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Abstract

Interpretation of regression coefficients is sensitive to the scale of the inputs. One
method often used to place input variables on a common scale is to divide each numeric
variable by its standard deviation. Here we propose dividing each numeric variable by
two times its standard deviation, so that the generic comparison is with inputs equal to
the mean ±1 standard deviation. The resulting coefficients are then directly comparable
for untransformed binary predictors. We have implemented the procedure as a function
in R. We illustrate the method with two simple analyses that are typical of applied
regression. We recommend our rescaling as a default option—an improvement upon
the usual approach of including variables in whatever way they are coded in the data
file—so that the magnitudes of coefficients can be directly compared as a matter of
routine statistical practice.
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1 Rescaling input variables to make regression coefficients

more directly interpretable

1.1 Background

A common trick in applied regression is to “standardize” each input variable by subtracting

its mean and dividing by its standard deviation. Subtracting the mean typically improves

the interpretation of main effects in the presence of interactions, and dividing by the stan-

dard deviation puts all predictors on a common scale. Each coefficient in this standardized

model is the expected difference in the outcome, comparing units that differ by one standard

deviation in an input variable, with all other inputs fixed at their average values.

∗We thank Dimitris Rizopoulos and Gabor Grothendieck for help with R programming, Wendy McKelvey
for the rodents example, Aleks Jakulin, Joe Bafumi, David Park, Hal Stern, Tobias Verbeke, John Londregan,
Jeff Gill, and Suzanna De Boef for comments, and the National Science Foundation and New York City
Department of Health for financial support.
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Standardizing can create its own problems. For example, Bring (1994) notes the incom-

patibility of scaling the inputs based on their marginal distributions and then interpreting

regression coefficients conditionally. King (1986) points out that comparisons of rescaled

coefficients across datasets are problematic, because changing the range of a predictor will

change its rescaled coefficient even if the regression model itself is unchanged. Blalock

(1961) notes the challenges of comparing the magnitudes of coefficients, rescaled or not,

within a single regression. Greenland, Schlessman, and Criqui (1986) discuss challenges in

casual interpretations of standardized regression coefficients.

While recognizing that standardizing does not solve the problems of causal inference

and comparison of the importance of regression coefficients, we do believe that an auto-

matic default standardization procedure can be helpful as a routine tool for understanding

regressions.

1.2 Methods used for standardizing regression inputs

We first consider some standardization methods used in statistics and quantitative social

science and then discuss our proposed method, which is to scale each input variable by

dividing by two times its standard deviation.

A regression of the logarithm of men’s earnings on height (in inches) from a national

survey (Ross, 1990) yields a slope of 0.024, or 0.00096 if height is measured in millimeters,

or 1549 if height is measured in miles. The coefficient is difficult to interpret if height is not

scaled in a reasonable way. Linear rescaling of predictors does not change the t-statistics or

p-values but can aid or hinder the interpretation of coefficients.

Existing options for scaling include:

1. Using round numbers (for example, height in inches or centimeters, age in tens of

years, or income in tens of thousands of dollars).

2. Specifying lower and upper comparison points (for example, comparing people who

are 5′6′′ and 6′ tall, or comparing a 30-year-old to a 60-year old, or persons with

incomes in the 25th and 75th percentiles).

3. Subtracting the mean of each input variable and dividing by its standard deviation.

(Strictly speaking, subtracting the mean is not necessary, but this step allows main

effects to be more easily interpreted in the presence of interactions.)

4. Transforming nonlinearly, for example using the logarithm. This can be effective

in many cases but cannot be used automatically, for example with variables that
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can have zero or negative values, or measurements such as Likert scales for which log

transformations are typically inappropriate even if the variable is coded to be positive.

Each of these approaches has its strengths but also weaknesses. Rescaling using round

numbers or comparison points is difficult to do automatically since additional information

must be supplied. Logarithms and other nonlinear transformations should certainly be

considered for many examples but, as noted above, they are inappropriate for many social

science variables. Finally, dividing by the standard deviation is a convenient automatic

method but leads to systematic problems in interpretation, as we discuss next.

1.3 Using binary inputs as a benchmark for rescaling

We shall understand rescaling by considering binary inputs—that is, variables x that can

take on the values 0 or 1. At first this might seem silly, since the coefficient of a binary

variable is directly interpretable as the comparison of the 0’s to the 1’s (with all other

inputs held constant). But this is our point: we want to use this benchmark to interpret

standardized coefficients more broadly.

A binary variable with equal probabilities has mean 0.5 and standard deviation 0.5.

The usual standardized predictor (scaled by one standard deviation) then takes on the

values ±1, and a 1-unit difference on this transformed scale corresponds to a difference of

0.5 on the original variable (for example, a comparison between x = 0.25 and x = 0.75),

which cannot be directly interpreted. To think of this another way, consider a regression

with some binary predictors (for example, a male/female indicator) left intact, and some

continuous predictors (for example, height) scaled by dividing by one standard deviation.

The coefficients for the binary predictors correspond to a comparison of x = 0 to x = 1, or

two standard deviations.

For these reasons, we recommend the general practice of scaling numeric inputs by

dividing by two standard deviations, which allows the coefficients to be interpreted in the

same way as with binary inputs.1

To perform the rescaling automatically, we wrote a function in R (R Development Core

1Highly-skewed binary inputs still create difficulty in interpretation, however; for example, two standard
deviations for a 90%/10% binary variable come to only 0.6. Thus, leaving this binary input variable unscaled
is not quite equivalent to dividing by two standard deviations. One might argue, however, that when
considering rare subsets of the population, a full comparison from 0 to 1 could overstate the importance
of the predictor in the regression, hence it might be reasonable to consider this two-standard-deviation
comparison, which is less than the comparison of the extremes. Our main point, however, is that two
standard deviations is a more reasonable scaling than one—even if neither automatic approach solves all
problems of interpretation.
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Variable 2 sd’s
Female (1=male, 0=male) 1.0
Black (1=African American, 0=other) 0.7
Age (years) 34
Education (1=less than high school, . . . , 4=college graduate) 1.9
Income (1–5 scale) 2.2
Political ideology (1=very liberal, . . . , 7=very conservative) 2.9
Party identification (1=strong Democrat, . . . , 7=strong Republican) 4.2
Parents’ party id (2=both Democrats, . . . , 6=both Republicans) 3.4
Binary (p = 0.5) 1
Continuous uniform (−5, 5) 5.8
Continuous uniform (0, 100) 58
Discrete uniform (1, 2, 3, 4, 5) 2.8
Poisson (1) 2
Poisson (10) 6.3

Figure 1: The two-standard-deviation scale for some variables from the 1992 National
Election Study. At the bottom of the table are some theoretical distributions for comparison.

Team, 2006) that takes arbitrary regression models and re-fits using standardized inputs.2

A key step in setting up this function is to identify the input variables,3 transform them as

desired, and then feed them into the regression model. Input variables can be included in a

regression nonlinearly or through interactions, and so it is not enough to fit the model and

rescale the coefficients; the fitting procedure must be applied to the rescaled data.

2 Examples

2.1 Linear regression for party identification

We illustrate rescaling with a regression of party identification on sex, ethnicity, age, ed-

ucation, income, political ideology, and parents’ party identification, using data from the

National Election Study 1992 pre-election poll (Miller, Kinder, and Rosenstone, 1992). This

example is intended to represent the sort of descriptive model fitting that is common in so-

cial science, in which the researcher is interested in the contributions made by different

variables in predicting some outcome of interest. This is also a good example to illustrate

the method because our model includes binary, discrete numeric, and continuous numeric

inputs, as well as nonlinearity for the age predictor and an interaction of income and ide-

ology (which is of current interest in American politics; see, for example, McCarty, Poole,

2We have incorporated the function standardize() into the arm package for applied regression and
multilevel models in R.

3The set of input variables is not, in general, the same as the set of predictors. For example, in a regression
of earnings on height, sex, and their interaction, there are four predictors (the constant term, height, sex,
and height × sex), but just two inputs: height and sex.
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> M1 <- lm (partyid ~ female + black + age + I(age^2) + parents.party +

education + income + ideology + income:ideology)

> display (M1)

lm(formula = partyid ~ female + black + age + I(age^2) + parents.party +

education + income + ideology + income:ideology)

coef.est coef.se

(Intercept) 0.99 0.64

female -0.08 0.10

black -0.98 0.17

age -0.03 0.02

I(age^2) 0.00 0.00

parents.party 0.49 0.03

education 0.18 0.06

income -0.43 0.15

ideology 0.20 0.11

income:ideology 0.15 0.03

n = 989, k = 10

residual sd = 1.58, R-Squared = 0.49

> M2 <- standardize (M1)

> display (M2)

lm(formula = partyid ~ c.female + c.black + z.age + I(z.age^2) +

z.parents.party + z.education + z.income + z.ideology + z.income:z.ideology)

coef.est coef.se

(Intercept) 3.54 0.08

c.female -0.08 0.10

c.black -0.98 0.17

z.age -0.15 0.12

I(z.age^2) 0.34 0.22

z.parents.party 1.66 0.11

z.education 0.34 0.12

z.income 0.41 0.12

z.ideology 1.84 0.10

z.income:z.ideology 0.94 0.22

n = 989, k = 10

residual sd = 1.58, R-Squared = 0.49

Figure 2: (a) A linear regression fit in R of individual party identification on several predic-
tors (see Figure 1 for descriptions). The coefficients are difficult to interpret because differ-
ent predictors are on different scales. The notation I(age^2) represents age squared, and
income:ideology represents the interaction (that is, the product) of income and ideology.
(b) The model fit to transformed inputs: the binary variables (female and black) have been
centered by subtracting their mean in the data, and the numeric variables have been rescaled
by subtracting the mean and dividing by two standard deviations. The new coefficients re-
flect the different scales. For example, the coefficient for the interaction of income and
ideology is now higher than the coefficient for race.
In general, we prefer to display fitted models graphically; we use tables here to illustrate
typical practice. Similarly, regression tables would usually be more carefully formatted be-
fore publication, but here we are purposely showing computer output to show how these
results can be used in the midst of a statistical analysis.
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and Rosenthal, 2006, and Gelman et al., 2006).

Figure 1 lists the variables in the model, along with the scaling factor for each. Two

standard deviations typically cover a wide range of the data, so the standardized coefficients,

as we compute them, represent a comparison from low to high for each input.

Figure 2 shows a fitted regression, followed by a standardized regression, in which each

numeric input has been mean-centered and divided by two standard deviations. The binary

inputs are simply shifted to have mean zero and are note rescaled. The coefficients in the

new model can be more easily interpreted since they correspond to two-standard-deviation

changes (roughly, from the low to the high end) of each numeric input, or the difference be-

tween the two conditions for binary inputs. The centering also improves the interpretation

of the main effects of income and ideology in the presence of their interaction. The residual

standard deviation and explained variance do not change under this linear reparameteriza-

tion, but the coefficients become more comparable to each other. Most notably, on the raw

scale, the coefficient for black is much larger (in absolute scale) than the coefficients for

parents.party and for the income:ideology; after rescaling, however, this has changed

dramatically.

An experienced practitioner might realize immediately the difficulty of interpreting the

coefficients in the unscaled regression at the top of Figure 2; standardizing simply formalizes

these intuitions and performs the computations automatically.

2.2 Multilevel logistic regression for prevalance of rodents

As a second example, we fit a multilevel logistic regression for to predict the occurrence

of rodents in New York City apartments, given physical factors (a count of defects in the

apartment, its level above ground), social factors (a measure of the residents’ poverty,

indicators for ethnic groups), and geography (indicators for 55 city neighborhoods). The

multilevel model includes ethnicity and neigborhood indicators as non-nested factors, each

with its own group-level variance.

Figure 3 shows a possible display of the results, first using the parameterization in the

raw data and then with standardized predictors. In the reparameterization, the varying

coefficients are summarized by two standard deviations to be comparable to the numeric

inputs. As with the previous example, the standardized coefficients are directly comparable

in a way that the raw coefficients are not. Most notably, the coefficients for the continuous

predictors have all increased in absolute value to reflect the variation in these predictors in

the data. The figure also illustrates that the results can easily be displayed on both scales

6



standardized
Predictor coef (s.e.) coef (s.e.)
(Intercept) −2.25 (0.34) −1.43 (0.27)
defects 0.49 (0.05) 1.47 (0.14)
poverty 0.12 (0.05) 0.37 (0.16)
floor −0.01 (0.04) −0.04 (0.16)
hispanic 0.51 (0.15) 0.51 (0.15)
black 0.36 (0.16) 0.36 (0.16)
asian −0.17 (0.24) −0.17 (0.24)
white −0.56 (0.16) −0.56 (0.16)
σ̂ethnicity 0.65
2σ̂ethnicity 1.30
σ̂neigbborhood 0.47
2σ̂neigbborhood 0.94

Figure 3: Multilevel logistic regression model predicting the occurrence of rodents in
city apartments, given numeric predictors (representing physical defects in the apartment,
poverty of the occupants, the floor of residence) and indicators for ethnicity and neighbor-
hood. The two columns show the summaries using the direct and reparameterized input
variables.
The rescaled coefficients are directly interpretable as changes on the logit scale comparing
each input variable at a low value to a high value: for the numeric predictors, this is the
mean ± 1 standard deviation, and for the indicators, this is each level compared to the
mean.

for the convenience of the user.

3 Discussion

3.1 Options in the rescaling of inputs

We are rescaling the input variables, not the predictors. For example, age is rescaled to

z.age, and the new model includes z.age and its square as predictors. The “age-squared”

predictor is not itself standardized. Similarly, we standardize income and ideology, and

interact these standardized inputs; we do not directly standardize the income × ideology

interaction.

In Figure 2 we have used the default standardization (as can be seen in the function call

standardize (M1), which does not specify any options). Other choices are possible. For

example, we might want to transform the outcome (partyid) as well, which can be done

using the command,

M3 <- standardize (M1, standardize.y=TRUE)

Or we might want to leave the variable black unchanged (that is, on its original scale):
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M4 <- standardize (M1, unchanged="black")

These options can also be combined; for example,

M5 <- standardize (M1, standardize.y=TRUE, unchanged=c("female","black"))

Finally, we could choose to rescale the binary inputs also; for example,

M6 <- standardize (M1, binary.inputs="full")

which rescales all the inputs, including the binary variables, female and black, by sub-

tracting the mean and dividing by two standard deviations.

Another scenario in which is helpful to have options is when considering predictors on

the logarithmic scale, in which case a change of 1 in a predictor corresponds to multiplying

by a factor of e = 2.8 . . . (for the natural log) or 10 (for log base 10). We certainly do not

want to subtract the mean and rescale an input variable before it has been logged! When

inputs and outcome variables are on the log scale, the coefficients have the interpretation

as “elasticities” (relative change in y per relative change in x), and, again, rescaling would

just muddy this clear picture. More challenging cases arise in which some inputs have

been logged and others are not. We have no general solution here, but we would start by

centering and rescaling the variables which have not been logged. It might also make sense

to rescale the logged variables after the log transformation—for example, in Figure 1, if

income had been coded as “log (income in dollars),” we might still consider transforming

it.

3.2 Variance components and multilevel models

To be consistent with the interpretation of coefficients as corresponding to a typical compar-

ison for an input variable (0 to 1 for a binary input, or the mean ± one standard deviation

for a numeric input), it makes sense to summarize variance parameters by twice their stan-

dard deviation. For example, fitting a multilevel version of the model shown in Figure 2,

in which the intercepts vary by state, yields an estimated standard deviation of 1.57 for

the individual-level errors and 0.16 for the state-level errors. To compare to the scaled

regression coefficients, it would make sense to double them—thus, summarizing the scale of

individual and group-level variation by 3.14 and 0.32, respectively. This is slightly awkward

but allows direct comparisons to the coefficients for binary predictors, which we believe is

the most fundamental standard of reference.

More generally, a set of varying coefficients (random effects) can be considered as a

single numerical predictor with latent (i.e., unobserved) continuous values. For example,
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the model in Figure 3 can be viewed as having a single continuous “ethnicity” predictor

that takes on the (estimated) values 0.51, 0.36, −0.17, or −0.56, depending on whether the

respondent is hispanic, black, etc. As defined in this way, this predictor has a coefficient of

1 in the regression model, by definition, and its standardized coefficient is simply twice the

standard deviation of the possible values it attains, which is approximately 2σ̂ethnicity = 1.30

in this case.

3.3 Conclusions

Rescaling numeric regression inputs by dividing by two standard deviations is a reasonable

automatic procedure that avoids conventional standardization’s incompatibility with binary

inputs. Standardizing does not solve issues of causality (Greenland, Schlessman, and Criqui,

1986), conditioning (Bring, 1994), or comparison between fits to different datasets (King,

1986); however, we believe it usefully contributes to the goal of understanding a model

whose predictors are on different scales.

It can be a challenge to pick appropriate “round numbers” for scaling regression predic-

tors, and standardization, as we have defined it here, gives a clean general solution which

is, at the very least, an interpretable starting point. We recommend it as an automatic

adjunct to displaying coefficients on the original scale.

This does not stop us from keeping variables on some standard, well-understood scale

(for example, in predicting election outcomes given unemployment rate, coefficients can be

interpreted as percentage points of vote per percentage point change in unemployment),

but we would use our standardization as a starting point. In general we believe that our

recommendations will generally lead to more understandable inferences than the current

default, which is typically to include variables however they happen to have been coded in

the data file. Our goal is for regression coefficients to be interpretable as changes from low

to high values (for binary inputs or numeric inputs that have been scaled by two standard

deviations).

We also center each input variable to have a mean of zero so that interactions are more

interpretable. Again, in some applications it can make sense for variables to be centered

around some particular baseline value, but we believe our automatic procedure is better than

the current default of using whatever value happens to be zero on the scale of the data,

which all too commonly results in absurdities such as age = 0 years or party identification =

0 on a 1–7 scale. Even with such scaling, the correct interpretation of the model can

be untangled from the regression by pulling out the right combination of coefficients (for
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example, evaluating interactions at different plausible values of age such as 20, 40, and 60);

the advantage of our procedure is that the coefficients and standard errors in the regression

table have a shot at being interpretable directly out of the box.

We also hope these ideas could also be applied to predictive comparisons for logistic

regression and other nonlinear models (Gelman and Pardoe, 2007), and beyond that to

multilevel models and nonlinear procedures such as generalized additive models (Hastie and

Tibshirani, 1990). Nonlinear models can best be summarized graphically, either compactly

through summary methods such as graphs of coefficient estimates or nomograms (Lubsen,

Pool, and van der Does, 1978, Harrell, 2001, Jakulin et al., 2005), showing the (perhaps

nonlinear) relation between the expected outcome as each input is varied. But to the

extent that numerical summaries are useful—and they certainly will be used—we would

recommend, as a default starting point, evaluating at the mean ±1 standard deviation of

each input variable. For linear models this reduces to the scaling presented in this paper.

Finally, one might dismiss the ideas in this paper with the claim that users of regressions

should understand their predictors well enough to interpret all coefficients. Our response is:

yes, more understanding is always better, but regressions are used routinely enough that it

is useful to have a routine method of scaling. For example, just scanning through the most

recent issue of each of two leading journals in medicine and one in economics, we find:

• Table 5 of Itani et al. (2006), which reports odds ratios (exponentiated logistic re-

gression coefficients) for a large set of predictors, most of which are binary or have

been dichotomized, but with a few numeric predictors, which have been rescaled by

dividing by one standard deviation. As argued in this paper, dividing by one (rather

than two) standard deviation will lead the user to understate the importance of these

continuous inputs.

• Table 2 of Murray et al. (2006), which reports linear regression coefficients for log

income and latitude; the latter has a wide range in the dataset and so unsurprisingly

has a coefficient estimate that is very small on the absolute scale.

• Table 4 of Adda and Cornaglia (2006), which reports linear regression coefficients for

some binary predictors and some numerical predictors. Unsurprisingly, the coefficients

for predictors such as age and education (years), house size (number of bedrooms), and

family size are much smaller in magnitude than those for indicators for sex, ethnicity,

church attendance, and marital status.

10



We bring up these examples not to criticize these papers or their journals—which in fact in-

clude many impressive examples of graphical displays of inference, including histograms and

time series of raw data, and line plots and nomograms summarizing regression inferences—

but to point out that, even in the most professional applied work, standard practice yields

coefficients for numeric predictors that are hard to interpret. Our proposal is a direct

approach to improving this interpretability.
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