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Abstract Bed load transport during storm events is both an agent of geomorphic change and a significant

natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial

geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the

width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced

individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using

magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated

geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances

and bed load volumes exhibited approximate power law scaling with both the peak stream power and the

cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with

peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes

scaled as roughly the third power of transport distances. These observations imply that large bed load transport

events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the

mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective

thickness of the actively transported layer, averaged over the entire channel width and the duration of

individual flow events. This active layer thickness also followed approximate power law scaling with peak

stream power and cumulative stream energy and ranged up to 0.57m in the Erlenbach, broadly consistent with

independent measurements.

1. Introduction

Bed load transport during flood events in mountain channels is an important agent of geomorphic change

[Schumm, 1977] and an important natural hazard which can cause enormous damage in mountainous regions

[e.g., Badoux et al., 2014]. Estimates of bed load transport typically rely onmeasurements that require substantial

effort and specially designed samplers, possibly involving construction within the streambed (e.g., vortex

samplers [Klingeman, 1979], Birkbeck samplers [Reid et al., 1980], or moving bed load baskets [Rickenmann

et al., 2012]), or that can be used only in specific locations for short intervals of time (e.g., Helley-Smith samplers or

bed load traps [Helley and Smith, 1971; Bunte et al., 2004]). In unmeasured stream reaches, estimates of transported

bed load volumes rely on empirical equations, which are normally developed from limited laboratory and field

data and have large predictive uncertainties, especially inmountain streams [e.g., Bathurst et al., 1987; Rickenmann,

2001; Nitsche et al., 2011].

Another approach for estimating bed load transport is based on the notion that the bulk bed load is controlled

by individually moving particles. Typically, the movements of individual particles consist of a series of steps and

rest periods due to the turbulent flow conditions and irregular bed forms [e.g., Einstein, 1937;Hassan et al., 1991;

Lajeunesse et al., 2010]. The sum of those individual particle step lengths during a transport event results in a

total transport distance. Information on transport distances (or velocities), combined with information on en-

trainment rates or dimensions of a mobile layer depth, enables the estimation of bed load volumes (or rates)

during a flood event (or observation period) [Hassan and Ergenzinger, 2005; Haschenburger and Church, 1998;

Houbrechts et al., 2012; Laronne et al., 1992; Liébault and Laronne, 2008; Sear et al., 2000;Wilcock, 1997;Wong and
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Parker, 2006;Wong et al., 2007]. To determine total transport distances in natural channels, particles have been

traced for individual transport events or longer observations periods using, e.g., color markings, magnetic

tracers, or radio frequency identification (RFID) transponders [e.g., Bunte and Ergenzinger, 1989; Gintz et al., 1996;

Haschenburger and Church, 1998; Lamarre and Roy, 2008; Lamarre et al., 2005; Liébault et al., 2012; Schmidt and

Ergenzinger, 1992]. Particle tracking data have been used to constrain transport distance distributions and their

dependence on channelmorphology or floodmagnitude (e.g., the Einstein-Sayre-Hubbelmodel and gamma or

exponential distributions [Bradley and Tucker, 2012; Einstein, 1937; Gintz et al., 1996; Hassan et al., 1991, 2013;

Liébault et al., 2012; Sayre and Hubbell, 1964]). However, few studies exist for mountain streams wheremeasured

bed load volumes and transport distances of individual particles are available for the same transport events.

Lenzi [2004] provided data for bed load volumes and transport distances for individual transport events for the

Rio Cordon (Italy) while Liébault and Laronne [2008] measured the total bed load yield for an entire tracer

transport distance campaign in the Escanovette torrent (France). Houbrechts et al. [2012] provided mea-

surements of bed load transport and transport distances for several larger and lower gradient rivers in the

Ardennes (Belgium).

Understanding how bed load volumes and transport distances scale with one another and with the size of a

flood event (as characterized, for example, by the peak flow or the total storm runoff) is important for predicting

large transport events and also for understanding how they affect the streambed. To characterize the impact of

transport events on the streambed, we use the concept of the active layer [Hirano, 1971; Parker, 1991; Parker

et al., 2000], which can be defined as “the portion of the streambed that ismobilized during floods competent to

transport sediment” [Haschenburger and Church, 1998]. The depth of the active layer may be relevant to fields as

diverse as ecology (e.g., excavation of spawning gravels), engineering (e.g., scour of engineered structures in

streams), and geomorphology (e.g., as a control on sediment delivery during flood events).

In this study we compiled a distinctive data set on measured transport distances and bed load volumes in

two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy [Lenzi et al., 2004]) for

flood events with a broad range of flow magnitudes. We examine how transport distances and bed load

volumes scale with the stream power of the peak discharge and the stream energy of the entire flood

event and compare our findings with literature results. Based on the transport distance and bed load data,

it was possible to back-calculate an active layer depth to estimate the effects of flow events on

the streambed.

2. Field Sites and Methods

2.1. Field Sites

2.1.1. Erlenbach

The Erlenbach is a steep mountain stream (mean gradient: 0.17) draining an area of 0.7 km2 in the Swiss pre-

Alps (Figure 1 and Table 1). The runoff regime is nivopluvial (snow and rain dominated) with the largest

transport events caused by extreme summer rainstorms. Occasional snowmelt and rain-on-snow events are

of secondary importance for sediment transport.

In this study, transport events were observed covering a range of flow magnitudes with peak discharges

(Qp) of 0.5–10m
3/s. For later analysis, we define transport events with Qp< 1.5m3/s, 1.5 ≤Qp< 3m3/s,

and Qp ≥ 3m3/s as low-, moderate-, and high-magnitude flood events, respectively. The corresponding

Figure 1. Erlenbach field site in Swiss Pre-Alps, showing tracer insertion points (triangles I1-I4). Maps reproduced from BFS

GEOSTAT and swissimage ©2012, swisstopo DV 033594.
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recurrence intervals are approximately< 1 year, 1–3 years, and> 3 years, respectively [Liechti, 2008]. Flow

discharge at the Erlenbach is measured directly upstream of a sediment retention basin, but because the

main part of the Erlenbach tracer study reach was upstream of a small tributary (Figure 1), we reduced

the measured discharge proportionally to account for the reduced drainage area.

The Erlenbach stream is characterized by a rough channel bed with a step-pool morphology and large

relatively immobile boulders [Molnar et al., 2010]. The grain-size distribution (GSD) of the channel bed

surface was determined by grid-by-number pebble counts in September 2012 using a variant of the

Wolman [1954] procedure, according to Bunte and Abt [2001a, 2001b] and Bunte et al. [2009] (Figure 2). Bed

material subsurface GSDs were determined by sieve analysis of three large volumetric samples taken using

a three-sided plywood shield [Bunte and Abt, 2001b]. The GSDs of the transported bed load were deter-

mined by four sieved samples taken in the sediment retention basin from 1984 to 1987 [see also

Rickenmann and McArdell, 2007]. The characteristic grain sizes D25Surf/D50Surf/D84Surf of the streambed surface

were 16/64/206mm. In this paper, characteristic grain sizes of the streambed surface are subscripted with

“Surf,” of the streambed subsurface with “Sub,” and of the bed load transported to the retention basin with “B,”

respectively (e.g., D50Surf, D50Sub, and D50B).

2.1.2. Rio Cordon

Rio Cordon is a boulder bed stream draining an area of 5 km2 in the Italian Alps [see also Lenzi, 2004; Lenzi et al.,

2006;Mao et al., 2009, 2010, and references therein], with a mean channel gradient of 0.13. Precipitation occurs

mainly as snowfall from November to April and runoff is usually dominated by snowmelt in May and June, but

summer and early autumn floods represent an im-

portant contribution to the flow regime. The peak

discharges of the flood events analyzed during this

study range from about 0.8 to 10m3/s.

The channel bed consists of step-pool, riffle-pool,

and mixed reaches. The characteristic grain sizes of

the streambed surface D25Surf/D50Surf/D84Surf were

identified by grid-by-number pebble counts as

38/90/262mm, and the bed surface is strongly

armored (D50Surf/D50Sub ~ 3) [Lenzi, 2004].

2.2. Characterization of Hydraulic Forcing

Bed load transport rates and distances are functions

of hydraulic forcing, which in this study is charac-

terized by stream power [Bagnold, 1966]. Stream

power has been shown to be more reliable than

shear stress as a measure of hydraulic forcing [e.g.,

Gomez and Church, 1989; Rickenmann, 2001],

Table 1. Main Characteristics of the Erlenbach and Rio Cordon Catchments

Erlenbach (CH) Rio Cordon (IT)

Basin elevation range (m) 1110–1655 1763–2748

Basin area (km
2
) 0.7 5

Mean slope/slope study reach (m/m) 0.17/0.15 0.13

Mean width (m) 3.5 5.7

Channel type Step-pool Step-pool

D25Surf/D50Surf/D84Surf
a
(mm) 16/64/206 38/90/262

Lithology Flysch Dolomites and volcaniclastic conglomerates

Forested % 39 7

Discharge regime nivo-pluvial nivo-pluvial

RI2/RI5/RI10
b
(m

3
/s) 2/4/7 3/5/7

Mean annual precipitation (mm) 2300 1100

Average bed load yield (m
3
km

�2
yr
�1

) ~570 ~20

a
Referring to the bed surface sediment.
b
Flood with recurrence interval (RI) of 2, 5, and 10 years [Liechti, 2008; Lenzi et al., 2004].
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Figure 2. Grain-size distributions of the sediment deposited

in the Erlenbach retention basin (crosses), of the channel

bed subsurface and surface (diamonds and circles, respec-

tively), and of the RFID and magnetic tracer populations

(solid and dotted lines, respectively).
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because estimating reach-averaged flow depth is difficult in steep mountain streams. Stream power per unit

area (ω, in W/m2) is derived from discharge (Q) measurements and is defined as

ω ¼
ρgQS

w
(1)

where ρ is the fluid density [kg/m3], g is the acceleration due to gravity [m/s2], S is the channel slope [m/m],

and w is the flow width [m].

Tracer transport distances, sediment volumes and the depth of the active layer are expressed in this study

through functional relationships with the peak stream power (the unit excess stream power ωp�ωc in W/m2

[see also Hassan and Church, 1992] at the peak dischargeQp) and also with the cumulated stream power values

per flood event, i.e., the sum of unit excess stream power values over the entire flood event Σ(ω�ωc) which we

term the “cumulative stream energy” in J/m2. Because the discharge measurements at the Erlenbach are

conducted at 1 min time steps, we multiplied the 1 min values by 60 s for the cumulative values. The critical

stream powerωc defining the initiation of motion is based on a critical discharge of 0.48m3/s for the Erlenbach

[Turowski et al., 2011] and a critical discharge of 0.65m3/s for Rio Cordon [Lenzi, 2004].

Functional relationships between stream power, bed load transport, and tracer transport distances were

derived using functional analysis on log-transformed values (for more details, seeMark and Church [1977]),

because we expect errors in both the independent variable (stream power) and the dependent variables

(bed load, transport distance, active layer depth). Simplifying the analysis, we have assumed that the errors

in the x and y directions are equal. This is justified because we generally have strong correlations, and thus,

the apportionment of the errors between the x and y directions has only little effect on the outcome. In

addition, the fitted coefficients were corrected for log-transformation bias [Ferguson, 1986; Miller, 1984].

Table 2. Tracer Survey Periods at Erlenbach and Recovery Rates
a

Period

ID From To Qp (m
3
/s) Nt NEvB Nm Pb (%) Pt (%) PEvB (%) PRER (%) PLost (%)

RFID tracer 1
b

11.06.09 18.06.09 3.0 95 95 88 42 31 31 31 38

2
c

18.06.09 07.07.09 5.0 81 80 60 42 27 36 26 38

3
e

07.07.09 16.07.09 0.7 106 70 9 39 25 86 10 4

4 16.07.09 21.07.09 1.3 112 92 14 49 26 87 7 6

5 21.07.09 26.07.09 1.3 120 102 15 50 28 91 4 5

6 28.07.09 04.08.09 1.2 125 99 25 42 29 83 7 10

7 04.08.09 12.08.09 1.3 118 107 22 39 27 86 4 10

8
b

18.06.10 22.06.10 0.5 175
f

166 65 30 50 47 26 27

9 22.06.10 12.07.10 0.7 109 77 36 11 27 44 35 21

10
e

12.07.10 13.07.10 2.4 110 27 22 29 25 25 12 63

11 13.07.10 19.07.10 0.8 91 70 11 24 21 64 15 21

12 19.07.10 26.07.10 1.6 93 58 23 45 20 64 4 32

13
e

26.07.10 28.07.10 4.7 43 18 11 30 6 19 6 75

14
e

28.07.10 01.08.10 1.5 47 32 6 57 6 74 2 24

15
e

01.08.10 04.08.10 9.3 16 5 3 44 2 11 4 85

16
e

04.08.10 11.08.11 2.4 15 9 4 40 1 56 6 38

Magnetic tracer 17
b

18.07.94 25.08.94 2.0 159 159 112 - 30 51 15 34

18
d

25.08.94 21.09.94 1.6 121 115 73 - 39 72 8 20

19
d

29.11.94 26.06.95 1.0 108 95 101 - 35 76 1 23

20 26.06.95 28.07.95 10.0 40 26 27 - 13 24 0 76

21
b,d

22.05.97 30.07.97 1.4 174 174 155 - 77 77 5 18

22
e

30.07.97 26.08.97 0.9 154 153 6 - 68 88 2 10

23
e

26.08.97 06.10.97 4.3 77 72 60 - 34 47 1 52

a
Flood event number (ID); peak discharge (Qp); number of tracers found after the event (Nt); number of found tracers which were also found after the previous event

(NEvB—for surveys after particle seeding NEvB corresponds to Nt); number of moved particles (Nm); percentage of buried particles (Pb) based on Nt; total recovery rate (Pt);

event based recovery rate (PEvB); re-emergence rate (PRER—percentage of particles not found during the event but which appeared in subsequent events); percentage of

lost particles after a transport event (PLost). For further details see text. Dates are formatted as day.month.year. Selected events for further analysis are in boldface.
b
First surveys after particle seeding.

c
Additional 127 particles were seeded.
d
Excluded from further analysis because observation period too long or covers multiple flood events.

e
Excluded because of poor data quality (Nm< 10 and PLost> 40%).
f
Includes tracers from the 2009 campaign for which the transport distance cannot be assigned to event 8.
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2.3. Estimation of Mean Transport Distances

2.3.1. Erlenbach

2.3.1.1. Tracer Particle Seeding and Recovery

In the Erlenbach, two measurement campaigns with tracer particles were completed, a magnetic tracer cam-

paign from 1994 to 1999 and a radio frequency identification (RFID) campaign in 2009 and 2010. The magnetic

tracer technique has been applied for many years to track particlemovements in gravel bed streams [e.g., Bunte

and Ergenzinger, 1989; Gintz et al., 1996; Haschenburger and Church, 1998; Schmidt and Ergenzinger, 1992]. RFID

transponders have recently enabled the tracking of individual stones usingmobile antennas inwadeable gravel

bed streams [e.g., Lamarre and Roy, 2008; Lamarre et al., 2005; Liébault et al., 2012]. Themain advantage of using

passive RFID transponders instead of magnetic tracers is that they are programmable with a unique identifier

(ID) and can be identified down to a depth of 0.6m without disturbing the streambed, regardless of whether

there is water, rock, wood, or mud in between [Schneider et al., 2010]. The term “tracer” as used in this study

refers to either magnetic or RFID-tagged particles.

During the magnetic tracer campaign, in June 1994 and May 1997, a total of 313 and 227 tracer particles,

respectively, was placed onto the streambed 540m upstream of the sediment retention basin (Figure 1,

location I1) [Schwer and Rickenmann, 1999; Schwer et al., 2000]. The tracers were located with a metal detector

shortly after each sediment transport event whenever possible (survey periods 17 to 23, Table 2). The magnetic

technique does not allow remote identification of individual particles. Buried tracers were uncovered, identified,

and replaced on the streambed surface above the location where they were found.

In June 2009, 303 RFID tracers were placed onto the streambed 350m upstream from the retention basin

(Figures 1, I2; and 3). After the first transport event, 127 additional RFID tracers were placed at the same

location. In May 2010, 142 RFID tracers were placed on the streambed 220m upstream from the retention

basin (Figure 1, I3), and 161 RFID tracers were placed 80m upstream from the retention basin (Figures 1, I4;

and 3). These shorter distances from the retention basin refer to a channel reach with less woody debris and

therefore easier access. Thus, it was hoped to increase the tracer recovery rates, which were generally low in

the Erlenbach (see section 2.3.1.2). The positions of the tracer particles on (and in) the streambed were de-

termined with a mobile RFID antenna, directly after flood events for which bed load transport was recorded

by the geophone system (survey periods 1 to 16, Table 2).

The GSD of the tracer particles corresponds to D>D60B of the sediment transported into the sediment

retention basin, and to D30Surf<D<D75Surf of the streambed surface material (Figure 2). A detailed description

of the prepared particle size classes can be found in the supporting information (Text S1). Uncertainties intro-

duced by the narrow GSD in determining the mean transport distances are discussed in section 2.3.1.3 and in

the supporting information (Text S3).

For further analysis, we also included transport events in which the tracers were placed manually in their

starting positions on the streambed; these include events 1, 2, and 8 of the RFID campaign and all events of

the magnetic tracer campaign. We also neglected the fact that deeply buried particles might have been

Figure 3. Tracer particles in the Erlenbach stream. (left) RFID campaign 2009, tracer insertion point I2. (right) RFID cam-

paign 2010, tracer insertion point I4 (cf. Figure 1).

Journal of Geophysical Research: Earth Surface 10.1002/2013JF002874

SCHNEIDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 537



mobilized at a later time in a future flow event [Hassan et al., 2013]. For simplicity, we assumed that the total

transport distance of an individual grain results frommultiple periods of transport and rest during a transport

event and therefore was not strongly affected by the arbitrary initial particle position, once a particle is

entrained. In addition, we found no differences in transport distances for events in which the tracers started

from seeded positions on the streambed surface or from naturally deposited positions (see also section 3.1.3

and Figure 6).

2.3.1.2. Tracer Recovery Rates

The recovery rates of tracer particles for the individual surveys were generally low in the Erlenbach, resulting

in a limited number of data points (Table 2) [see also Schneider et al., 2010]. These recovery rates (here called

“total recovery rates” and denoted as Pt), were calculated as the ratio of total particles found (Nt) to the total

number of seeded particles, and averaged roughly 30% (min 1%, max 77%) across the 23 events that

were analyzed.

This paper analyzes individual events, based on changes that occurred between successive pairs of

surveys (typically performed shortly after each transport event). Therefore, we determined the number

of particles located during each survey that were also located during the preceding survey (NEvB) and an

“event-based recovery rate” (PEvB), i.e., the recovery rate of particles found in two subsequent surveys

(PEvB(i)= 100˙NEvB(i)/Nt(i� 1))). For the first survey after particle seeding, the event-based recovery rate

corresponds to the total recovery rate. Before survey 2 (Table 2), 127 additional particles were injected;

thus, the event-based recovery rate of survey period 2 is based on the particles found in the previous

event and the newly injected 127 particles.

To help in determining whether particles could not be found during a transport event because they were

flushed out of the study reach or because they were buried at a depth outside the detection range of the

antenna, we quantified the “re-emergence rate” (PRER) of the tracers. The re-emergence rate refers to tracer

particles that could not be found after one transport event but were known to have moved in later events,

because they were found in subsequent surveys or detected immediately upstream of the retention basin

using a stationary RFID antenna (as developed by Schneider et al. [2010]). Due to technical problems, this

antenna provided no data before September 2010; however, it did detect tracers as they were flushed out of

the study reach in 2011 and 2012, so we could identify these as tracer particles that had remained in the

study reach during 2009 and 2010.

Finally, the “event-based percentage” of lost particles (those which either left the study reach or could not be

detected anymore) was determined as PLost= 100� PEvB� PRER. A detailed discussion of the low recovery

rates can be found in the supporting information, Text S2.

As a consequence of the low recovery rates, for the further analysis of transport distances between successive

particle surveys, we selected individual flood events for which (i) more than 10 tracer particles moved and (ii)

less than ~30% of particles were lost.

2.3.1.3. Mean Transport Distances of Tracer Population and Total Bed Load

We determined the mean transport distances of the tracer particles using the arithmetic mean of the indi-

vidual tracer transport distances along the thalweg, considering only tracers that were known to have

moved. The mean transport distance includes only tracers that moved, because later in the paper we com-

pare this distance with the transported bed load volume, and that volume (by definition) includes only par-

ticles that moved in a given event. Using individual transport distances of tracers to estimate the mean

transport distance of the bed load is problematic, because transport distance typically depends on particle

size [cf. Church and Hassan, 1992; Haschenburger, 1996; Haschenburger and Church, 1998; Hassan et al., 1992;

Lenzi, 2004;Wilcock, 1997] and the size distributions of the tracers and the bed load differ in two respects: (1)

The mean b axis of the collected tracers may not always correspond to the mean b-axis of the tracer popu-

lation, and (2) the tracer grain-size distribution (GSD), which ranges from 28 to 160mm, is narrower than the

average bed load GSD, which ranges from ~10 to 300mm (Figure 2). To correct for these sampling biases, i.e.,

to estimate transport distances of finer and coarser grains that were not represented by the tracer particles

and thus to estimate the mean transport of the bed load (Table 3), we used the empirical relation of Church

and Hassan [1992]. The Church and Hassan [1992] relation was not developed for step-pool streams, but we

chose this relation because it has also been tested on, and is generally supported by, field data from

mountain streams [Scheingross et al., 2013], and on average, it fits the Erlenbach data well (see section 3.1.2).
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The Church and Hassan [1992] relation expresses the scaled transport distances (L*) of bed load particles as a

function of the scaled grain sizes:

L* ¼ Li=LD50Surf ¼ 1:77 1� log10 Di=D50Subð Þ½ �1:35 (2)

where Li is the transport distance of individual grains of diameter Di, LD50Surf is the mean transport distance of

the median surface grain size (D50Surf ), and D50Sub is the median grain size of the streambed subsurface. The

use of equation (1) to estimate transport distances for unmeasured grain-size fractions is described in Text S3.

2.3.2. Rio Cordon

In Rio Cordon, the transport distances of magnetically tagged tracer stones along the stream were measured

during individual snowmelt and flood events from 1993 to 1998 (Table 3) [Lenzi, 2004; Lenzi et al., 2006]. Two

groups of 430 natural pebbles, cobbles, and boulders (32<D< 512mm) were painted and placed in May

1993 across two cross sections, in transverse rows with 1 to 2m spacing. Movements of the marked clasts

were mapped during repeated surveys (three transport events) from July 1993 to September 1994. Field

measurements of displacement distances include the effects of a high-magnitude flood that occurred in

September 1994. After this large flood, similar sets of two groups of 430 tracers were relocated on the pre-

vious two cross sections and mapped from May 1996 to October 1998 (four transport events) [Lenzi, 2004].

Recovered percentages of marked clasts varied from 52 to 100%, depending on the flood magnitude.

The Rio Cordon tracer population matched the bed surface grain-size distribution more closely than the

Erlenbach tracer population did. Therefore, it was unnecessary to estimate the transport distances of size

fractions that were not represented by the tracer particles, as we did for the Erlenbach (see section 2.3.1.3).

2.4. Bed Load Transport Measurements

2.4.1. Erlenbach: The Piezoelectric Bed Load Impact Sensors/Geophone System

Sediment transport has been monitored continuously in the Erlenbach since 1986 using piezoelectric bed

load impact sensors (PBIS) and since 2000 using geophone sensors. The PBIS/Geophone system is a well-

established indirect measurement method that has been used in several streams to study sediment trans-

port. For technical details of the system, see Text S4 and Rickenmann and McArdell [2007], Rickenmann et al.

[2012], Turowski et al. [2009], Turowski and Rickenmann [2011], and Turowski et al. [2011].

Table 3. Bed Load and Transport Distance Characteristics for Selected Transport Events
a

ID
Survey

Date

Qp

(m3/s)

ωp�ωc

(W/m
2
)

∑(ω�ωc)

(J/m
2
)

FB
(m

3
)

fB
(m

3
/m)

LT
(m)

LB
(m)

SELT
(m)

SELB
(m)

hB
(m)

1 18.06.09 3.0 939 5.46E+ 06 75 21.6 92 120 7.6 9.8 0.20

2 07.07.09 5.0 1534 5.31E+ 06 133 37.9 143 186 14.5 18.9 0.23

4 21.07.09 1.3 363 6.37E+ 06 43 12.3 56 73 18.1 23.5 0.20

5 26.07.09 1.3 370 2.74E+ 06 26 7.5 37 48 9.8 12.7 0.18

6 04.08.09 1.2 321 3.34E+ 06 12.4 3.6 50 65 13.6 17.7 0.06

7 12.08.09 1.3 375 1.95E+ 06 10.7 3.0 27 35 6.3 8.2 0.10

8 22.06.10 0.5 85 1.07E+ 05 0.1 0.03 6.9 9 0.9 1.2 0.004

9 12.07.10 0.7 165 1.85E+ 05 0.4 0.12 14 18 2.3 3.0 0.01

11 19.07.10 0.8 168 6.76E+ 05 0.4 0.11 14 18 8.3 10.8 0.01

12 26.07.10 1.6 467 2.54E+ 06 11.7 3.3 29 38.0 9.7 12.6 0.11

17 25.08.94 2.0 635 3.24E+ 06 31.3 9.0 36 47 3.6 4.7 0.22

20 28.07.95 10 2852 1.45E+ 07 375 107 161 209 27.4 35.6 0.57

RC1 02.10.93 4.3 662 10.2 1.7 48 23.86 0.015

RC2 30.10.93 1.7 232 1.0 0.18 5.3 4.06 0.007

RC3 12.09.94 10.4 1428 890 127 142 48.18 0.55

RC4 19.05.96 0.87 55 0.0 0.0 1.1 0.43

RC5 15.10.96 2.96 455 57 10.96 20 11.19 0.15

RC6 12.09.98 0.96 76 0.0 0.0 1.0 0.39

RC7 07.10.98 4.7 719 278 47.1 65 29.17 0.28

a
Flood event number (ID); peak discharge (Qp); unit excess stream power of peak discharge (ωp�ωc); cumulative unit

excess stream energy (∑(ω�ωc)); total bed load volume (FB); unit bed load volume (fB); mean tracer transport distance

(LT); mean transport distance estimated for the total bed load (LB= 130% of LT). Standard error (SELT) for the mean tracer

transport distances; standard error for the total transport distances of the total bed load (SELB=130% of SELT); average

active layer depth inferred from bed load volume and average transport distance (hB). Rio Cordon events (RC1–RC7).

Dates are formatted as day.month.year.
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The geophone data are calibrated against sediment volumes accumulated in the retention basin (including

fine material and pore volume). Therefore, we estimated bed load transport by subtracting the percentage of

fine material that was likely to be transported in suspension rather than as bed load, based on the approaches

of Dade and Friend [1998] andWu and Wang [2006] (see Text S4). Based on the calibrated geophone data, we

determined total bed load volumes for the transport events in which we measured tracer transport distances

(Table 3). From the total bed load volumes and streamwidth, we estimated the bed load volume per unit width,

termed “unit bed load volume”.

2.4.2. Rio Cordon: Grid and Storage Basin

Sediment loads were determined by using ultrasonic sensors to survey volumetric changes in sediment

deposits in the storage basin at the downstream end of themain study reach [e.g., Lenzi et al., 2004]. There, an

inclined grid allowed the separation of coarse sediment (D> 20mm) from water and fine sediment.

3. Results

3.1. Tracer Movements

3.1.1. Influence of Flow Magnitude on the Transport Distances (Erlenbach Only)

Flow magnitude, as expressed by peak discharge, had a strong influence on the distribution of individual

particles’ transport distances (Figure 4). The right-hand tail of the transport distance distribution dropped off

quickly for low-magnitude events (Figures 4a–4f) but was much longer for events with peak discharges larger
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Figure 4. Tracer transport distance histograms for selected transport events sorted (a–l) according to peak discharge (Qp),

with fitted gamma distributions (heavy black lines). Nm is the number of moved tracers that the histograms are based on.
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than 3m3/s (Figures 4j–4l). A gamma distribution was fitted to the tracer transport distance distribution for

better visualization. The limited number of data points and the possible truncation of the distributions due to

unrecovered far-moving particles (so-called “front-runners”) prevent us from doing more detailed statistics on

the transport distance distributions. However, the right-skewed and thin-tailed distributions that we observed,

at least during low- to moderate-magnitude events, are also supported by literature results [Hassan et al., 2013;

Liébault et al., 2012]. From these transport distance distributions, we infer that there are probably few, if any,

unrecovered front-runners that would significantly change the calculated mean transport distances for low-

andmoderate-magnitude events. For the high-magnitude flood events with a peak discharge larger than 3m3/

s, we assume that the derived mean transport distances are underestimated due to unrecovered front-runners

that were flushed out of the study reach.

3.1.2. Fractional Transport Distances (Erlenbach Only)

The transport distances of individual grains were also influenced by their particle size, especially during low-

and moderate-magnitude events. Figure 5a shows the average transport distances of tracer particles

grouped into five logarithmic grain-size bins with centers ranging from 33.6 to 134.5mm (spanning the tracer

grain-size range 28mm and 160mm, respectively) and grouped into three event size classes according to

peak discharge (Qp< 1.5m3/s, Qp 1.5–3m
3/s, and Qp > 3m3/s, representing low, moderate, and high peak

discharges). For the low- and moderate-magnitude events, the mean transport distance decreases with

increasing particle size, whereas the transport distances during high flow events are almost unaffected by

particle size (Figure 5a).

In Figure 5b, the transport distances of each individual particle (Lsi) are shown, scaled by the transport

distance LsD50 of the size fraction that contains the median surface grain size D50Surf; these scaled transport

distances are compared to scaled grain sizes (Di scaled by the median grain size D50Sub of the streambed

subsurface). There is obvious scatter in the individual scaled transport distances, but their medians

(Figure 5b) generally follow the pattern of the Church and Hassan [1992] equation (equation (1)). This jus-

tifies using equation (1) to estimate fractional transport distances from measured tracer transport dis-

tances. From the Church and Hassan [1992] equation, we estimated that the uncertainty in the mean

transport distance due to unrepresentatively sampled grain sizes within the tracer population is smaller

than 10% of the mean observed transport distance (see also Text S3). From the mean transport distances of

the tracer population (LT) and the tracer and bed load grain-size distributions (Figure 2), we estimated the

mean transport distance (LB) of the total bed load (FB) to be 30% higher than the mean tracer transport
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Figure 5. (a) Mean transport distances, with standard errors, for three peak discharge classes (Qp< 1.5m
3
/s, 1.5≥Qp<3m

3
/s,

and Qp ≥ 3m
3
/s), and five particle size classes indexed by their geometric means (33.6–134.5mm), plotted as a continuous

variable on a log scale. (b) Relationship between scaled travel distance (L*) and scaled particle size (D*) for all individual particle

movements, and their medians (circles) in five grain-size classes. The transport distance Lsi of each particle is scaled by the

mean displacement of the grain-size fraction containing theD50Surf of the streambed surface;Di is scaled by theD50Sub of the

subsurface. The thin black line (CH1992) represents Equation (1) with the uncertainty bounds (dashed lines) given by Church

and Hassan [1992].

Journal of Geophysical Research: Earth Surface 10.1002/2013JF002874

SCHNEIDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 541



distance (equations (1), (S2b), and (S2c) and Text S3). The difference in transport distances arises primarily

from the finer grain sizes (with generally longer transport distances) that make up a substantial proportion

of the total bed load but are absent from the tracer particle distribution.

3.1.3. Scaling Mean Transport Distance With Stream Power/Energy

The mean transport distance (LB) of the low- to moderate-magnitude events scaled roughly linearly with the

excess stream power at peak discharge (Figure 6 and Table 4), and, with a somewhat stronger correlation, LB
scaled roughly as the square root of the cumulative excess stream energy (Figure 6b). In addition to the low-

to moderate-magnitude events (those with a peak discharge< 3m3/s), the high-magnitude flood events

(those with a peak discharge> 3m3/s) are also shown (light gray circles in Figure 6). The transport distances

of the low-, moderate-, and high-magnitude events exhibit a consistent scaling relationship with peak stream

power, with a slope of approximately 1 (Figure 6a). As a function of cumulative stream energy (Figure 6b),

transport distances for these high-magnitude events plot somewhat above the regression line of the low- to

moderate-magnitude events, resulting in a significantly steeper scaling exponent for the fitted moderate- to

high-magnitude events. (Note also that the transport distances during the high-magnitude events may be

underestimated due to unrecovered front-runners).

As a function of peak stream power, transport distances for the low-magnitude events at the Rio Cordon lie

somewhat below the Erlenbach regression line, and the general trend appears to be slightly steeper

(Figure 6a and Table 4). Compared to literature results, the transport distances observed at the Erlenbach and

Rio Cordon are shorter than those observed at the Lainbach, Germany [Gintz et al., 1996], Carnation Creek,

Canada [Haschenburger, 2013; Haschenburger and Church, 1998], and several Ardennian Rivers, Belgium

[Houbrechts et al., 2012] (Figure 6), which all have gentler channel gradients. For more details on the literature

data and its treatment, see Text S5 and Table S1.

Although the transport distances of the Erlenbach and the Rio Cordon tend to be generally lower compared

to the literature results, the slopes of the Erlenbach and Rio Cordon regression lines in Figures 6a and 6b are in

a similar range as most of the power law slopes fitted for other streams (Table 4). Only for the Ardennian River

data set, which includes data from different streams, is the fitted power law characterized by a lower expo-

nent (but also a lower r2).
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Figure 6. Mean transport distances (LB), related to (a) the excess stream power of the peak discharge and (b) the cumula-

tive excess stream energy over each entire flood event. Black, dark gray, and light gray circles indicate survey periods with

low, moderate, and high peak discharges (Qp) at the Erlenbach (EB) (low: Qp< 1.5m
3
/s; mod: 1.5≥Qp< 3m

3
/s; high:

Qp≥ 3m
3
/s). Small symbols show initial displacements after particle seeding; large symbols show subsequent displace-

ments from “natural” positions for the Erlenbach. Error bars indicate standard errors. The black regression line is derived

from functional analysis fitted to the low- to moderate-magnitude events, corrected for log-transformation bias. The

dashed gray regression line is fitted to moderate- to high-magnitude events using the same methods. In Figure 6a, mean

transport distances at Rio Cordon (RC), Carnation Creek [Haschenburger and Church, 1998], the Lainbach [Gintz et al., 1996]

and for several Ardennian Rivers (Ard. Rivers) [Houbrechts et al., 2012] are also shown. In Figure 6b, the relation of

Haschenburger [2013] for the Carnation Creek is added.

Journal of Geophysical Research: Earth Surface 10.1002/2013JF002874

SCHNEIDER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 542



3.2. Scaling Unit Bed Load Volume With Stream Power/Energy

The transported unit bed load volumes of all observed transport events in the Erlenbach scale roughly as the

cube of the peak stream power (Table 4). The low- to moderate-magnitude events exhibit even steeper scaling,

with a power law exponent of 3.85 (Figure 7a and Table 4). The unit bed load volumes scale roughly as the

Table 4. Fitted Power Laws (y= αx
β
)

α β r
2

α β r
2

Data Set
a

x=Peak Stream Power x=Cumulative Stream Energy

y= Transport distance EB low-mod 0.06 1.12 0.73 0.04 0.48 0.92

EB mod-high 0.05 1.1 0.88 9.0E-7 1.2 0.76

EB all 0.14 0.97 0.88 0.01 0.63 0.85

RC 0.02 1.25 0.96 0.00 0.00 0.00

Carn. Creek 0.005 1.72 0.18 0.024
b

0.61
b

0.99
b

Lainbach 0.14 1.37 0.70

Ard. Rivers 8.61 0.45 0.11

y=Unit bed load volume EB low-mod 5.7E-10 3.85 0.88 1.1E-10 1.65 0.92

EB mod-high 4.6E-05 1.87 0.97 4.1E-13 2.04 0.91

EB all 2.3E-07 2.75 0.86 2.1E-11 1.78 0.93

RC 3.3E-12 4.55 0.78

Ard. Rivers 5.7E-03 2.01 0.24

y=Active layer EB low-mod 1.3E-08 2.69 0.89 4.1E-09 1.16 0.87

EB mod-high 7.6E-04 0.83 0.82 2.3E-07 0.89 0.87

EB all 1.8E-06 1.77 0.78 6.1E-09 1.13 0.91

RC 2.6E-11 3.52 0.58

Carn. Creek 6.7E-05 1.29 0.63

Ard. Rivers 7.2E-03 0.39 0.42

x=Mean Transport Distance

y=Unit bed load volume EB low-mod 8.7E-06 3.44 0.91

EB mod-high 7.2E-03 1.74 0.91

EB all 7.3E-5 2.77 0.91

RC 1.1E-04 3.00 0.81

Ard. Rivers 8.1E-04 1.93 0.81

a
EB: Erlenbach; RC: Rio Cordon; Carn. Creek: Carnation Creek [Haschenburger, 2013; Haschenburger and Church, 1998];

Lainbach [Gintz et al., 1996]; Ard. Rivers: Ardennian Rivers [Houbrechts et al., 2012].
b
Total excess stream power relation (over the total stream width) based on hourly values taken from Haschenburger

[2013] and converted to excess stream energy per unit width in J/m
2
.
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Figure 7. Unit bed load volumes (fB) of the Erlenbach (EB), Rio Cordon (RC) and the Ardennian rivers (Ard. Rivers) related to

(a) the excess stream power of the peak discharge and (b) the cumulative excess stream energy over each entire flood

event. Black, dark gray and light gray circles indicate survey periods with low, moderate, and high peak discharges (Qp) at

the Erlenbach. EB errors for FB are assumed to be a factor of 2 [Rickenmann and McArdell, 2008]. Regression lines were

derived from the Erlenbach values by functional analysis.
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square of the cumulative stream energy

(Figure 7b) for the moderate- to high-magnitude

events and as a bit less than the square for the

low- to moderate-magnitude events. The unit

bed load volumes are more closely related to

cumulative stream energy than to the peak

stream power, at least for the low- to moderate-

magnitude events. Unit bed load volumes of the

Ardennian rivers are generally higher than those

observed at the Erlenbach and Rio Cordon under

comparable stream power conditions (Figure 7a).

The unit bed load volume scales roughly as the

square of the mean tracer transport distance in

the Ardennian Rivers, but roughly as the cube in

the low- and moderate-magnitude Erlenbach

events, and in Rio Cordon (Figure 8 and Table 4).

For the Erlenbach, the higher-magnitude events

(with peak discharges Qp≥ 3m
3/s) plot some-

what to the right of the regression line defined

by events with Qp< 3m3/s, although the mean

transport distances are likely to be

underestimated (and thus one would expect

them to plot even farther to the right).

4. Discussion

Both the mean transport distances and the unit bed load volumes of our steep mountain streams,

Erlenbach and Rio Cordon, are lower compared to data from other streams (Figures 6 and 7). However,

their dependence on peak discharge and cumulative stream energy is broadly consistent with the pat-

terns observed for the other streams, except for the Ardennian data set. The Ardennian data set may

deviate because it consists of four different streams with only few data points per stream (one to four).

This could explain the lower power law slopes and weak correlations of mean transport distances and unit

bed load volumes against stream power.

The generally shorter transport distances in the Erlenbach and Rio Cordon compared the other streams for a

given excess peak stream power might be explained by the different stream types. Whereas Carnation Creek

and Lainbach are lower gradient mountain streams (stream gradient 0.01m/m and 0.02m/m, respectively)

and the Ardennian data set also includes larger lowland rivers (gradients of 0.001–0.011), the mountain

streams Erlenbach and Rio Cordon are characterized by steep channels (gradients of 0.17 and 0.13, respec-

tively), step-pools, and rough bed topography. The rough bed topography might be responsible for relatively

lower bed load volumes and transport distances, compared to the other sites. Bed load transport is relatively

lower in steep streams compared to lowland rivers, due to a reduced transport efficiency resulting from an

increased demand for particle entrainment [e.g., Bathurst, 2013; Bunte et al., 2013; Lamb et al., 2008; Mueller

et al., 2005] and a reduced energy available for sediment transport resulting from macro-roughness [e.g.,

Bathurst et al., 1987; Nitsche et al., 2011; Chiari and Rickenmann, 2011; Yager et al., 2012a].

The cumulative stream energy, which represents the integrated energy of an entire flow event, has a larger

dynamic range (i.e., varies over more orders of magnitude) than peak stream power does. Perhaps partly for this

reason, it also appears to be somewhat better than peak stream power at explaining the variation in transport

distance and unit bed load volume among low- and moderate-magnitude events at the Erlenbach (Figures 6

and 7 and Table 4).Haschenburger [2013] also found a very strong correlation (r2=0.99) betweenmean transport

distance and cumulative stream energy for Carnation Creek. However, transport distances of the high-magni-

tude Erlenbach events clearly deviate from the cumulative stream energy relationship defined by the low- and

moderate-magnitude events (Figure 6); if the assumed underestimation of these transport distances (due to

potentially unrecovered front-runners) could be corrected, this deviation would presumably be even larger.
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Figure 8. Unit bed load volumes (fB) as a function of mean

transport distance (LB) for the Erlenbach (EB), Rio Cordon

(RC), and the Ardennian rivers (Ard. Rivers). Black, dark gray,

and light gray circles indicate events with low, moderate,

and high magnitude peak discharges (Qp) at EB. EB errors for

FB are assumed to be a factor of 2 [Rickenmann and

McArdell, 2008] and error bars for LB show the standard error

of the transport distances. The black regression line is fitted

to the EB low- to moderate-magnitude events, and the

dashed gray regression line is fitted to the moderate- to

high-magnitude events.
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4.1. Back Calculation of an Active Layer Depth

In our Erlenbach and Rio Cordon data, bed load volumes scale much more steeply than transport distances

do, as functions of peak stream power (power law slopes of roughly 3 and 1, respectively). Bed load volumes

also scale much more steeply with cumulative stream energy than transport distances do (power law slopes

of roughly 1.8 and 0.5, respectively). These observations imply that large bed load volumes during large

storms may arise primarily from deeper and wider bed scouring and only secondarily from longer transport

distances. The impact of the water flow on the streambed can be discussed using the active layer concept. In

this concept, as a modeling assumption, the probability distribution for a particle to be entrained by the flow

is simplified to a step function dividing the sediment vertically into two layers [Hirano, 1971; Parker, 1991;

Parker et al., 2000]: an immobile layer underlying a temporally and spatially variable near-surface active layer,

in which the probability of erosion per unit time is the same for every grain. In this study we consider the

active layer as a virtual layer in which all of the particles are entrained and which is mobilized over the entire

stream width during the course of the transport event.

From measurements of transport distances (LB), bed load volumes (FB), and average stream width (w), we

estimated an active layer depth (hB), describing the flood impact on the streambed, for individual transport

events (Figure 9) via the sediment continuity equation:

hB ¼
FB

LBw
(3)

The mean derived active layer thickness (hB) that we calculated from equation (2) for the Erlenbach is about

0.01–0.22m for the low- to moderate-magnitude events and about 0.57m for the largest transport event

observed (Table 3), which is roughly similar to the D90Surf of the bed surface. Since the mean transport dis-

tances are potentially underestimated for the high-magnitude events, the back-calculated active layer

depths (light gray circles, Figure 9) might be overestimated for these events. Although the high values might

be somewhat overestimated, these values of the active layer depth are similar to independent measure-

ments from the Erlenbach. Consider, for example, the active layer depth of 0.57m inferred for event 20, which

had a peak discharge of 10m3/s. For an event with a similar peak discharge (9.3m3/s; event 15, Table 2)
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Figure 9. Back-calculated active layer depth related to (a) unit excess stream power of the peak discharge and (b) unit

cumulative excess stream energy for the Erlenbach (EB) and Rio Cordon (RC). Black, dark gray, and light gray circles in-

dicate events with low, moderate, and high peak discharges (Qp) at the Erlenbach (EB). The solid black lines were fitted to

the Erlenbach low- to moderate-magnitude events (Qp< 3m
3
/s). The dashed black line in Figure 9a was fitted to the

moderate- to high-magnitude events (Qp≥ 1.5m
3
/s). Erlenbach error bars are derived from uncertainties in the measured

bed load volume (factor 2) and the standard error of the transport distances. Squares represent scour chain measurements in

Carnation Creek, Canada [Haschenburger and Church, 1998]. Small black dots (Ard. Rivers) are based on scour chain measure-

ments in several Ardennian Rivers, Belgium [Houbrechts et al., 2012]. The black and dashed gray lineswere not fitted to data from

Rio Cordon, Carnation Creek, or the Ardennian Rivers.
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preflood and postflood long-profile measurements show that the mean erosion was 0.47m along a 600 m

channel reach and the maximum local erosion was 2.8m [Turowski et al., 2013]. In addition, maximummobile

grain sizes of around 0.5m were observed in another comparable transport event [Turowski et al., 2009].

Inferred active layer depths in the Erlenbach scale approximately linearly with cumulative stream energy, for both

large and small events (Figure 9b). The relationship between active layer depth and peak stream power, by contrast,

cannot be described by a single power function over the entire range of flow magnitudes (Figure 9a). The data

shown in Figure 9a indicate two trends: one relation with a power law slope of 2.7 for low-to-moderate magnitude

events, and a second relation with a power law slope of 0.8 for events with moderate-to-high flow magnitudes.

The trends in active layer depth in Figure 9a are similar to those shown in Figure 7a for unit bed load volumes.

Both are steep functions of peak stream power for low-to-moderate flow magnitudes and markedly shallower

functions of peak stream power for moderate-to-high flow magnitudes. This shift could arise if, particularly at

low or moderate flows, only a fraction of the channel width actively transports sediment [Dietrich et al., 1989],

and if this active layer width increases with increasing flow. Thus, at low-to-moderate flows, the active layer

width, active layer depth, and average transport distance may all increase with increasing flow, with the result

that bed load transport is a steep function of flow magnitude. One may further hypothesize that in moderate

and larger events, the active layer width reaches both banks and thus cannot increase farther; thus, only active

layer depth and transport distance can continue to increase, making bed load transport a shallower function of

stream power in this magnitude range.

To understand how this hypothesized mechanism might affect the active layer depths shown in Figure 9a,

one must remember that these are virtual quantities averaged over the entire channel width. They represent

the actual active layer depth, times the ratio between the actual active layer width and the channel width.

Thus, the inferred active layer depth would reflect the increase in the real-world width and depth of the active

layer in the low-to-moderate magnitude range (and thus be a relatively steep function of stream power), but

only the increase in real-world depth of the active layer at higher flow magnitudes (where the real-world

active layer width has maxed out at the full width of the channel).

Although the total active layer depth in the Erlenbach can be related to both cumulative stream energy and

peak stream power (Figure 9), peak stream power provides a basis for comparison with other field observa-

tions, namely, at Rio Cordon, Carnation Creek [Haschenburger and Church, 1998], and the Ardennnian Rivers

[Houbrechts et al., 2012], where cumulative stream energy could not be estimated. The estimated active layer

depths at Rio Cordon (white diamonds, Figure 9a) follow a similar trend to the Erlenbach observations during

moderate-high flow magnitudes (solid black circles, Figure 9a), although with more scatter. The two very low

active layer depth values obtained in Rio Cordon, lying below the Erlenbach trend lines (Figure 9a), were

observed under supply-limited conditions before the September 1994 flood event as reported by Lenzi

[2004]. The 1994 flood was an exceptional event which broke up the stable bed structures and led to almost

unlimited sediment supply [Lenzi et al., 2004]. The bed load volumes (and thus active layer depths) observed

at Rio Cordon are markedly larger after this extreme flood event.

The Ardennian and Carnation Creek active layer depths shown in Figure 9a were measured by scour chains.

They follow a similar trend as the Erlenbach back-calculated active layer depths for moderate-high flow

magnitudes but lie well above the Erlenbach values for low-magnitude stream flow magnitudes. The smaller

active layer depths in the Erlenbach compared to the Ardennian Rivers and Carnation Creek during low-

magnitude flow conditions (Figure 9a) might be explained by the bed configuration of steep mountain

streams with more stable bed structure (form and grain roughness, bedrock, woody debris), and a more

limited sediment supply, compared to lower gradient streams. Alternatively, the smaller inferred active layer

depth in the Erlenbach may be an artifact of changes in the width of the active layer, as outlined in the hy-

pothesis above. A third possible explanation might be the different measurement techniques used. Our back-

calculation methods average the active layer depth over space and time, whereas scour chains measure a

spatially local, and temporally maximal, active layer depth for a given transport event.

5. Conclusions

We have presented measurements of bed load transport volumes and transport distances of tracer particles

of two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy). Despite low tracer recovery
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rates at the Erlenbach (particularly for large events) and the resulting limited number of data points (Table 2),

the observed transport distances and unit bed load volumes were strongly correlated to both the peak stream

power and the cumulative stream energy (Figures 6 and 7) of individual transport events.

Both the Erlenbach and Rio Cordon are characterized by shorter transport distances and smaller unit bed

load volumes than those observed in several lower gradient streams (Figures 6 and 7). However, transport

distance and unit bed load volumes in all of these streams exhibit broadly similar scaling with peak stream

power (Table 4), implying that these scaling relationships are not strongly dependent on stream gradient.

Unit bed load volumes scale much more steeply than tracer transport distances do, as functions of either

stream power or cumulative stream energy (Figures 6 and 7). Furthermore, unit bed load volumes scale as

roughly the third power of transport distances (Figure 8). These observations imply that storm-to-storm

variations in bed load volumes arise predominantly through variations in scour depth and width rather than

through variations in transport distances. From the observed bed load volumes and transport distances, we

back-calculated an effective mean active layer depth, which also was strongly correlated with both peak

stream power and cumulative stream energy (Figure 9) and was broadly consistent with independent mea-

surements of scour depth.

Approximating bed load transport in steep, rough mountain streams by a continuous, uniform active layer

involves gross simplifications, which will be challenged by (i) partial sediment transport [Wilcock and McArdell,

1997], (ii) mobile and stationary zones of the streambed [e.g., Hassan et al., 2005;Marquis and Roy, 2012; Yager

et al., 2012b], (iii) variations in the horizontal and vertical dimensions of the active layer over time [e.g.,

Haschenburger, 1996; Hassan, 1990;Wilcock et al., 1996], and (iv) variations in the fraction of the channel width

that is actively transporting sediment [Dietrich et al., 1989]. Despite these obvious limitations, the active layer

concept provides a useful simplified characterization of streambed response to hydraulic forcing during bed

load transport. Independent, direct measurements of active layer depths in steep streams would be helpful

for interpreting the active layer depths results derived from the back-calculation procedure presented here.
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