Generation

High Performance Computing, p. 107.

Waldrop,M.M. (2016) The chips are down for moore’s law. Nature News,

530, 144.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments.Genome Biol., 15, R46.

Zaharia,M. et al. (2011) Faster and more accurate sequence alignment with

snap. arXiv Preprint arXiv, 1111, 5572.

432 B. Langmead et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
5
/3

/4
2
1
/5

0
5
5
5
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

	l
	l
	l
	bty648-TF1
	l
	l
	l
	bty648-TF2
	bty648-TF3
	bty648-TF4

