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ABSTRACT

We present weak gravitational lensing analysis of 22 high-redshift (z � 1) clusters based on Hubble Space Telescope
images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed
two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other
high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the
question whether the presence of the most massive clusters in our sample is in tension with the current ΛCDM
structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and
establish, for the first time, the lensing mass–temperature relation at z � 1. For the power-law slope of the M–TX

relation (M ∝ T α), we obtain α = 1.54 ± 0.23. This is consistent with the theoretical self-similar prediction
α = 3/2 and with the results previously reported in the literature for much lower redshift samples. However,
our normalization is lower than the previous results by 20%–30%, indicating that the normalization in the M–TX

relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative
choice, we find that the existence of the most massive clusters in our sample still provides a tension with the
current ΛCDM model. The combined probability of finding the four most massive clusters in this sample after the
marginalization over cosmological parameters is less than 1%.

Key words: cosmology: observations – dark matter – galaxies: clusters: general – galaxies: high-redshift –
gravitational lensing: weak – X-rays: galaxies: clusters

Online-only material: color figures

1. INTRODUCTION

Gravitationally-bound systems have been the main objects
of study by astronomers throughout history because they are
observationally identified as discrete entities in the universe.
Galaxy clusters, the largest among these, are believed to be
also the last systems detached from the Hubble expansion.
Studying galaxy clusters provides unique opportunities to test
our structure formation paradigm, understand gas physics,
infer the properties of dark matter, investigate cluster galaxy
evolution, and constrain cosmological parameters.

The formalism for the last of these, i.e., the use of clusters for
cosmology, was pioneered by Press & Schechter (1974), who

∗ Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS 5-26555, under program 9290, 9919, and 10496.

realized that under the assumption of Gaussian primordial den-
sity fluctuation the fraction of mass in halos more massive than
the threshold M is related to the fraction of the volume in which
the smoothed initial density field is above some threshold den-
sity contrast δc. This simple, but ingenious, approach has been
shown to work well in comparison with numerical simulations.
Since this early work, many authors have extended the formal-
ism to provide better agreement with the recent state-of-the-art
numerical simulations.

The number of clusters of a given mass, or the mass function,
in the local universe constrains the combined properties of the
matter density and its fluctuation ΩMσ 0.5

8 (e.g., Bahcall & Cen
1993; Pierpaoli et al. 2001; Reiprich & Böhringer 2002, and
references therein) whereas the evolution of the mass function
breaks this degeneracy (e.g., Bahcall & Fan 1998). Therefore,
there has been continuous effort to extend our knowledge of
the cluster mass function to higher and higher redshift regimes.
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Table 1

Details of HST Observations

Cluster Name Redshift R.A. Decl. F775W Exp. F850LP Exp. nbg Prop. ID

(hh mm ss) (◦ ′ ′′) (s) (s) (arcmin−2)

XMMXCS J2215−1738 1.46 22 15 59 −17 37 58 3320 16935 85 10496

XMMU J2205−0159 1.12 22 05 50 −01 59 30 4535 11380 77 10496

XMMU J1229+0151 0.98 12 29 29 +01 51 22 4110 10940 99 10496

WARPS J1415+3612 1.03 14 15 11 +36 12 04 2425 9920 78 10496

ISCS J1432+3332 1.11 14 32 29 +33 32 48 4005 12440 115 10496

ISCS J1429+3437 1.26 14 29 18 +34 37 25 2670 15600 81 10496

ISCS J1434+3427 1.24 14 34 28 +34 26 22 2685 13320 84 10496

ISCS J1432+3436 1.35 14 32 38 +34 36 49 2235 8940 81 10496

ISCS J1434+3519 1.37 14 34 46 +35 19 45 1920 11260 70 10496

ISCS J1438+3414 1.41 14 38 09 +34 14 19 2155 10620 76 10496

RCS 0220−0333 1.03 02 20 55 −03 33 10 2955 14420 96 10496

RCS 0221−0321 1.02 02 21 41 −03 21 47 2015 13360 79 10496

RCS 0337−2844 1.1 03 37 50 −28 44 28 1560 12885 67 10496

RCS 0439−2904 0.95 04 39 38 −29 04 55 2075 15530 81 10496

RCS 2156−0448 1.07 21 56 42 −04 48 04 2060 5440 50 10496

RCS 1511+0903 0.97 15 11 03 +09 03 15 2075 7120 65 10496

RCS 2345−3632 1.04 23 45 27 −36 32 50 4450 9680 103 10496

RCS 2319+0038 0.91 23 19 53 +00 38 13 2400 6800 61 10496

XLSS J0223−0436 1.22 02 23 03 −04 36 18 3380 14020 97 10496

RDCS J0849+4452 1.26 08 48 56 +44 52 00 15630 34840 180 9919 and 10496

RDCS J0910+5422 1.11 09 10 44 +54 22 08 9825 25380 148 9919 and 10496

RDCS J1252−2927 1.23 12 52 54 −29 27 17 29945 57070 165 9290 and 10496

During the last decade, many ongoing surveys have increased
the number of known z � 1 clusters by many factors (e.g.,
Eisenhardt et al. 2008; Boehringer et al. 2006; Gladders & Yee
2005). Therefore, it is now possible to study the evolution of
the mass function across a large range of redshifts. Such a study
can not only provide an important check to the results obtained
thus far from lower redshift samples, but also enable a critical
test on the primordial non-Gaussianity (e.g., Jimenez & Verde
2009; Sartoris et al. 2010).

Without question, one of the most crucial issues is the ac-
curate derivation of masses for high-redshift clusters. Indi-
rect approaches, i.e., the estimation from velocity dispersion,
X-ray properties, or Sunyaev–Zel’dovich observations, require
assumptions on the dynamical state of the clusters and/or the
mass versus mass proxy calibration. By contrast, gravitational
lensing is a unique tool for obtaining the cluster mass without
relying on any dynamical assumption. However, because this
method requires expensive, high-resolution observations from
space, it is not practical, if not impossible, to perform a lensing
analysis for complete samples. Instead, it is much more feasi-
ble to apply the technique to a subset of the sample and to use
the results to calibrate the relation between masses and their
proxies.

In this paper, we present weak-lensing analysis of 22 z � 1
clusters based on Hubble Space Telescope (HST) images. Our
detailed study of these clusters via their weak gravitational lens-
ing signal will provide the aforementioned, invaluable calibra-
tion between weak-lensing masses and other observables. In
addition, the most massive among these allow us to investi-
gate the behavior of the high end of the mass function (Hoyle
et al. 2011; Holz & Perlmutter 2010). The 22 clusters were dis-
covered in different surveys, and do not represent a complete
sample, implying that any significant excess of massive clus-
ters (beyond the sample fluctuation) would in fact underesti-
mate the difference between observation and theory. In order to
complement our sample for the investigation of the mass and
mass-observable relation and the implication for the cosmology,

we include five other high-redshift clusters that were previously
studied via lensing.

The structure of this paper is as follows. In Section 2,
we describe our Advanced Camera for Surveys (ACS) data.
The method and the weak-lensing mass reconsruction for the 22
clusters are presented in Section 3. Section 4 compares the lens-
ing measurements with other cluster properties for the combined
sample of 27 clusters and presents the mass–temperature rela-
tion (M–T) at z > 1. We investigate the abundance of the most
massive clusters in our study relative to the theoretical expec-
tations within the current paradigm of the structure formation
in Section 5 before we conclude in Section 6. Discussions on
the details of our corrections to shape measurements includ-
ing point-spread function (PSF) and charge transfer inefficiency
(CTI) are deferred to Appendices A and B, respectively.

We assume (ΩM , ΩΛ, h) = (0.3, 0.7, 0.7) for cosmology
unless explicitly stated otherwise. All the quoted uncertainties
are at the 1σ (∼68%) level.

2. OBSERVATIONS

The 22 z � 1 clusters were observed with ACS/WFC using
the F775W and F850LP filters (hereafter referred to i775 and
z850, respectively) as part of the HST Cluster Supernova Survey
(GO-10496, PI: Perlmutter) during the period of 2005 July–2006
November (see Dawson et al. 2009). Three clusters among these
were also observed as part of Guaranteed Time Observation
9290 and 9919 (PI: Ford) during the periods of 2002 May–June
and 2004 February–March. Table 1 summarizes the exposure
times of the 22 clusters in i775 and z850.

2.1. ACS Data Reduction

Our reduction started with the FLT images, which are the
products of the standard STScI CALACS pipeline (Hack et al.
2003). We used the “apsis” pipeline (Blakeslee et al. 2003) to de-
termine shift and rotation, correct geometric distortion, remove
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cosmic rays, and create final mosaic images. The determination
of the shift and rotation between different pointings is the most
critical step among these for a weak-lensing analysis because
any potential misalignment induces a coherent distortion of ob-
ject shapes, mimicking gravitational lensing signals. The “ap-
sis” pipeline uses high signal-to-noise (S/N) astronomical ob-
jects iteratively to measure and refine the alignment through the
“match” program developed by Richmond (2002). We find that
the average uncertainties for shift and rotation are ∼0.02 pixels
and ∼0.′′2, respectively, and thus the systematics, if any, due
to the alignment errors is negligible. The Lanczos3 (windowed
sinc function) kernel was used for drizzling (Fruchter & Hook
2002) with the native 0.′′05 pixel scale of ACS/WFC.

2.2. Object Detection and Source Selection

A detection image was created for each cluster by weight
averaging the two passband images via apsis. Then, SExtractor
(Bertin & Arnouts 1996) was run in dual image mode so
that objects were identified from the detection image while
photometry was measured on an individual filter. This provides
common isophotal areas to both filters, which enables a robust
object color measurement. We filtered the detection image
with a Gaussian kernel that approximately matches the PSF
of the instrument before looking for five or more contiguous
pixels above 1.5 times the sky rms. Although our criteria
were experimentally determined to minimize the return of false
detections by the software, inevitably manual identification
of spurious detections (e.g., saturated stars, diffraction spikes,
uncleaned cosmic rays near field boundaries, H ii regions inside
nearby galaxies, etc.) is always required. We divided the 22
clusters into several groups and a few authors were assigned
to each group to carry out this manual procedure. A possible
concern is whether or not different groups might have non-
negligible biases in this false object identification, which may
propagate into cluster mass determination. To examine the
possibility of bias in the manual procedure, several clusters
were randomly selected by one author and compared to the
two false object catalogs created by this author and others.
We find that about ∼60% of false objects are shared by the
two catalogs, and the disagreement is mostly attributed to very
faint objects, whose fluxes are just above the sky background.
Because these extremely faint objects were discarded anyway
by our magnitude and shape measurement error criteria, the
resulting difference in mass estimation and two-dimensional
mass reconstruction is far below statistical errors.

We define source galaxies as objects whose i775–z850 colors
are bluer than the color of the red sequence in each cluster
while their total z850 magnitudes (MAG_AUTO) are fainter than
z850 = 24. We also require the source galaxies to have ellipticity
measurement error less than 0.25. The total exposure times for
the 22 clusters vary substantially and thus, so does the number
density of source galaxies as shown in Table 1.

2.3. Shape Measurement

Our shape measurement method is detailed in Jee et al. (2009).
Briefly, we fit a PSF-convolved elliptical Gaussian function to
source galaxies to determine their semi-major and -minor axes.
Convolution with an elliptical Gaussian is required to measure
galaxies’ ellipticity before photons reach the instrument. Be-
cause an elliptical Gaussian profile is not an unbiased represen-
tation of true galaxies, the measurement inevitably introduces a
bias. On average, the bias is toward underestimation of elliptic-
ity because a Gaussian profile is steeper than that of real objects;

more extended objects are subject to larger underestimates of
ellipticity. In future analyses, it may be worth experimenting
with more generalized functional forms and examining the ef-
fect based on simulated images. Nevertheless, we stress that
the amount of bias induced by the current shape measurement
is small and to first order was corrected here using the simu-
lation results of Jee et al. (2007a), which shows a ∼6% bias
for γ � 0.5.

We model the PSF using our library constructed from stellar
field observations (Jee et al. 2007a). In order to find the matching
PSF template, we use ∼10 high S/N stars present in each
cluster field. This matching is done for each visit, and the final
PSF model is obtained after the model for each visit is shifted,
rotated, and stacked. The mean residual ellipticity is less than
∼0.01, and this level of accuracy is sufficient for the current
cluster lensing analysis. The detailed results for each cluster
can be found in Appendix A.

Together with the PSF, CTI may be a potential source of
systematics in weak lensing. For bright stars, the trailing from
deferred charges is visually apparent. We quantify the effect
using cosmic rays and warm pixels, and find that the effect
on the ellipticity of the galaxies that we use to extract the
signal is in fact much less than the statistical noise set by
the finite number of galaxies. Thus, we confirm our previous
argument (Jee et al. 2009) that the ACS CTI effect is negligible
for cluster lensing analysis although it is a critical source of
systematics in cosmic shear studies. We present the details in
Appendix B.

3. WEAK-LENSING ANALYSIS

3.1. Mass Estimation and Two-dimensional
Mass Reconstruction

In the weak-lensing regime, the characteristic length of the
lensing signal variation is larger than the object size. Thus, the
resulting shape distortion can be linearized as follows:

A(x) = δij −
∂2

Ψ(x)

∂xi∂xj

=

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

, (1)

where A(x) is the transformation matrix x′ = Ax, which relates
a position x in source plane to a position x′ in image plane, and
Ψ is the two-dimensional lensing potential. The convergence
κ is the surface mass density in units of critical surface mass
density

Σc =
c2

4πG

D(zs)

D(zl)D(zl, zs)
, (2)

where D(zs), D(zl), and D(zl, zs) are the angular diameter
distance from the observer to the source, from the observer
to the lens, and from the lens to the source, respectively. The
convergence κ and the shears γ1(2) are related to the lensing
potential Ψ via

κ =
1

2
(ψ11 + ψ22), γ1 =

1

2
(ψ11 − ψ22),

and γ2 = ψ12 = ψ21, (3)

where the subscripts on ψi(j ) denote partial differentiation with
respect to xi(j ).

A useful quantity to estimate masses is the reduced tangential
shear defined by

gT = 〈−g1 cos 2φ − g2 sin 2φ〉 , (4)

3
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where φ is the position angle of the object with respect to the
cluster center and g is the reduced shear γ /(1−κ) (valid only in
the weak-lensing regime). This reduced tangential shear profile
informs us of how the mass density of the lens changes as
a function of radius. Of course, without any lensing signal, the
resulting shear profile should vanish with fluctuations consistent
with shot noise.

Hoekstra (2001, 2003) demonstrates that a cosmic shear
(lensing by large-scale structure, LSS) is an important limiting
factor in the accuracy of cluster masses derived from the cluster
tangential shears. Following the formalism of Hoekstra (2003),
we estimate that the cosmic shear contribution on average is
γ ∼ 0.01 for our sample. Although this is small compared to
the shot noise set by the finite number of source galaxies, we
include the effect in our final mass uncertainty.

A potential ambiguity is the choice of the cluster center when
there is disagreement between centroids determined from the
distribution of cluster galaxies, lensing mass peaks, and X-ray
emission. If we adopt a location that maximizes the amplitude
of the tangential shear or a peak in the convergence map as
the cluster center, the derived mass will be always biased high.
Fortunately, in previous high S/N weak-lensing studies, where
the number density of background galaxies is high (>120 per
square arcmin), the weak-lensing mass peaks are in good spatial
agreement with cluster galaxies. However, in many cases the
X-ray peaks are conspicuously offset, indicative of merging
activity or the collisional properties of the intracluster medium
(ICM). In this paper, we adopt the centroid defined by the cluster
galaxies as the center for the construction of the tangential
shear profile. For the clusters in our sample where the statistical
significance of the lensing signal is high, these centroids also
agree well with the mass peaks. In several cases, where the
lensing signal is weak (the cluster is not massive and/or the
image is not sufficiently deep), we occasionally observe rather
large (>20′′) offsets between mass and galaxies. The choice of
centroid will lead to an underestimate of the cluster mass if the
offsets reflect real features in the system. We do not use the inner
most data points in our mass estimation because the tangential
shears at very small radii are highly sensitive to the centroid
choice. Furthermore, both observationally and theoretically, it
is not clear how the cluster mass profile behaves near the center.

There are two popular ways of deriving the lensing mass
from tangential shear: aperture-mass densitometry (Fahlman
et al. 1994) and parameterized model fitting. Aperture-mass
densitometry is useful when one attempts to estimate the total
projected mass within some aperture radius without requiring
an assumption on the behavior of the cluster mass profile.
However, this approach is not practical for the current data
set, which in most cases provides only ∼3′ × 3′ areas smaller
than the virial radii of the clusters. Therefore, we use the second
method to derive the cluster masses. This method determines the
parameters of analytic halo models by comparing the observed
tangential shears with the expected values. Of course, a scatter
is introduced because the real cluster profile is different from
the model. Nevertheless, many studies show that this parametric
approach gives consistent results with the values obtained by the
former (e.g., Jee et al. 2005a; Hoekstra 2007).

We employ two kinds of halo models: singular isothermal
sphere (SIS) and Navarro–Frenk–White (NFW; Navarro et al.
(1997) profiles. Although the SIS profile is considered inappro-
priate at large radii (many lines of evidence suggest the mass
density drops faster than 1/r2), the resulting parameter can be
conveniently translated to the Einstein radius θE or the veloc-

ity dispersion σv of the system. We use this predicted velocity
dispersion to compare with the dynamical value. When we fit
NFW profiles, it is assumed that the cluster virial mass M200

(the total mass at the radius inside of which the mean density
is 200 times the critical density of the universe at the cluster
redshift) is tied to the concentration c via the following relation
from Duffy et al. (2008):

c = 5.71

(

M200

2 × 1012 h−1 M⊙

)−0.084

(1 + z)−0.47. (5)

Therefore, effectively, our NFW model is described by a single
parameter. The relation between projected mass density and
observed shear is simple for SIS with an Einstein radius rE:
κ = 0.5rE/r and g = κ/(1 − κ) (in the weak-lensing regime).
For NFW, the relation is rather complicated, and we refer readers
to Bartelmann (1996). We present tangential shears and fitting
results for individual clusters in Figure 1.

In principle, the two-dimensional projected mass distribution
κ can be obtained by convolving the shear γ as follows (Kaiser
& Squires 1993):

κ(x) =
1

π

∫

D∗(x − x′)γ (x′)d2x, (6)

where D(x) = −1/(x1 − ix2)2 is the convolution kernel.
However, the direct application of Equation (6) gives rises
to some practical problems. First, the ellipticity of individual
galaxies should be smoothed, and we do not know the optimal
smoothing scale beforehand. Second, the smoothed galaxy
ellipticity gives only an estimate for the reduced shear g =
γ /(1 − κ). Third, the relation g = γ /(1 − κ) is only valid in the
|γ /(1 − κ)| < 1 regime. Fourth, it is not obvious how to weight
shape measurement noise properly via Equation (6).

Certainly, a more robust two-dimensional mass reconstruc-
tion algorithm is required to account for the aforementioned
subtleties and minimize numerous artifacts. Many suggestions
are present in the literature (Bridle et al. 1998; Seitz et al. 1998),
and the consensus is that a reliable mass reconstruction should
be achieved through iterations. In addition, it is desirable to use
the ellipticity of individual galaxies rather than the smoothed
values so as to reveal small-scale, but significant, features. In
the present paper, we reconstruct two-dimensional mass maps
using the entropy-regularized, maximum likelihood code of Jee
et al. (2007a). This method of mass reconstruction accounts
for the aforementioned subtleties and is effective in revealing
low-contrast structures. We present our mass reconstructions in
Figures 2–23. Results on individual clusters are discussed in
Section 3.3.

3.2. Redshift Estimation of Source Galaxies

Because Σc scales as ∝ D(zs)/[D(zl)D(zl, zs)]
(Equation (2)), the mass density unit rises sharply as the red-
shift of the lens approaches that of the source. Thus, in the
weak-lensing analysis of high-redshift clusters, small errors in
our estimate of the source redshift distribution result in large
errors in the translation of the signal into the physical unit. For
example, a 10% systematic uncertainty in the effective source
redshift leads to 1%–2% error in mass for a z = 0.2 object (e.g.,
A1689). The same amount of uncertainty would give ∼30%
error for the mass of a z = 1.4 lens (e.g., XMM2235–2557).17

17 The exact value also depends on the depth of the image, which determines
how many distant galaxies are resolved. Here we assume ∼4 orbit integration
with HST/ACS.

4



The Astrophysical Journal, 737:59 (32pp), 2011 August 20 Jee et al.

Figure 1. Reduced tangential shears for 22 high-redshift clusters. Filled and open circles represent the tangential shear and 45◦ rotation test results, respectively.

We estimate the redshift distribution of the source population
using the publicly available Ultra Deep Field (UDF) photometric
redshift catalog (Coe et al. 2006). The ultra deep images
in six filters from F435W to F160W provide unparalleled
high-quality photometric redshift information well beyond the
limiting magnitude of the cluster images that we analyze here.
The catalog has been extensively used in our previous studies
(e.g., Jee et al. 2009), and thus we only briefly summarize the
procedure.

First, we bin our source galaxies in 0.5 mag intervals. Next,
we randomly draw the galaxies that match the selection criteria
of each bin from the UDF photo-z catalog. Finally, we combine
these simulated catalogs for all bins to create the redshift catalog
for the entire source population. Because the UDF is much
deeper than the cluster images and also because there is sample
variance, it is important to take into account the difference in
number density in this step. Consequently, we are utilizing the
magnitude–color–redshift relation measured in the UDF data,

rather than simplistically imposing the UDF redshift distribution
on our images, which would cause much greater systematics.

As noted in Jee et al. (2009), the total error in zeff due to
the sample variance, the resampling error, and the difference
among the photo-z estimation codes is δzeff ≃ 0.06. This causes
an ∼11% (∼3%) uncertainty in mass for a z ∼ 1.4 (z ∼ 0.9)
cluster. We include these errors in our final uncertainty. The
assumption that there exists a single source plane while in reality
each source galaxy is at a different redshift also creates a bias
in the interpretation of the lensing signal. We correct this bias
to first order using the equation derived by Seitz & Schneider
(1997).

3.3. Notes on Individual Clusters

We here comment on specific features in the measurement of
each cluster. All of the key numbers are summarized in Table 2.
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Figure 1. (Continued)

Figure 2. XMMXCS J2215−1738 mass map. The left panel displays the mass reconstruction, whose color represents the mass density. The mass-sheet degeneracy
is not broken here, and thus the scale is arbitrary. On the right panel, we overlay the mass contours on the pseudo-color composite created by combining the i775 and
z850 images. The green “X” symbol marks the location of the X-ray peak in the Chandra image. Spectroscopically confirmed members are encircled in red.

(A color version of this figure is available in the online journal.)

3.3.1. XMMXCS J2215−1738 (z = 1.46)

XMMXCS2215−1738 was the highest redshift cluster spec-
troscopically confirmed (Stanford et al. 2006) until the re-
cent discovery of ClG J0218.3−0510 at z = 1.62 (Papovich
et al. 2010). Assuming no significant point-source contamina-
tion in the archival XMM-Newton data, Stanford et al. (2006)
obtained a temperature of TX = 7.4+2.7

−1.8 keV with a bolomet-

ric luminosity of LX = 4.4+0.8
−0.6 × 1044 erg s−1. Hilton et al.

(2010) reported significantly lower values TX = 4.1+0.6
−0.9 keV

and LX = 2.92+0.24
−0.35 × 1044 erg s−1 based on a joint analysis

of Chandra and XMM-Newton data, which enable them to re-
move the point-source contamination from the diffuse compo-
nent. Assuming an isothermal β model with β = 0.63 and
rc = 52 kpc, the temperature TX = 4.1+0.6

−0.9 keV translates into

M200 = 2.0+0.5
−0.6 × 1014 M⊙.

We initially considered a weak-lensing study of
XMMXCS2215−1738 to be highly challenging because of the
low X-ray mass, high-redshift, and relatively shallow depth of
the F775W image, where we measure galaxy shapes. How-
ever, the cluster is clearly detected in our two-dimensional
mass reconstruction, which shows the mass centroid in good
spatial agreement with the cluster members and the X-ray
centroid (Figure 2). The weak-lensing mass of the clus-
ter is M200 = 4.3+3.0

−1.7 × 1014 M⊙, a factor of two higher
than the X-ray estimate (however, both results are marginally
consistent).

The predicted velocity dispersion 942+111
−126 km s−1 is con-

sistent with the spectroscopically measured value of 710 ±
110 km s−1 derived from 31 members within R200 (Hilton et al.
2010); interestingly, if all 44 members were used, the veloc-
ity dispersion increases to 890 ± 110 km s−1, giving a better
agreement with the lensing result.

6
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Figure 3. Same as Figure 2 but for XMMU J2205−0159.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 2 but for XMMU J1229+0151.

(A color version of this figure is available in the online journal.)

Figure 5. Same as Figure 2 but for WARPS J1415+3612.

(A color version of this figure is available in the online journal.)
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Figure 6. Same as Figure 2 but for ISCS J1432+3332.

(A color version of this figure is available in the online journal.)

Figure 7. Same as Figure 2 but for ISCS J1429+3437.

(A color version of this figure is available in the online journal.)

Figure 8. Same as Figure 2 but for ISCS J1434+3427.

(A color version of this figure is available in the online journal.)
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Figure 9. Same as Figure 2 but for ISCS J1432+3436.

(A color version of this figure is available in the online journal.)

Figure 10. Same as Figure 2 but for ISCS J1434+3519.

(A color version of this figure is available in the online journal.)

Figure 11. Same as Figure 2 but for ISCS J1438+3414.

(A color version of this figure is available in the online journal.)
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Figure 12. Same as Figure 2 but for RCS 0220−0333.

(A color version of this figure is available in the online journal.)

Figure 13. Same as Figure 2 but for RCS 0221−0321.

(A color version of this figure is available in the online journal.)

Figure 14. Same as Figure 2 but for RCS 0337−2844.

(A color version of this figure is available in the online journal.)

10



The Astrophysical Journal, 737:59 (32pp), 2011 August 20 Jee et al.

Figure 15. Same as Figure 2 but for RCS 0439−2904.

(A color version of this figure is available in the online journal.)

3.3.2. XMMU J2205−0159 (z = 1.12)

XMMU2205−0159 was discovered in the XMM-Newton
Distant Cluster Project (XDCP; Boehringer et al. 2006) survey in
the archival image of QSO B2202-0209 at z = 1.77. The mass
centroid is offset north of the brightest cluster galaxy (BCG)
(α, δ) ≃(22:05:50.7,−01:59:30) by ∼17′′ (Figure 3). We derive
a weak-lensing mass of M200 = 3.0+1.6

−1.0 × 1014 M⊙, making the
cluster among the least massive clusters in our sample. Neither a
dynamical nor an X-ray study of the cluster has been published
to date.

3.3.3. XMMU J1229+0151 (z = 0.98)

XMMU J1229+0151 was serendipitously detected in the field
targeted for the well-known quasar 3C 273. The cluster is
hot and X-ray luminous with TX = 6.4+0.7

−0.6 keV and LX =

3 × 1044 erg s−1 (Santos et al. 2009). Our lensing analysis
predicts a velocity dispersion of 867+64

−69 km s−1 and gives a

virial mass of M200 = 5.3+1.7
−1.2 × 1014 M⊙. This lensing mass

agrees nicely with the X-ray mass M200 = 5.7+1.0
−0.8 × 1014 M⊙

when an isothermal β model with β = 0.7 and rc = 250 kpc
is assumed; no measurement of the X-ray surface brightness
has been reported yet. However, the velocity dispersion 683 ±
62 km s−1 derived from 27 spectroscopic members (Santos
et al. 2009) is significantly lower than the lensing prediction
of 867+64

−69 km s−1. Our convergence map shows a strong peak
∼10′′ northeast of the X-ray peak and the cluster galaxies
(Figure 4).

3.3.4. WARPS J1415+3612 (z = 1.03)

The cluster WARPS J1415+3612 was discovered (Perlman
et al. 2002) in the first phase of the Wide Angle ROSAT Pointed
Survey (WARPS). The ICM temperature of the cluster has been
measured from the Chandra (5.59 ± 0.84 keV; Allen et al.
2008) and XMM-Newton (5.7+1.2

−0.7 keV; Maughan et al. 2006)
data analysis. The cluster has been considered relaxed because
of its symmetric X-ray emission (Maughan et al. 2006; Allen
et al. 2008). Our weak-lensing mass map of the cluster also
does not show any significant substructure, adding an additional
support to the hypothesis. Both virial masses derived from X-ray

and lensing (M200 = 4.6+1.5
−0.8 × 1014 M⊙ and 4.7+2.0

−1.4 × 1014 M⊙,
respectively) are in excellent agreement.

The ACS image of the cluster shows a strongly lensed arc at
z = 3.898. The source is a Lyα emitter and is located ∼7′′ away
from the BCG (Huang et al. 2009). When we adopt this distance
as the Einstein radius at z = 3.898, the value is consistent with
the weak-lensing prediction θE(z = 3.898) = 8′′ ± 2′′ derived
from the NFW fitting result; note also that the location of the
weak-lensing mass peak is in good agreement with that of the
BCG (Figure 5).

3.3.5. ISCS J1432+3332 (z = 1.11)

The ISCS J1432+3332 cluster was reported by Elston et al.
(2006) as one of the first spectroscopically confirmed z > 1
clusters detected through the joint use of the FLAMINGOS
Extragalactic Survey (FLAMEX; Elston et al. 2006), the NOAO
Deep Wide-Field Survey (NDWFS; Brown et al. 2003), and the
Spitzer IRAC Shallow Survey (ISCS; Eisenhardt et al. 2004)
data sets. They estimated from eight spectroscopic members
that the velocity dispersion of the cluster is 920 ± 230 km s−1.
Eisenhardt et al. (2008) reported a refined measurement of
σv = 734 km s−1 using 23 redshifts; the authors did not quote
an uncertainty and we estimate δσv ∼ 115 km s−1. The virial
mass is estimated to be M200 = 4.9+1.6

−1.2 × 1014 M⊙. The mass
contours are well traced by the cluster galaxies (Figure 6).

3.3.6. ISCS J1429+3437 (z = 1.26)

ISCS J1429+3437 was identified photometrically with the
combined use of the ISCS and NDWFS data sets (Eisenhardt
et al. 2008). From the nine spectroscopic members of
Eisenhardt et al. (2008), we calculate the velocity dispersion
to be 767 ± 295 km s−1, which agrees well with the predicted
velocity dispersion 732+70

−78 km s−1. For the virial mass, we ob-

tain M200 = 5.4+2.4
−1.6 × 1014 M⊙.

We detect two mass clumps within the ACS field of the cluster
observation (Figure 7). The western mass peak is much stronger
and spatially correlated with the cluster galaxy candidates. The
much weaker eastern clump does not have any compact galaxy
distribution. Nevertheless, the global east–west elongation of
the mass distribution seems to follow the early-type galaxies

11
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Figure 16. Same as Figure 2 but for RCS 2156−0448.

(A color version of this figure is available in the online journal.)

Figure 17. Same as Figure 2 but for RCS 1511+0903.

(A color version of this figure is available in the online journal.)

Figure 18. Same as Figure 2 but for RCS 2345−3632.

(A color version of this figure is available in the online journal.)
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Figure 19. Same as Figure 2 but for RCS 2319+0038.

(A color version of this figure is available in the online journal.)

Figure 20. Same as Figure 2 but for XLSS J0223−0436.

(A color version of this figure is available in the online journal.)

Figure 21. Same as Figure 2 but for RDCS J0849+4452.

(A color version of this figure is available in the online journal.)

13



The Astrophysical Journal, 737:59 (32pp), 2011 August 20 Jee et al.

Figure 22. Same as Figure 2 but for RDCS J0910+5422.

(A color version of this figure is available in the online journal.)

Figure 23. Same as Figure 2 but for RDCS J1252−2927.

(A color version of this figure is available in the online journal.)

in the field whose colors are consistent with that of the red
sequence at the redshift of the cluster.

3.3.7. ISCS J1434+3427 (z = 1.24)

The ISCS J1434+3427 cluster, discovered in the ISCS and
NDWFS survey, is reported to possess a pronounced filamen-
tary structure (Brodwin et al. 2006). Although our mass recon-
struction reveals a significant mass peak 10′′ east of the compact
galaxy distribution, the current i775 image is not deep enough
(∼2685 s) to study the substructure of this high-redshift cluster
in detail. Because the cluster is located near the edge of the ACS
field, we need to assume an azimuthal symmetry at large radius
to obtain a mass estimate. This may substantially bias our mea-
surement if the cluster departs significantly from the assumed
axisymmetry. Nevertheless, we note that the predicted velocity
dispersion of 770+113

−133 km s−1 from our lensing analysis is con-

sistent with the dynamical velocity dispersion 863±170 km s−1

that is derived from 11 cluster members (Meyers et al. 2011).

3.3.8. ISCS J1432+3436 (z = 1.35)

The cluster was discovered in the ISCS and NDWFS survey,
and about eight members have been spectroscopically confirmed

(Eisenhardt et al. 2008). The cluster detection is very strong in
our mass reconstruction despite both the high redshift and the
shallowness (2235 s) of the i755 image. We estimate the virial
mass to be M200 = 5.3+2.6

−1.7 × 1014 M⊙. The velocity dispersion

derived from eight members is 807 ± 340 km s−1, which agrees
well with the lensing prediction of 912+92

−102 km s−1.

3.3.9. ISCS J1434+3519 (z = 1.37)

Eisenhardt et al. (2008) report that five members have been
spectroscopically confirmed. Our two-dimensional mass recon-
struction (Figure 10) reveals a weak detection of a convergence
peak near the cluster center defined by Eisenhardt et al. (2008)
using photometric redshifts. The 15′′ offset may be attributed to
statistical noise because of the high-redshift, the low-mass, and
the insufficient depth (1920 s) of the i775 image. The virial mass
is determined to be M200 = 2.8+2.9

−1.4 × 1014 M⊙.

3.3.10. ISCS J1438+3414 (z = 1.41)

The discovery of ISCS J1438+3414 is reported by Stanford
et al. (2005), who confirmed five spectroscopic members.
Brodwin et al. (2011) quote a dynamical velocity dispersion
of 757+247

−203 km s−1 from a total of 11 cluster members, which
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Table 2

Cluster Properties

Cluster Name z σvel σ len
vel T MX

200 c200 r200 ML
200

(km s−1) (km s−1) (keV) (1014 M⊙) (Mpc) (1014 M⊙)

XMMXCS J2215−1738 1.46 720 ± 110a 942+111
−126 4.1+0.6

−0.9
1 2.0+0.5

−0.6 2.45 ± 0.11 0.90+0.17
−0.14 4.3+3.0

−1.7

XMMU J2205−0159 1.12 679+71
−79 2.72 ± 0.10 0.90+0.14

−0.12 3.0+1.6
−1.0

XMMU J1229+0151 0.98 683 ± 62b 867+64
−69 6.4+0.7

−0.6
2 5.7+1.0

−0.8 2.67 ± 0.06 1.12+0.11
−0.10 5.3+1.7

−1.2

WARPS J1415+3612 1.03 807 ± 185c 893+73
−80 5.7+1.2

−0.7
3 4.6+1.5

−0.8 2.66 ± 0.08 1.09+0.14
−0.12 4.7+2.0

−1.4

ISCS J1432+3332 1.11 734 ± 115d 834+64
−70 2.61 ± 0.06 1.06+0.11

−0.09 4.9+1.6
−1.2

ISCS J1429+3437 1.26 767 ± 295e 732+70
−78 2.51 ± 0.08 1.04+0.13

−0.12 5.4+2.4
−1.6

ISCS J1434+3427 1.24 863 ± 170e 770+113
−133 2.68 ± 0.14 0.82+0.19

−0.14 2.5+2.2
−1.1

ISCS J1432+3436 1.35 807 ± 340e 912+92
−102 2.46 ± 0.08 1.00+0.14

−0.12 5.3+2.6
−1.7

ISCS J1434+3519 1.37 812+137
−166 2.59 ± 0.15 0.81+0.21

−0.16 2.8+2.9
−1.4

ISCS J1438+3414 1.41 757+247
−208

f 833+127
−150

4.9+3.4
−1.6

4 3.2+3.9
−1.4 2.55 ± 0.13 0.82+0.18

−0.14 3.1+2.6
−1.4

RCS 0220−0333 1.03 881+68
−74 2.66 ± 0.07 1.09+0.12

−0.11 4.8+1.8
−1.3

RCS 0221−0321 1.02 710 ± 150g 699+83
−94 2.90 ± 0.13 0.80+0.16

−0.13 1.8+1.3
−0.7

RCS 0337−2844 1.1 863+100
−113 2.61 ± 0.10 1.08+0.17

−0.15
4.9+2.8

−1.7

RCS 0439−2904 0.95 1080 ± 320h 831+68
−74 1.5+1.0

−0.4
5 0.46+6.0

−1.7 2.73 ± 0.08 1.09+0.13
−0.11 4.3+1.7

−1.2

RCS 2156−0448 1.07 691+137
−172 2.86 ± 0.20 0.78+0.26

−0.18 1.8+2.5
−1.0

RCS 1511+0903 0.97 717 ± 208e 699+94
−109 2.92 ± 0.13 0.82+0.17

−0.14 1.9+1.4
−0.8

RCS 2345−3632 1.04 670 ± 190i 684+71
−79 2.81 ± 0.09 0.87+0.11

−0.10 2.4+1.1
−0.7

RCS 2319+0038 0.91 990 ± 240j 898+67
−71 6.2+0.9

−0.8
6 5.4+1.2

−1.0 2.70 ± 0.08 1.22+0.15
−0.13 5.8+2.3

−1.6

XLSS J0223−0436 1.22 799 ± 129e 1011+73
−79 3.8...

−1.9
7 2.4...

−1.5
2.46 ± 0.06 1.18+0.12

−0.11 7.4+2.5
−1.8

RDCS J0849+4452 1.26 720 ± 140k 740+41
−44 5.2 ± 1.38 3.8+1.5

−1.4 2.55 ± 0.05 0.98+0.77
−0.07 4.4+1.1

−0.9

RDCS J0910+5422 1.11 675 ± 190l 895+48
−51

6.4 ± 1.48 7.4+2.6
−2.3 2.61 ± 0.05 1.07+0.08

−0.07 5.0+1.2
−1.0

RDCS J1252−2927 1.24 747+74
−84

m 957+45
−48 7.6 ± 1.28 4.4+1.1

−1.0 2.47 ± 0.03 1.14+0.06
−0.06 6.8+1.2

−1.0

XMMU J2235−2557 1.39 802+77
−48

n 1145 ± 70 8.6+1.3
−1.2

9 6.1+1.4
−1.2 2.38 ± 0.04 1.13+0.08

−0.07 7.3+1.7
−1.4

CL J1226+3332 0.89 1143 ± 162o 1237 ± 22 10.4 ± 0.610 12.2+1.1
−1.0 2.52 ± 0.03 1.68+0.10

−0.09 13.7+2.4
−2.0

MS 1054−0321 0.83 1156 ± 82p 1150 ± 50 8.9+1.0
−0.8

11 12.8+2.2
−1.7 2.61 ± 0.03 1.59+0.11

−0.09 10.8+2.1
−1.8

CL J0152−1357 0.84 919 ± 168q 903 ± 56 6.7 ± 1.08 7.3+1.8
−1.7 2.81 ± 0.04 1.17+0.09

−0.06 4.4+0.7
−0.5

RDCS J0848+4453 1.27 700 ± 180k 762 ± 120 3.8 ± 1.98 1.1+0.9
−0.7 2.57 ± 0.05 0.96+0.09

−0.07 3.1+1.0
−0.8

References. a Hilton et al. 2010; b Santos et al. 2009; c Huang et al. 2009; d Eisenhardt et al. 2008; e Meyers et al. 2011; f Brodwin et al. 2011; g Andreon

et al. 2008; h Cain et al. 2008; i D. G. Gilbank et al. 2011, in preparation; j Gilbank et al. 2008; k Jee et al. 2006; l Mei et al. 2006; m Demarco et al. 2007;
n Rosati et al. 2009; o Holden et al. 2009; p Tran et al. 2007; q Demarco et al. 2005; 1 Hilton et al. 2010; 2 Santos et al. 2009; 3 Maughan et al. 2006;
4 Andreon et al. 2011; 5 Cain et al. 2008; 6 Hicks et al. 2008; 7 Bremer et al. 2006; 8 Ettori et al. 2009; 9 Rosati et al. 2009; 10 Maughan et al. 2007; 11 Jee

et al. 2005b.

can be converted to M200 = 2.3+2.4
−2.1 × 1014 M⊙ using the

mass–dispersion relation from Evrard et al. (2008). These values
are consistent with those from our lensing analysis, which give
833+127

−150 km s−1 and a virial mass of M200 = 3.1+2.6
−1.4 × 1014 M⊙.

Andreon et al. (2011) measured an X-ray temperature TX =
4.9+3.4

−1.6 keV from the relatively deep (∼150 ks) Chandra data of
the cluster. This temperature is consistent with the measurement
(3.3+1.9

−1.0 keV) of Brodwin et al. (2011) obtained from the same
data. Assuming β = 0.7 and rc ∼ 100 kpc, we convert
TX = 4.9+3.4

−1.6 keV to MX
200 = 3.2+3.8

−1.4 M⊙, which also agrees
well with our lensing mass. The centroid of the diffuse X-ray
emission is in good spatial agreement with that of the weak-
lensing mass.

3.3.11. RCS 0220−0333 (z = 1.03)

The clusters with a prefix RCS hereafter were mostly dis-
covered in the Red-sequence Cluster Survey-I (Gladders & Yee
2005); the exception is RCS 1511+0903, which was discovered
in the Red-sequence Cluster Survey-II (Gilbank et al. 2011).
RCS 0220−0333 is an optically rich cluster at z = 1.03. In
the ACS pseudo-color composite image, the early-type galaxies
with i775 − z850 ∼ 0.9 appear to form a north–south filamen-

tary structure. The cluster is strongly detected in lensing. The
mass centroid lies close to the cluster member with pronounced
strong-lensing features. However, the mass distribution does not
indicate the north–south elongation seen in the cluster galaxies.
We obtain a virial mass of M200 = 4.8+1.8

−1.3 × 1014 M⊙ with a

predicted velocity dispersion of 881+68
−74 km s−1.

3.3.12. RCS 0221−0321 (z = 1.02)

This optically rich galaxy cluster RCS 0221−0321 is clearly
visible in our mass reconstruction. The mass map shows a
significant mass clump aligned with the optical center (e.g.,
see the isodensity contours for red galaxies from Andreon et al.
2008). However, this cluster is found to be one of the least
massive clusters in our sample. We estimate the virial mass to
be M200 = 1.8+1.3

−0.7 ×1014 M⊙. The predicted velocity dispersion

of 699+83
−94 km s−1 agrees well with the dynamical measurement

710±150 km s−1 based on 21 spectroscopic members (Andreon
et al. 2008).

3.3.13. RCS 0337−2844 (z = 1.10)

RCS 0337−2844 is clearly visible in our two-dimensional
mass map, which shows a good mass–galaxy correlation. The
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exposure time of the i755 image of this cluster is the shortest
among the clusters studied here, which indicates that this strong
weak-lensing signal is due to a significant mass. We estimate
M200 = 4.9+2.8

−1.7 × 1014 M⊙. No spectroscopic data have been
published to date.

3.3.14. RCS 0439−2904 (z = 0.95)

Barrientos et al. (2004) reported that RCS 0439−2904 is an
optically rich cluster (∼9σ in the Ks image) at a high redshift.
Cain et al. (2008) measured the X-ray temperature of the cluster
from the 200 ks Chandra to be Tx = 1.5+1.0

−0.4 keV, which is
significantly lower than what the optical richness suggested. The
single isothermal β model gives M200 = 4.6+6.0

−1.7 × 1013 M⊙. On
the other hand, the mass–richness relation implies a much higher
mass by at least an order of magnitude. Because their velocity
histogram shows that there are multiple components, Cain
et al. (2008) interpreted this large discrepancy as indicating the
presence of two clusters along the line-of-sight direction. They
also claim that the unexpectedly high gas fraction obtained when
a single component is assumed supports the two-component
interpretation.

The line-of-sight hypothesis makes our lensing study of the
cluster interesting. If there is indeed a line-of-sight superpo-
sition of two clusters, the mass estimate from lensing should
give the sum of the two clusters as opposed to the single-
component X-ray model. Our analysis shows that the cluster
virial mass is M200 = 4.3+1.7

−1.2 × 1014 M⊙, nearly a factor of
10 higher than the X-ray prediction as was also indicated by
the mass–richness relation. Interestingly, our predicted velocity
dispersion 831+68

−74 km s−1 is consistent with the dynamical mea-

surement 1080 ± 320 km s−1 of Cain et al. (2008). The lensing
mass is consistent with the mass–richness relation if the cluster
is assumed to consist of two clusters; the new lensing mass shifts
the Model II data point of Figure 3 of Cain et al. (2008) upward
in such a way that the new point is well bracketed by the 1σ
scatter of the mass–richness relation of Blindert (2006).

3.3.15. RCS 2156−0448 (z = 1.07)

The cluster RCS 2156−0448 was reported as an optically rich
cluster with a strong-lensing arc candidate by Gladders et al.
(2003). If confirmed, the presence of this arc suggests that the
cluster is massive as indicated by its optical richness. However,
Gladders et al. (2003) commented that this candidate should be
considered the least likely among their secondary sample.

Our weak-lensing mass reconstruction reveals only a weak
convergence peak near the arc candidate. Instead, the mass map
shows a more significant mass peak ∼70′′ south of the assumed
cluster center. Our visual inspection of the ACS image shows
that on this location there seems to be also early-type galaxies
whose colors are consistent with that of the cluster red sequence.

Nevertheless, one must be reminded that the combined
(i775+z850) ACS image of the cluster is the shallowest among our
22 cluster samples, which gives the lowest number density of
background galaxies (∼50 arcmin−2). Hence, the mass–galaxy
comparison should await a future analysis with deeper images.
Our mass presented here is estimated by placing the center on
the strong-lensing candidate of Gladders et al. (2003).

3.3.16. RCS 1511+0903 (z = 0.97)

The ACS image of RCS 1511+0903 shows a compact
distribution of early-type galaxies whose colors are consistent
with the cluster redshift z = 0.97. The cluster is clearly visible in

our mass reconstruction, which reveals a strong mass peak at the
location of the cluster galaxies. Based on nine redshifts, Meyers
et al. (2011) estimate the velocity dispersion of the cluster
to be 717 ± 208 km s−1, which is consistent with our lensing
prediction of 699+94

−109 km s−1. The virial mass of the cluster

from our lensing analysis is M200 = 1.9+1.4
−0.8 × 1014 M⊙.

3.3.17. RCS 2345−3632 (z = 1.04)

RCS 2345−3632 is an optically rich cluster at z = 1.04 with
23 spectroscopically confirmed cluster galaxies. The dynamical
velocity dispersion of 670 ± 190 km s−1 is consistent with
the lensing prediction of 684+71

−79 km s−1. The two-dimensional
mass map agrees well with the cluster galaxy distribution
(Figure 18). The relatively deep ACS image allows us to
utilize ∼103 background galaxies per square arcmin, and
thus the resulting mass reconstruction should be considered
the most reliable among the eight RCS clusters presented in
this paper. We estimate that the virial mass of the cluster is
M200 = 2.4+1.1

−0.7 × 1014 M⊙.

3.3.18. RCS 2319+0038 (z = 0.91)

RCS 2319+0038 is a strong-lensing cluster showing at least
two spectacular arcs (Gladders et al. 2003). The recent ACS
images of the cluster reveal more strong-lensing features (at
least seven tangential and two radial arc candidates). Gilbank
et al. (2008) discovered that the cluster is in fact part of a
supercluster containing two other clusters, RCS 2319+0030
and RCS 2320+0033. All three clusters are well detected in
the Chandra X-ray observations with similar gas tempera-
tures ∼6 keV (Hicks et al. 2008). RCS 2319+0038 is sepa-
rated from RCS 2320+0033 and RCS 2319+0030 by ∼5′ and
∼7′, respectively, and therefore our lensing analysis based on
the ACS image covering the central 3′ × 3′ region of RCS
2319+0038 is not likely to be affected by these two other struc-
tures. Gilbank et al. (2008) reported a velocity dispersion of
990 ± 240 km s−1, which agrees well with the current lensing
prediction of 898+67

−71 km s−1. Our convergence map reveals a sin-
gle strong mass peak at the center of the strong-lensing system
without any significant substructures. Both this mass map and
the tangential shear profile suggest that the cluster is relaxed.
The virial mass derived from the X-ray measurements of Hicks
et al. (2008; TX = 6.2+0.9

−0.8 keV, rc = 100 kpc, and β = 0.65) is

M200 = 5.4+1.2
−1.0 × 1014 M⊙, again in good agreement with the

lensing result M200 = 5.8+2.3
−1.6 × 1014 M⊙.

3.3.19. XLSS 0223−0436 (z = 1.22)

XLSS 0223−0436 was discovered in the XMM LSS survey
(Pierre et al. 2004; Andreon et al. 2005), and Bremer et al. (2006)
presented detailed analysis of the X-ray and optical/near-IR data
of the cluster. They estimated an X-ray temperature of 3.8 keV
with a 1σ lower limit of 1.9 keV and an unconstrained upper
limit. This X-ray temperature 3.8 keV is somewhat lower than
what one predicts from the dynamical velocity dispersion 799±
129 km s−1 (based on 24 redshfits). Because Bremer et al. (2006)
report that the existing XMM-Newton data do not constrain
the upper limit of their temperature, this cluster is excluded
in our investigation of the lensing-mass–temperature relation.
Our lensing analysis predicts σv = 1011+73

−79 km s−1, which is
even higher than the dynamical measurement. We estimate that
the virial mass of the cluster is M200 = 7.4+2.5

−1.8 × 1014 M⊙.
Bremer et al. (2006) reported that the optical image of the

cluster shows a compact distribution of >12 galaxies within
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a 125 kpc radius centered on the X-ray peak. The location of
our weak-lensing mass peak agrees well with the X-ray and the
optical centers.

3.3.20. RDCS J0849+4452 (z = 1.26)

RDCS J0849+4452 was discovered in the ROSAT Deep
Cluster Survey (RDCS; Rosati et al. 1998), and followup near-
IR imaging showed an excess of red (1.8 < J–K < 2.1)
galaxies around the peak of the X-ray emission. Cluster galaxies
were spectroscopically confirmed using the Keck telescope
(Rosati et al. 1999). Stanford et al. (2001) measured an X-
ray temperature of Tx = 5.8+2.8

−1.7 keV from the Chandra data
analysis; based on newer calibration data, Ettori et al. (2009)
reported Tx = 5.2 ± 1.3 keV. The cluster was one of the
ACS Guaranteed Time Observation (GTO) high-redshift cluster
targets, and the color–magnitude relation and the weak-lensing
analysis have been presented by Mei et al. (2006) and Jee
et al. (2006), respectively. Jee et al. (2006) quoted a projected
mass of Mproj = (2.1 ± 0.7) × 1014 M⊙ within a 0.5 Mpc
aperture radius, which is consistent with the projected X-ray
mass ∼2.3×1014 M⊙, which was obtained from their re-analysis
of the Chandra data. In the present paper, we perform a weak-
lensing analysis using a slightly deeper set of the ACS images,
the result of stacking both the GTO data (Prop. ID 9919) and the
high-z supernova search data (Prop. ID 10496). The new mass
is in good agreement with the Jee et al. (2006) result; in the
present paper we quote a virial mass M200 = 4.4+1.1

−0.9 × 1014 M⊙

(r200 = 0.98) rather than a projected mass. The cluster shows a
strong-lensing features around the BCG. The two-dimensional
mass map (Figure 21) reveals two significant mass clumps. The
stronger one coincides with the centers of the X-ray emission
and the optical center while the weaker seems to be associated
with a foreground group. Both clumps were also shown in the
mass reconstruction of Jee et al. (2006).

3.3.21. RDCS J0910+5422 (z = 1.11)

Discovered in the RDCS, the cluster was confirmed with
near-IR and spectroscopic observations by Stanford et al.
(2002). Ettori et al. (2009) measured an X-ray temperature
of 6.4 ± 1.4 keV from 200 ks Chandra data, slightly lower
than the measurement (7.2+2.2

−1.4 keV) by Stanford et al. (2002).
Combining 6.4 ± 1.4 keV with rc = 147 kpc and β = 0.843,
we obtain M200 = 7.7+3.2

−2.2 × 1014 M⊙ assuming an isothermal
β profile. Our weak-lensing analysis yields a cluster mass
M200 = 5.0+1.2

−1.0 × 1014 M⊙ (r200 = 1.07 Mpc), slightly lower
than, but statistically consistent with, this X-ray result. The
velocity dispersion estimated from 25 redshifts by Mei et al.
(2006) is 675 ± 190 km s−1, lower than our lensing prediction
of 895+48

−51 km s−1 and the X-ray mass. Our mass reconstruction
reveals two significant peaks. The stronger one is in good
spatial agreement with the optical and X-ray centers whereas no
apparent red sequence is found at the location of the secondary
peak.

3.3.22. RDCS J1252−2927 (z = 1.24)

RDCS J1252−2927 was confirmed as a cluster at z = 1.24
based on an extensive spectroscopic campaign using the Very
Large Telescope (Lidman et al. 2004). Rosati et al. (2004)
presented the first X-ray analysis of the cluster based on both
deep Chandra and XMM-Newton observations, which gives an
X-ray temperature of TX = 6.0+0.7

−0.5 keV. A revised temperature
of TX = 6.5 ± 0.5 keV is reported in Lombardi et al. (2005)

after the application of the new calibration of the Chandra
instrument. The most recent analysis by Ettori et al. (2009)
gives TX = 7.6 ± 1.2 keV.

Assuming the structural parameters rc = 79 kpc and β =
0.53, we translate the temperature Tx = 7.6 ± 1.2 keV into a
virial mass M200 = (4.4±1.0)×1014 M⊙ or a projected mass at
r = 1 Mpc of Mproj = (7.1 ± 1.1) × 1014 M⊙. Using ACS data,
Lombardi et al. (2005) quote a projected weak-lensing mass of
M(<1Mpc) = (8.0 ± 1.3) × 1014 M⊙, which is higher than the
X-ray result by ∼1σ . Our lensing analysis based on deeper ACS
images gives a virial mass of M200 = 6.8+1.2

−1.0 × 1014 M⊙ or a

projected mass of M(<1 Mpc) = (8.4±1.2)×1014 M⊙, which is
consistent with the result of Lombardi et al. (2005). The current
lensing analysis predicts σv = 957+45

−48 km s−1, higher than the

dynamical measurement σv = 747+74
−84 km s−1 that Demarco

et al. (2007) obtained from 38 redshifts. Lombardi et al. (2005)
discussed the possibility of a systematic overestimation of
the mass in lensing because of a line-of-sight contamination.
Demarco et al. (2007) reported that there is a possible group
centered at z = 0.74 composed of 33 members in the range
0.70 < z < 0.79. The projected distribution, however, is not
compact, but is mostly scattered across the field. In addition, the
deep (∼190 ks) Chandra data do not hint at the presence of any
significant intervening structure.

Our mass reconstruction reveals three significant mass peaks.
The strongest one coincides with the optical and the X-ray
centers. The other two weaker clumps do not correlate well
with the red sequence of the cluster nor the group at z = 0.74.
We note that these two mass clumps are also clearly seen in
Figure 9 of Lombardi et al. (2005).

4. COMPARISON WITH OTHER CLUSTER PROPERTIES

The weak-lensing masses presented in the present work are
used to study mass versus observable relations in the high-
redshift universe. A comparable study but for a lower redshift
sample was carried out by Hoekstra (2007) for 20 X-ray
luminous clusters. Our study enables us to examine if the mass
versus mass-observable relation holds across a wide range of
redshifts.

As many clusters in our sample are the results of rela-
tively recent discoveries, a large fraction of them still lack
information on their velocity dispersion and X-ray proper-
ties. In subsequent analysis, we enlarge the current sample by
adding five more high-redshift clusters in our previous lens-
ing studies: XMMU J2235.3−2557 z = 1.4 (Jee et al. 2009),
CL J1226+3332 z = 0.89 (Jee & Tyson 2009), CL J0152−1357
z = 0.84 (Jee et al. 2005a), MS 1054−0321 z = 0.83 (Jee et al.
2005b), and RX J0848+4453 z = 1.27 (Jee et al. 2006). We
refer readers to the individual papers for detailed information
on each cluster.

In order to avoid any potential scatter introduced by varia-
tions in the mass determination method, we re-calculated the
NFW parameters for these additional clusters using the same
mass–concentration relation employed in the present paper.

4.1. Dynamical Velocity Dispersion

Table 2 lists the dynamical velocity dispersions and the pre-
dicted values from the lensing analysis for the combined sample.
There are a total of 23 clusters whose velocity dispersions are
available either in the literature or through our collaborations
(Meyers et al. 2011; D. G. Gilbank et al. 2011, in preparation).
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Figure 24. Dynamical velocity dispersion vs. lensing prediction. We use filled
circles to represent the results for the clusters studied here. Open circles show
the results for the high-z clusters in our previous publications. The solid line
represents the line of equality The linear fit to the result is shown with the dotted
line while the 1σ range of the slope is depicted by the gray region.

Figure 24 shows the comparison of the lensing prediction
from the SIS fit with the dynamical measurement for these
23 clusters. The filled and open circles represent the clusters
analyzed in the present paper and in our previous studies,
respectively. The dotted line is a fit to the data, whose slope
α = 1.12 ± 0.31 and intercept b = 28 ± 260 km s−1 are
consistent with the line of equality (solid); the shadow represents
the 1σ range of the slope. Individual data points have rather
large scatters around these lines mostly due to their large
statistical (e.g., small number of known spectroscopic members
and source galaxies) and systematic (e.g., cluster mass profile
being different from SIS) uncertainties.

4.2. X-Ray Properties

Scaling relations between X-ray properties and lensing
masses not only provide invaluable insight into the physical
mechanism of cluster formation, but also help us to calibrate
mass estimates based on X-ray data. For a virialized cluster,
we expect the mass to scale with the gas temperature via the
power-law relation M ∝ T 3/2 (Kaiser 1986). In this paper, we
use the following specific form to fit the data:

E(z)M∆ = M5

(

T

5 keV

)α

, (7)

where E(z) is the redshift-dependent Hubble parameter

E(z) =
H (z)

H0

=
√

ΩM (1 + z)3 + ΩΛ. (8)

In Equation (7), the mass M∆ is usually defined as the total
mass within the radius, at which the mean density becomes
∆ times the critical density. We quote the results for M2500

for an easy comparison with previous studies. In our com-
bined sample, 14 clusters have published X-ray temperatures
(Table 2) spanning the 1.7 keV < T < 10.4 keV range with

Figure 25. X-ray temperature vs. lensing mass. As in Figure 24, filled and open
circles represent the current clusters studied here and the five clusters in our
previous publications. The slope of the power law α = 1.54±0.23 (M ∝ T α) is
consistent with the theoretical prediction 3/2 and also previous results obtained
from low-redshift samples. Note that the Hoekstra (2007) relation shown here is
the revised result after we applied the 10% reduction in mass as explained
in Mahdavi et al. (2008). The greatest outlier from the M–TX relation is
RCS 0439−2904 (red circle), which perhaps is a line-of-sight superposition
of multiple components (Cain et al. 2008) boosting the weak-lensing mass
measurement without significantly affecting temperature measurement.

(A color version of this figure is available in the online journal.)

reasonable constraints on their uncertainties. For these clus-
ters, we present the mass–temperature relation in Figure 25.
The thick red line shows the best-fit power-law relation with
α = 1.54 ± 0.23 and M5 = (9.13 ± 0.85) × 1013 h−1 M⊙. The
cluster RCS 0439−2904 (marked with red circle) is a signifi-
cant outlier from this relation and the fit shown here is obtained
without including this cluster. The exclusion of this cluster in
our estimation of the M–T relation is justified because there is a
strong indication that RCS 0439−2904 might be a line-of-sight
superposition of multiple clusters (Section 3.3). However, we
stress that adding RCS 0439−2904 does not change our results
(reducing the slope to 1.48 ± 0.23).

Allen et al. (2001) studied six relatively relaxed clusters at z �
0.46 observed with Chandra and obtained the mass–temperature
relation α = 1.51±0.27 and M5 = (1.32±0.13)×1014 h−1 M⊙.
Arnaud et al. (2005) used six nearby (z � 0.15) T > 3.5 keV
clusters observed with XMM-Newton and measured the slope
α = 1.51 ± 0.11 and the normalization M5 = (1.25 ±
0.04) × 1014 h−1 M⊙, which are consistent with the results
of Allen et al. (2001). A larger sample from Chandra has
been studied by Vikhlinin et al. (2006), who analyzed 13 low-
redshift clusters in the temperature range 0.7–9 keV. They also
agreed that the observed scaling relation is in good accordance
with the theoretical prediction, albeit with slightly higher slope
1.64 ± 0.06 than previous X-ray results. Their normalization
M5 = (1.25 ± 0.05) × 1014h−1 M⊙ is in good agreement with
previous X-ray results.

Because X-ray studies derive cluster masses from temperature
with hydrostatic equilibrium assumption, these results showing
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that the correlation is tight and the power-law slope of the
M–TX relation is close to the theoretical prediction 3/2 may
not be a direct proof for the cluster self-similarity. It is critical to
investigate if the relation still holds when the masses are given
by an independent estimator.

The weak-lensing mass versus X-ray temperature relation is
investigated by Hoekstra (2007), who derived α = 1.34+0.30

−0.28

and M5 = (1.4 ± 0.2) × 1014 h−1 M⊙ from the 17 clusters
at 0.17 � z � 0.54, which are in good agreements with
the values from X-ray studies. Mahdavi et al. (2008) updated
the redshift distribution used by Hoekstra (2007) and found
that the new n(z) from the photometric redshift catalog of
Canada–France–Hawaii Telescope Legacy Survey derived by
Ilbert et al. (2006) gives on average ∼10% smaller masses.
We show this revised result in Figure 25. We further note that
Hoekstra (2007) used the ASCA temperatures that do not correct
for cool cores. The absence of this cool–core correction can bias
the temperatures low.

We verified that the above M–TX relation is not sensitive
to a mass–concentration relation. When we recompute our
M2500 using the mass–concentration relation of Bullock et al.
(2001), the power-law slope α virtually remains the same and
the normalization (M5) decreases ∼3% only. The X-ray and
Hoekstra (2007) results were obtained without any assumption
on mass–concentration relation. Nevertheless, we tested if
the result of Hoekstra (2007) changes when the masses are
derived from NFW profile fitting with the Duffy et al. (2008)
mass–concentration relation as is done in this paper. Again,
we found that neither the normalization nor the slope of the
M–TX relation of Hoekstra (2007) changes because of this mass
determination method.

It is easy to see in Figure 25 that there is a 20%–30%
discrepancy in normalization between our result and previous
results. The discrepancy may imply that the normalization
decreases with redshift or our weak-lensing masses are biased
low. One cause for possible weak-lensing bias is the redshift
estimation bias, similar to the case in Hoekstra (2007). We
estimate that the sample variance of the UDF may be responsible
for the 5%–12% shift in mass depending on the cluster redshift.
However, although we cannot exclude this possibility, this would
aggravate the already problematic existence of the most massive
clusters in the high-z universe (see Section 5 for details).
Therefore, it seems more plausible that there is some evolution
in the normalization of the mass–temperature relation to the
highest redshifts.

Finally, we compare the masses derived from X-rays and
lensing analyses. The cluster masses at r200 obtained from the
X-ray results are listed in Table 2. We use an isothermal β
assumption to derive these values in order to take advantage of
the published parameters in the literature. For the clusters that
do not have published measurements of their X-ray surface
brightness profile (because the S/N of the existing data do
not constrain the shape of the X-ray profile well) we assume
β = 0.7. Figure 26 shows the result for 14 clusters in our
combined sample. The agreement between the lensing and
X-ray estimates is good except for RCS0439−2904, which,
as mentioned already, might be a line-of-sight superposition
of multiple components (Cain et al. 2008). It is important to
remember that an SIS profile is assumed for the derivation
of M200 from X-ray data. Therefore, it is possible that this
excellent agreement might be a coincidence to some extent and
a systematic difference might appear if masses are evaluated at
different radii.

Figure 26. Virial mass comparison between X-ray and weak-lensing results.
Not surprisingly, the trends are similar to that of the mass–temperature relation
shown in Figure 25. The cluster RCS0439−2904 (red circle) again is the
greatest departure from the line of equality. Filled and open circles represent the
current clusters studied here and the five clusters in our previous publications,
respectively.

(A color version of this figure is available in the online journal.)

5. ABUNDANCE OF THE MOST MASSIVE CLUSTERS
AT HIGH REDSHIFT

The abundance of the most massive clusters at high redshift is
extremely sensitive to cosmological parameters. In the current
era when we can estimate the cosmological parameters to a
high precision (mainly from the cosmic microwave background
(e.g., Komatsu et al. 2011) and Type-Ia supernova studies (e.g.,
Amanullah et al. 2010)), discovery of even a single massive
cluster can challenge the current ΛCDM model (Mortonson
et al. 2011).

In Jee et al. (2009), we presented a weak-lensing analysis
of XMM J2235−2557 and found that the mass of the cluster is
surprisingly high. With the cosmological parameters fixed at the
current best-fit values, the theoretical probability of finding such
a massive cluster in the survey volume is only �1%. The exact
value for the probability depends on the adopted mass function
and cosmological parameters. Nevertheless, independent esti-
mates (e.g., Jimenez & Verde 2009; Sartoris et al. 2010; Holz &
Perlmutter 2010) agree that the discovery provides significant
tension with the current ΛCDM cosmology. In this section, we
extend the study of Jee et al. (2009) to the most massive clusters
in our sample with a new mass function, revised survey areas,
and marginalization over the uncertainties of cluster masses and
cosmological parameters.

5.1. Mass Function

The mass function is often given in the following form:

dn

d ln M
=

ρm,0

M

∣

∣

∣

∣

d ln σ (M, z)

d ln M

∣

∣

∣

∣

f, (9)

where σ is the rms variation of the density field when smoothed
on scale M. ρm,0 is the present matter density. The function f
determines the shape of the mass function.
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Jenkins et al. (2001) proposed a redshift-independent form
f = f (σ ), which makes the above mass function agree
with their numerical simulation results with high precision.
Tinker et al. (2008) improve the agreement by considering the
redshift-dependence of f = f (σ, z), which is expressed as

f (σ, z) = A

[

(a

b

)−a

+ 1

]

e−c/σ 2

, (10)

where A = 0.186(1 + z)−0.14, a = 1.47(1 + z)−0.06, b =
2.57(1 + z)−0.011, and c = 1.19 when the mass is defined as
the total mass at the radius, inside of which the mean density is
200 times the mean density of the universe at the cluster redshift.
We refer to it as M200 m when necessary to distinguish it from
M200, which is more commonly used to refer to the mass at the
radius, where the mean density becomes 200 times the critical
density. The deviation of the universality of the mass function
by Jenkins et al. (2001) from the numerical simulation results is
20%–50% (Tinker et al. 2008); Bhattacharya et al. (2011) argue
that the difference between different fitting formulae is probably
larger than the scatter seen in the largest simulations.

5.2. Cluster Survey Area

The cluster survey area that one chooses to adopt to eval-
uate the cosmological significance for discovery of unusu-
ally massive clusters is somewhat controversial. For example,
Mortonson et al. (2011) argue that ∼300 deg2 should be used
for the search area of XMM2235−2557 at z = 1.4 instead of
the pilot survey area of ∼11 deg2 (Jee et al. 2009). The argu-
ment for this ∼300 deg2 area is based on the study of Hoyle
et al. (2011), who assumed ∼168 deg2 for XCS, ∼64 deg2 for
XMM-LSS, ∼11 deg2 for XDCP, ∼17 deg2 for WARPS, and
∼33 deg2 for RDCS. However, the different XMM-Newton-
based surveys overlap significantly. In addition, because the
flux limit that enables a secure cluster detection at z > 1 is
∼10−14 erg cm−2 s−1, the effective search area must be reduced
significantly. For example, the XDCS survey has continued since
the end of the 11 deg2 pilot survey and now reaches ∼50 deg2 (R.
Fassbender 2011, in preparation) for a flux limit of
∼10−14 erg cm−2 s−1. The RDCS survey covers a geometrical
area of 50 deg2 only at relatively high fluxes. However, the area
suitable for z > 1 cluster detection is ∼5 deg2, corresponding to
fluxes below ∼3×10−14 erg cm−1 s−1 (Rosati et al. 1998). Con-
sidering the argument listed above, the combined survey area
for the X-ray-selected high-z clusters should be ∼100 deg2.

5.3. Abundance Estimation and Eddington Bias

In the full sky survey, the number of clusters with mass and
redshift greater than Mmin and zmin, respectively, is given by

N (M, z) =

∫ zmax

zmin

dV (z)

dz
dz

∫ Mmax

Mmin

dn

dM
dM, (11)

where dV/dz is the volume element and dn/dM is the mass
function. For massive high-redshift clusters, the result is sensi-
tive to the mass function dn/dM near zmin and Mmin.

We compute the probability of finding each cluster by
marginalizing over the measurement errors, assuming a log-
normal distribution for P (M). This is different from the ap-
proach of Jee et al. (2009), where we simply used a threshold
mass Mthr to evaluate the integral (Equation (11)). Nevertheless,
we emphasize that the new method yields values very close to

those obtained from the previous method when the mass uncer-
tainty is relatively small (�20%). For example, marginalizing
over the measurement error gives an abundance of ∼2×10−3 for
XMM J2235−2557 in the original 11 deg2 XDCP survey, which
is in good agreement with the previous value of ∼5 × 10−3. As
we use a fixed value of zmax, the resulting abundance is slightly
conservative because in principle the maximum redshift should
decrease at the low end of P (M); remember that at the high end
of P (M), the steep mass function cancels the effect of increased
zmax. For the conversion from expected number to probability
we assume Poissonian distribution. That is, if the expected num-
ber is N within a particular survey, the discovery probability is
simply P = 1 − e−N .

Mortonson et al. (2011) noted that an Eddington bias (Ed-
dington 1913) is an important factor in the discussion of the
cosmological significance using most massive clusters. Edding-
ton bias is the combined effect of a steep mass function and mea-
surement uncertainty. For example, consider the weak-lensing
mass estimate of XMM2235 of M200 = (7.3 ± 1.3) × 1014 M⊙.
Because the slope of the mass function near the cluster mass is
steep, there should be more �7.3 × 1014 M⊙ objects scattering
up than �7.3 × 1014 M⊙ objects scattering down. As a matter
of course, this does not mean that XMM2235’s mass should
be quoted with a lower mass (for individual clusters the scat-
ter is symmetric). However, when we discuss the existence of
the cluster in probabilistic terms, this additional chance of bias
should be considered from a Bayesian point of view.

We adopt the convenient Mortonson et al. (2011) prescrip-
tion, which is to replace the observed mass with the fol-
lowing reduced mass M ′ in the estimation of the abundance:
M ′ = exp(1/2γ σln M )M , where γ is the local power-law slope
(dn/d ln M ∼ Mγ ) and σln M is the 1σ uncertainty of ln M
(log-normal distribution is assumed for mass errors).

5.4. Probability of Discovery for Most Massive Clusters

In Figure 27 and Table 3, we show the discovery probability
of all clusters (i.e., similarly massive clusters) studied in this
paper. We compute the probabilities after marginalizing over
the Wilkinson Microwave Anisotropy Probe 7 year (WMAP7)
Monte Carlo Markov Chain data.18 The probabilities estimated
within the parent survey may lead to a somewhat aggressive
interpretation for some clusters. For example, most of the RDCS
clusters have significantly low probabilities mainly due to the
small (∼5 deg2) survey area. However, most non-X-ray-selected
clusters (ISCS and RCS) have discovery probability equal or
close to unity even within their parent surveys.

As mentioned in Section 5.2, we believe that the survey
area of 100 deg2 is still a conservative choice for most of the
clusters shown here (the exceptions are MS1054−0321 and CL
J0152−1357, which were discovered in the EMSS ∼735 deg2

survey). With this survey area, there remain four clusters whose
discoveries are still unusual given our current understanding of
cosmological parameters (the names of these clusters are shown
in Figure 27). The cluster with the lowest probability (∼1%)
is the z ∼ 0.9 cluster CLJ1226+3332, whose weak-lensing
mass and X-ray temperature are M200 m ∼ 1.6 × 1015 M⊙ and
TX ∼ 10 keV, respectively. Because the cluster was discovered
in a 72 deg2 survey (WARPS), using 100 deg2 does not increase
the probability significantly. In addition, XMM-Newton archival
search programs look for regions where no known X-ray

18 Available at http://lambda.gsfc.nasa.gov/product/map/current/params/
lcdm_sz_lens_wmap7.cfm.
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Figure 27. Discovery probability of clusters. After applying Eddington bias
to the lensing masses, we marginalize over the uncertainties of the WMAP7
cosmological parameters in order to estimate the discovery probability.
MS 1054−0321 and CL J0152−1357 were discovered in the Einstein Medium
Sensitivity Survey (EMSS), which covered a total of 778 deg2 (Gioia et al. 1990).
We do not recompute the probability for these two clusters with 100 deg2.

(A color version of this figure is available in the online journal.)

Table 3

Discovery Probability of Galaxy Clusters

Cluster Name Within Parent Survey 100 deg2

XMMXCS J2215−1738 0.96 1

XMMU J2205−0159 1 1

XMMU J1229+0151 0.61 0.81

WARPS J1415+3612 0.65 0.96

ISCS J1432+3332 0.14 0.77

ISCS J1429+3437 0.15 0.79

ISCS J1434+3427 1 1

ISCS J1432+3436 0.11 0.70

ISCS J1434+3519 1 1

ISCS J1438+3414 0.92 1

RCS 0220−0333 0.74 0.91

RCS 0221−0321 1 1

RCS 0337−2844 0.84 1

RCS 0439−2904 0.95 1

RCS 2156−0448 1 1

RCS 1511+0903 1 1

RCS 2345−3632 1 1

RCS 2319+0038 0.83 0.93

XLSS J0223−0436 0.01 0.18

RDCS J0849+4452 0.03 0.60

RDCS J0910+5422 0.06 0.65

RDCS J1252−2927 0.002 0.052

XMMU J2235−2557 0.013 0.024

CL J1226+3332 0.006 0.01

MS 1054−0321 0.35 . . .a

CL J0152−1357 1 . . .a

RDCS J0848+4453 0.08 0.88

Note. a MS 1054−0321 and CL J0152−1357 were discovered in the Einstein

Medium Sensitivity Survey (EMSS), which covered a total of 778 deg2 (Gioia

et al. 1990).

luminous clusters exist, and thus the search volume in the
XMM-Newton archival survey excludes the z � 1 volume by
observer’s selection. This makes our probability estimation for
CLJ1226+3332 even more conservative. The second lowest
probability is found with XMM2235−2557 at z = 1.4. The
probability of ∼3% is much higher (after the area and Eddington
bias correction) than our previous value of ∼0.5% within the
11 deg2 pilot XDCP survey, but still gives ∼2σ tension with the
predicted number of clusters from ΛCDM. RDCS1252−2927
at z = 1.24 is ranked as third in rarity, giving P ∼ 6%, which
is followed by XLSS0223−0436 at z = 1.22 (P ∼ 18%).

Combining discovery probabilities of all our clusters is some-
what tricky. Because of Poissonian fluctuation, the discovery
probability is always lower than the estimated abundance (i.e.,
P = 1 − e−N ). For example, if the expected number of a given
cluster is N = 1 within 100 deg2 survey, the probability is
∼0.63. Obviously, simply multiplying probabilities of all clus-
ters potentially leads to an unreasonably low final value if there
are many slightly less-than-one-probability clusters. Neverthe-
less, if we include only rare clusters (P ≪ 1), multiplying
individual probabilities provides a useful measure on how much
the existence of these multiple clusters give rise to tension with
the current cosmological parameters.

One set of cosmological parameters that increase the pre-
dicted abundance of one massive cluster can boost another sim-
ilarly massive cluster’s abundance. Therefore, multiplication of
probabilities must be done separately for each chain, and the
final probability should be obtained after properly taking into
account each chain’s weight. We find that the final combined
probability obtained in this way is ∼0.03%.

5.5. Exclusion Curve Test

Mortonson et al. (2011) presented fitting formulae, which
provide an exclusion mass as a function of redshift for given
sample and parameter variance confidence limits (CLs). Even
a single cluster equal to or above the exclusion mass rules out
both ΛCDM and quintessence.

In Figure 28, we compare our clusters to the exclusion curves
of Mortonson et al. (2011). Although we believe that the proper
choice for the sky area is 100 deg2 or less, we also plot the result
for the 300 deg2 assumption, which was adopted in Mortonson
et al. (2011). For simplicity, we only consider the case where
the sample variance CL is equal to the parameter variance CL,
which is referred to as joint CL in Mortonson et al. (2011).

The central mass of the cluster CL J1226+3332 after the
Eddington bias correction lies above the joint CL 95% exclu-
sion curve when we adopt 100 deg2 for the survey area. All the
masses of the four clusters shown here are approximately on or
above the joint CL 80% exclusion curves. When we consider
300 deg2 for the search area instead, we note that the two clus-
ters CLJ1226+3332 and XMM J2235−2557 are above the 80%
exclusion curves. We clarify here that Mortonson et al. (2011)
used the mass of XMM J2235−2557 reported by Stott et al.
(2011), whose value is similar to our weak-lensing mass, but
has significantly larger uncertainty (∼40%); Stott et al. (2011)
derived the cluster mass from their X-ray scaling relation. This
large uncertainty leads to ∼40% Eddington bias, and Mortonson
et al. (2011) concluded that the resulting mass of the cluster pro-
vides only a negligible tension with ΛCDM when they assume
300 deg2 for the sky area. On the other hand, our mass uncer-
tainty is ∼18%, and the corresponding Eddington bias is ∼12%,
which makes the corrected mass still close to the ∼85% exclu-
sion curve for Mortonson et al. (2011)’s 300 deg2 assumed area.
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Figure 28. Exclusion curves. Any cluster’s mass above the given curve excludes
the ΛCDM with the joint CL specified (Mortonson et al. 2011). For example, the
central value (Eddington-bias corrected) of CL J1226+3332 rules out �95% of

currently allowed ΛCDM models at the �95% confidence level for the 100 deg2

area.

(A color version of this figure is available in the online journal.)

The above exclusion curve test provides weaker constraints
when one is using more than a single cluster to examine their
cosmological significance because the tool adopts the lowest
redshift for the sample in the estimation of the cluster abundance
(Mortonson et al. 2011). Therefore, we do not attempt to
estimate the tension by combining the four most massive
clusters.

5.6. Interpretation of Overabundance of Massive Clusters at
High Redshift

Assuming the current well-accepted ΛCDM cosmology, we
have demonstrated above that the discovery of the most massive
clusters in our sample are rare events. Among the most popular
interpretation would be that the primordial density fluctuation is
non-Gaussian. For example, Jimenez & Verde (2009) claim that
the local fNL should be in the range of 150–260 to accommodate
XMMU2235−2557 within the pilot 11 deg2 survey. We suspect
that their estimate of fNL would decrease somewhat when both
the Eddington bias and revised area of 50–100 deg2 are taken
into account. A tighter constraint is possible if one utilizes the
weak-lensing masses of the four most massive clusters studied
here. A similar study is performed by Hoyle et al. (2011) from
the investigation of the 14 high-redshift cluster masses reported
in the literature, giving a significantly large fNL > 375 (after
marginalization over WMAP5 parameters).

One crucial test that however should accompany these non-
Gaussianity studies is the investigation of the mass function at
the high mass end. The existing limited-volume simulations do
not constrain the number density of extremely massive clus-
ters accurately, and the commonly used fitting functions are
simply extrapolated results in this regime. Another potentially
important contribution from numerical simulation is the pre-
dicted mass function specific for a given survey, which takes
into account the various aspects of selection limits and projec-
tion effects.

The projection effect is always a concern in the cosmolog-
ical interpretation of extremely massive clusters. Certainly, a
superposition of two moderately massive clusters or a long fil-
ament viewed along the line of sight can be identified with an
extreme object. The former case is easily detected by a redshift
histogram if the field is spectroscopically surveyed. Initially,
RDCS1252−2927 at z = 1.24 was such a candidate because
the redshift catalog showed three possible foreground groups
at z = 0.47, 0.68, and 0.74 (Lombardi et al. 2005). However,
the spatial distributions of these groups are not compact, and
they appear to be just loose galaxy groups commonly found in
any random field. The latter case (a filament viewed along the
line of sight) is very difficult to prove (or disprove) directly.
Nevertheless, there are a few circumstantial lines of evidence,
which help us to infer if a system possesses extreme triaxiality.
Comparing X-ray temperature with weak-lensing mass is useful
because a severe triaxiality will give rise to much higher weak-
lensing mass than what the temperature predicts. In addition,
a line-of-sight elongation inflates velocity dispersion, and the
result will be significantly larger than what the lensing predicts.
XLSS0223−0436 is potentially such an object because our lens-
ing mass of M200 = 7.4+2.5

−1.8 ×1014 M⊙ is much larger than what
the X-ray temperature of ∼3.8 keV (Bremer et al. 2006) sug-
gests. However, the X-ray photon statistics are poor, and Bremer
et al. (2006) could not determine an upper limit of the X-ray
temperature. Deeper Chandra observations would be necessary
to robustly examine this large (a factor of 2–3) discrepancy.
We note that the existing data for CLJ1226+3332 and XMM
J2235−2557, the two clusters with the largest tension with
ΛCDM in our sample, do not suggest the possibility that weak-
lensing masses are significantly boosted by any projection effect.

6. SUMMARY AND CONCLUSIONS

We have presented a weak-lensing analysis of 22 high-redshift
(0.91 < z < 1.46) clusters using HST/ACS images. Most
clusters in the sample show a significant lensing signal and
are well detected in our two-dimensional mass reconstruction.
We complement our sample with five high-redshift clusters that
were studied in the past in order to compare lensing results
with X-ray and dynamical measurements over a large range of
masses and to discuss the most massive clusters in this combined
sample in the context of cosmology. Our results are summarized
as follows.

1. The dynamical velocity dispersions are consistent with the
values estimated by lensing analysis.

2. The power-law slope of the lensing-mass–temperature re-
lation is in good agreement with the theoretical prediction,
which is also supported by previous investigations carried
out with X-ray data alone or with both X-ray and lensing
data.

3. We see evidence of an evolving normalization constant in
the M–TX relation.

4. The masses derived from X-ray and lensing measurements
are in good agreement.

5. The existence of the most massive clusters in our sample
gives rise to tension with the current ΛCDM standard
structure formation paradigm.

The first conclusion is consistent with the findings of Hoekstra
(2007) who studied low-redshift clusters. Our result demon-
strates that the relation can be extended to this high-redshift
regime, albeit with slightly increased scatter. This larger scatter
could be intrinsic for high-redshift clusters, which are likely to

22



The Astrophysical Journal, 737:59 (32pp), 2011 August 20 Jee et al.

possess more merging substructures than low-redshift systems.
However, one must remember that most clusters in our sample
do not yet have a sufficient number of spectroscopic members to
give reliable estimates. In addition, the depth of the ACS images
is also less than optimal in many cases, which increases uncer-
tainties for the lensing values. Our assumption of SIS in the
derivation of the velocity dispersion may introduce some bias in
the relation simply because the real clusters are not singularly
isothermal. Nevertheless, the collective behavior of the relation
being consistent with the equality is still noteworthy and hints
at the possibility that the dynamical measurements from a large
number of cluster members may still serve as useful proxies for
masses in this redshift regime.

The mass–temperature relation presented here is tight, par-
ticularly for hot clusters. The current result indicates that
the power-law slope of the mass–temperature relation does
not evolve since z ∼ 1. However, our normalization value
is 20%–30% lower than previous results, suggesting that the
X-ray temperatures of the clusters at z ∼ 1 may be system-
atically higher than at low redshifts. The shift can imply that
non-thermal sources of heating (e.g., merging, active galactic
nucleus activity, etc.) might be more prevalent at higher red-
shifts or simply the difference in gas fraction (because of differ-
ent cluster formation epoch) might be significant. Alternatively,
one can also consider bias in our lensing analysis. However, it is
very unlikely that our calibration error, even at a maximum, can
induce 20%–30% systematic errors. Our shear calibration error
verified by numerical simulations is at most at the ∼1% level.
The redshift estimation bias (i.e., the magnitude versus redshift
relation in the UDF does not represent the mean relation of the
universe) is at the 5%–12% level for each cluster, giving the
highest error for the most distant object. Most importantly, if
the cluster masses in our sample should be somehow increased
by 20%–30%, this would not only degrade the dynamic ver-
sus lensing velocity dispersion relation substantially, but also
make the existence of the most massive clusters much more
problematic with the current cosmological parameters.

The fourth conclusion is somewhat foreseen by the tight
mass–temperature relation. However, this direct comparison of
mass between X-ray and lensing methods provides another way
to verify our normalization in the M–T relation. Again, the
clusters with the lowest temperatures are the greatest outliers
from the equality. On the other hand, the other relatively massive
clusters give consistent results between X-ray and lensing
measurements. When we repeat the analysis by re-calculating
the cluster mass at smaller radii (e.g., M500 instead of M200),
the relation virtually remains the same. This indicates that the
difference in the assumption of the cluster mass profile (i.e,
isothermal β versus NFW) is not a significant source of bias
between the two measurements.

Finally, the last conclusion is the most striking finding of the
current investigation. The above studies on the relations between
lensing mass and other properties do not support the possibility
that our lensing mass determination is significantly biased high.
A significantly high degree of non-Gaussianity or high value
of σ8 may explain the existence of these massive clusters at
high redshift. However, we caution that our current theoretical
knowledge of the mass function at the high end is limited by
small number statistics.

Foley et al. (2011) reported the discovery of SPT-CL
J2106−5844, which is claimed to be the most massive clus-
ter known at z > 1 based on the X-ray temperature and
Sunyaev–Zel’dovich measurement. The authors estimate that

there is only a 7% chance of finding such a massive cluster
within the 2500 deg2 survey area. The mass of the cluster still
needs to be verified by other methods (e.g., weak lensing analy-
sis). However, if the cluster is indeed as massive as reported, the
existence of SPT-CL J2106−5844 also favors our claim that the
most massive clusters at high redshift provide non-negligible
tension with our current understanding of structure formation.
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APPENDIX A

PSF MODELING

The importance of accurate removal of PSF effects cannot be
stressed too much in weak-lensing analyses. Both dilution and
bias of shear signals must be accounted for with rigor in order to
advance from mere detection into measurement. One difficulty
in ACS PSF modeling is the small field of view (3′ × 3′), which
does not provide a sufficient number of high S/N stars. Because
ACS PSFs vary with time and position, it is not possible to
interpolate/extrapolate the PSF information reliably based on a
few tens of stars on a target image. Fortunately, the PSF pattern
in ACS seems to be repeatable. That is, one can find two or more
observations remote in time but closely related to each other in
the behavior of the PSF pattern (Jee et al. 2007b). Therefore,
it is possible to use a limited number of stars on one image,
find another image possessing a similar PSF pattern but instead
with many more stars covering the entire field, and utilize this
second image to infer the PSF in the first image. In practice,
a slight complexity arises because in general a target field is
visited with many telescope pointings that are different not only
in shift and rotation, but also in PSF pattern. Therefore, one
needs to determine PSF patterns for individual pointings first
and then apply shift and rotation to model the PSFs on the final
mosaic image.

The above method has been successfully applied to our
previous HST weak-lensing analysis of clusters. We refer readers
to those papers (e.g., Jee et al. 2009) for details. Here, we only
summarize the PSF modeling procedure for the current data
sets. We use the Jee et al. (2007b) PSF library, which provides
a polynomial description of two-dimensional PSF variations
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Figure 29. Point-spread function correction. The left panels show the observed ellipticity pattern of the stars whereas in the middle panels we display the reconstructed
ellipticity pattern at the location of the stars. The right panels compares the two ellipticity components e+ and e× before and after the correction.

based on principal components analysis (PCA). This PCA
method allows us to obtain compact basis functions to describe
the spatial variation of PSFs (Jee et al. 2007a; Jee & Tyson
2011).

We identified stars on each cluster observation using the
objects’ size and magnitude. The best PSF template for each

cluster observation frame was determined by comparing both
size and ellipticity of these stars. We stored the name of the
template and the alignment information (i.e., shift in pixels and
rotation angle in degrees). After completing this task, we then
went through objects in the source catalog that is created from
the final stack, computed their location within each input frame,
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Figure 29. (Continued)

and interpolated the coefficients of the principal components
at the location. These coefficients were transformed to two-
dimensional PSF images, which were stacked to generate the
final PSF model after proper rotation was applied; in fact, the
CTI correction (see Section B) was made prior to stacking
by stretching the individual PSFs in the direction of CTI
trail.

In Figures 29, we show the PSF correction results. We note
that the observed PSF ellipticity on the stack is on average
smaller than the typical value because of the rounding effect
from field rotation. The rms residual per cluster is less than 1%.
Despite some occasional small mismatches, the current level of
the PSF correction exceeds the requirement for cluster lensing
analysis.
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Figure 29. (Continued)

APPENDIX B

CTI CORRECTION

During a CCD readout, some fraction of the charge is trapped
because of defects in the silicon. These trapped charges are soon
released after a characteristic time τ . This cycle of trap-release
events continues until the charges in the last row are transferred.
This artifact is sometimes clearly visible as “charge trails.”

The HST/ACS CTI worsens with time because the number
of defects in the CCD is proportional to the amount of the
time exposed to the radiation-rich space environment. Most of
the cluster images in our program are obtained during the year
2006 (four years after the installation of ACS), and thus we
expect the CTI to be much worse than in our previous studies.

Obviously, the effect is undesirable in most applications of
the data. The effect is particularly undesirable in weak-lensing
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Figure 29. (Continued)

measurements, where one is looking for a subtle distortion of
small galaxies. In this analysis, the CTI-induced elongation must
be carefully measured and accounted for.

In the characterization of the CTI, we categorize the methods
in the literature into four schemes.

1. Difference photometry.

2. Pixel Response measurement.

3. Ellipticity bias of astronomical objects.

4. Ellipticity bias of sub-seeing features (e.g., cosmic ray, hot
or warm pixels, etc.).

5. Pixel level correction.

Method 1 utilizes the fact that the CTI-induced elongation
leaves some fraction of the charge outside the aperture. Because
the fractional loss depends on the CTI, in this scheme an object
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Figure 29. (Continued)

should be observed multiple times in different conditions (e.g.,
background, time, row, column, etc.). Therefore, this method
requires large amounts of well-planned, dedicated observations
(e.g., Riess & Mack 2004). This scheme is also useful when
one’s interest is limited to photometric correction of the CTI
effect. Method 2 involves uniformly illuminating a CCD and
measuring deviations from that uniformity in the few pixels

farthest from the readout register. A series of programs for First
Pixel Response and Extended Pixel Edge Response monitoring
have been carried out (Prop. ID 9649, 10044, 10369, and
10732). A similar but more elaborate measurement of this
kind is possible if the CCD is exposed to a number of point
sources (i.e., single pixel events created by a controlled X-ray
source). However, this radiation test is only possible on the
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Figure 29. (Continued)

Figure 30. CTI trail of SSFs in the XMMXCS J2215−1738 ACS images. The ellipticity bias (i.e., elongation along the parallel readout direction) due to CTI linearly
increases (becomes more negative) with the number of charge transfers. We divide the cases into two groups according to their fluxes in order to demonstrate the
different flux-dependence. For the pixels with high counts (left), we observe that the CTI worsens for decreasing fluxes, as was reported in previous studies. However,
the trend is reversed for the pixels with low counts (right).

ground. Methods 3 and 4 rely on the fact that for ACS, the
CTI-induced elongation is mostly significant along the parallel
charge–transfer direction (i.e., the y-axis in CCD coordinates).
Therefore, taking the average over a number of measurements
should reveal the net CTI effect. When employing Method 3,
one has to ensure that the shapes of the employed objects are
free from other systematic effects (e.g., Schrabback et al. 2010;
Hoekstra et al. 2011). For example, poor PSF modeling can
induce a residual shape bias that is similar to the CTI-induced
distortion in both direction and flux-dependence. Method 4
differs from Method 3 in that the ellipticity bias is measured

from cosmic rays or warm pixels, whose shapes are not subject to
geometric distortion or PSF. Because these sub-seeing features
are numerous even on a single 500 s exposure image, it is
possible to obtain high S/N information on CTI from the data
themselves. We applied this method to the weak-lensing analysis
of the then highest redshift cluster XMM2235 at z = 1.4 (Jee
et al. 2009). As Jee et al. (2009) were somewhat not explicit
on how to relate the measured ellipticity bias of cosmic rays
to object ellipticity, we provide details in the present paper.
Method 5 is recently suggested by Massey et al. (2010) and
Anderson & Bedin (2010). This approach aims to restore CTI
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trails back to the original pixels based on profile measurements
of warm pixels. Potentially, this method provides convenient
CTI-corrected images, which astronomers can work on directly
without worrying about the details of the model. However, the
fidelity of the method has yet to be tested.

B.1. Quantification of CTI Effect

Any significant sub-seeing features (hereafter SSFs) present
in the raw CCD images are mostly cosmic rays, warm/hot
pixels, or simply photon noise, which are commonly removed
through elaborate image processing. However, knowing that
these SSFs are not caused by the photons following the regular
optical path of the instrument, we can use these otherwise
nuisance features to our advantage. Because position angles
of the SSFs in principle should possess no preferred direction
on the surface of the CCD, any deviation from the anticipated
isotropy is a clean indicator of the artifact in CCD readout.

We used SExtractor to detect SSFs by looking for objects
whose half-light radius is less than 1 pixel. We did not let
SExtractor filter the images with matched-PSFs, and thus most
of these SSFs would have occupied ∼1 pixel if there had been
no CTI trails. We also measured the ellipticity of the SSFs by
evaluating the unweighted moments using the unfiltered images.
This ellipticity measurement scheme is different from Jee et al.
(2009), where we measured the ellipticity after the image was
convolved with a Gaussian function matching the instrument
PSF. The qualitative behavior of the CTI does not change by
this difference in measurement scheme. However, the current
measurement more clearly reveals the “turnaround” feature that
we discuss below.

As a case study, we display the ellipticity bias of the SSFs in
the galaxy cluster XMMXCS J2215−1738 in Figure 30. The
left and right panels show the results for the SSFs, whose
fluxes (counts) are high and low, respectively. Although here
we use the SSFs detected only in the images of XMMXCS
J2215−1738, they are still numerous and thus enable us to
characterize the behavior of the CTI with high significance.
First, it is clear that the average ellipticity of the SSFs in
each flux range linearly increases (thus more negative) with
the number of charge transfer. Second, for the bright SSFs, the
CTI effect worsens for decreasing fluxes. In contrast, this trend
is reversed for low-flux SSFs. This CTI turnaround was first
reported in Jee et al. (2009) through both the SSF analysis and
stellar photometry. Schrabback et al. (2010) also observed this
turnaround in their independent CTI analysis. It is worth noting
that the XMMXCS J2215−1738 cluster was observed in the
year 2006 in short (∼500 s) exposures, and the background
level is very low (∼0 counts), which explains the severe CTI
trails.

One way to compress the information in the two panels in
Figure 30 is to plot the slopes of the data points as a function of
flux as shown in Figure 31.19 The plot helps us to realize how
sensitive the CTI slope is to the flux. It is especially remarkable
that the CTI turnaround is very sharp (compare this with Figure 4
of Jee et al. 2009).

Before we proceed further, it is instructive to estimate what
magnitude range of galaxies is mostly affected by this CTI
pattern. As is mentioned in Section 2.2, we select 24–28 mag
galaxies as source objects. Considering that the average
exposure time is ∼500 s and the mean FWHM of the source

19 When the slope is multiplied by 2048, the result gives the maximum
ellipticity bias farthest from the readout register.

Figure 31. CTI slope vs. flux. Here we compress the information in the two
panels in Figure 30 into one by plotting the slopes as a function of the fluxes. It
appears that the flux-dependence can be classified into three regions. In the high-
flux regime (�500), the slope changes very slowly with flux. In the intermediate-
flux regime (250 � counts �500), there shows a precipitous decline of the CTI
slope (more elongation) for decreasing flux. Finally, in the low-flux regime
(�250), a sharp turnaround is observed. We found that most of our background
galaxies belong to the low end of this regime. Hence, the CTI effect is negligible
for our source population.

galaxies is significantly larger than the SSFs (∼8 pixels versus
∼1.7 pixels), we estimate that this magnitude range corresponds
to 2–100 counts in Figure 31. Therefore, the brightest and far-
thest (from the readout register) galaxies in our source sample
suffer the most CTI degradation.

B.2. CTI Correction to Galaxies

We characterize the CTI with the ellipticity bias of the
SSFs. Then, a nontrivial question is how to quantitatively re-
late this ellipticity bias to galaxy ellipticity change. Obvi-
ously, the ellipticity bias in SSF is a significant exaggeration
of what occurs to galaxy shapes; a small CTI trail induces much
larger ellipticity to a δ-function-like feature than to, for exam-
ple, a 0.′′5 galaxy. The exact translation requires our knowl-
edge of the shape of the CTI-induced trail and the surface
brightness profile of galaxies. Consequently, the recovery of
the galaxy shape prior to the CTI effect involves the same
delicacies in PSF-effect correction, which is a more familiar
problem.

Indeed, the CTI trailing can be treated as convolution with a
one-dimensional kernel, which further smears the post-seeing
objects, but only along the readout direction,

o(x, y) = i(x, y)⊗p(x, y)⊗c(x, y) = i(x, y)⊗r(x, y), (B1)

where i(x, y) and o(x, y) are the intrinsic and observed images,
respectively. p(x, y) and c(x, y) are the convolution kernel
representing the PSF and the CTI trailing, respectively. Because
the associative law holds for convolution, the smearing of the
object can be viewed as a single convolution by the kernel r(x, y),
which includes both the PSF and CTI trailing. One caveat here
is that the CTI kernel c(x, y) in practice depends on flux, and,
because a galaxy image consists of multiple pixels of varying
flux, it is essential to approximate the effect with a single kernel,
representing the collective effect of CTI on each galaxy.
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Figure 32. Time constant vs. elongation. We model the CTI trail with ∝ e−τ ,
where the time constant τ determines how fast the trail truncates. The resulting
ellipticity also depends on the size of the SSFs; for example, more ellipticity
is induced for cosmic rays that occupy less number of pixels on average. The
difference lines represent the results for different sizes. The thick solid line
shows the case for the FWHM value of 1.65, which matches the mean size of
the SSFs that we use for the study.

One can determine the shape of the kernel c(x, y) by
stacking many CTI trails. We find that on average at short
distances, CTI trails are well approximated by an exponential tail
∝ e−y/τ , where the time constant τ (expressed in units of pixel)
determines how quickly the trail drops. Upon close examination,
however, we observe that the measured CTI trails differ in that
(1) at large distances (> a few pixels) the measured CTI-trail
slope is shallower and (2) occasionally a couple of small bumps
appear, which suggests that different species of charge traps
might be present. Nevertheless, we chose the simple functional
form of a single exponential because object shapes are most
sensitive to the information in the central few pixels. Based
on the laboratory experiments of Dawson et al. (2008), Rhodes
et al. (2010) also concluded that object shapes are most sensitive
to the first few pixels and a single exponential term is adequate
to describe the trails.

Now the remaining question is how to determine the relation
between the ellipticity bias δe+ in the SSFs and the CTI time
constant τ . For this investigation, we rely on image simulations,
where we create many artificial SSFs features and trail them
with the ∼e−y/τ kernel. Because we select only the rh ∼ 1 SSFs
to perform the study above, no exhaustive efforts are required to
match the artificial SSFs to the real ones. Figure 32 shows the τ
versus SSF ellipticity bias calibration that we derived from this
image simulation. The thick solid line represents the relation
when the size of the simulated SSFs matches the observed ones.
The other lines illustrate how much the slope of the CTI trail
depends on object sizes. The flowchart in Figure 33 summarizes
the procedure to correct the PSF and CTI effects.

Although the CTI correction described here is complicated
and the result of time-consuming effort, we emphasize that the
effect is on average small (also perhaps negligible in many
cases) for cluster lensing analysis. Figure 34 shows that very few
galaxies are subject to large elongation (�0.05). A majority of
galaxies, which fall to the CTI-mitigation regime are elongated
by δe+ ≪ 0.01.

Figure 33. Galaxy shape measurement procedure with CTI and PSF corrections.
(1) Surface brightness and coordinate are retrieved from the master source
catalog. (2) Coordinate transformation is performed to locate the object in each
visit’s detector coordinate system. (3) Using the PSF model for each visit, we
estimate the PSF at the object’s location. (4) Based on the y-coordinate (i.e.,
number of charge transfer pixels) and the surface brightness, we determine the
ellipticity bias (e.g., using the relation in Figure 31). Then, this ellipticity bias
δe+ is converted to the CTI time constant τ (e.g., using the relation in Figure
32). (5) The effective PSF (modified with CTI information) is rotated and scaled
according to the exposure time prior to stacking for the creation of the final PSF.

Figure 34. Number of galaxies affected by CTI elongation. We examine how
many background galaxies in the ACS field are affected by a given amount of
CTI elongation δe+. Very few galaxies are subject to large elongation (�0.05).
A majority of galaxies, which fall to the CTI-mitigation regime are elongated
by δe+ ≪ 0.01, which can be safely ignored for cluster lensing analysis.

(A color version of this figure is available in the online journal.)
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