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Abstract

Three fundamental questions in biology are how do individual cells differentiate to form tissues, 

how do tissues function in a coordinated and flexible fashion, and which gene regulatory 

mechanisms support these processes. Single cell genomics open new ways to tackle these 

questions by combining the comprehensive nature of genomics with the microscopic resolution 

required to describe complex multi-cellular systems. Early single cell genomic studies provides us 

with remarkably rich phenomenology of heterogeneous cellular states, but transforming 

observational studies to models of dynamics and causal mechanism in tissues poses new 

challenges and require stronger integration between theoretical, computational and experimental 

frameworks.

Multicellular organisms evolved sophisticated strategies for cooperation between cells, such 

that a single genome codes for multiple specialized and complementary functional programs 

that maximizes fitness when working together1–4. Compartmentalization at several levels – 

from cells, to tissues, to organs – leads to functional diversification of cells and systems, 

with the same underlying genome. Physical copies of the genome are embedded in cells to 

allow them to maintain a semi-autonomous decision-making process, through selective 

management of small molecules, RNA and protein concentrations within cytoplasmic and 

nuclear compartments. Theoretically, this allows genomes to break the inherent symmetry 

imposed by the precise duplication of DNA content in multi-cellular species. In particular, it 

allows cellular differentiation to take place by progressive acquisition of specific intra-

cellular molecular compositions, enable epigenetic mechanisms to emerge and implement 

cellular memory. At a higher layer, inter-cellular signaling, extracellular structures, and 

environmental cues are used to form complex spatial structures into which cells (and their 

genomes) are physically embedded. This creates additional levels of compartmentalization 

to facilitate the encoding of complex and structured tissues.

A Linnaean framework is a major part of the present theoretical foundation to cellular 

heterogeneity, defining taxonomies over cell types and aiming to map this hierarchical 
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classification to the organism’s ontogeny. In this context, the composition of single cells 

within tissue and compartments has historically been characterized using microscopy and 

florescence activated cell sorting (FACS). While these techniques have high spatial or 

cellular resolution, they have relied by necessity on a limited number of molecular or visual 

markers, giving rise to classification schemes that are difficult to study globally and 

quantitatively, even when combined with downstream genome wide analysis. Nevertheless, 

molecular taxonomies are being built extensively through accumulation of large image and 

gene expression repositories5–10, and have proven successful both in some somatic tissues 

with little cell differentiation in the adult (e.g., the retina11), and in those that dynamically 

and continuously re-differentiate throughout the life span (e.g., hematopoiesis10,12).

However, despite continued progress in enhancing the palette of available markers and the 

throughput of microscopy and molecular tissue profiling, the Linnaean framework may be 

inherently inadequate when extending to whole tissues and organisms. In particular, the 

approach becomes ambiguous whenever complex mixtures of molecular behaviors are 

tightly coupled spatially and functionally in ways that make it impossible to separate them 

physically. Hierarchical classification is also not naturally applicable when the molecular 

mechanisms driving continuous effects, such as during a developmental continuum, 

differentiation bifurcation, plastic transitions between multiple cell “types”, morphogen 

gradients, or pathological, irregular deterioration of cellular programs. Indeed, in 

developmental biology, especially when dealing with embryonic differentiation, models for 

continuous change are well developed, and understanding how such processes diverge to 

form terminally differentiated stable states is a major challenge. Even the precise definition 

of a cell type is far from being agreed upon, and different fields define this key notion 

differently.

The recent advents in single cell genomics – allowing the profiling of the genetic and 

molecular state of ever growing numbers of individual cells – could also open the way for 

new, data-driven definition of cell identity and function, less encumbered conceptually by 

strict a priori hierarchies and less dependent practically on pre-defined markers. Thus, 

genomics - which emerged as a science taking advantage of the consistency of genomic 

DNA within individuals - is rapidly repurposed to handle complex genomic functions that 

ultimately occurs within single cells. This could help formulate afresh key axes – temporal 

dynamics, spatial organization, and molecular mechanisms – that inform and control cell 

identity. The major challenge for this emerging field is now to bring together the power of 

quantitative and comprehensive genomics with microscopic resolution, in order to replace 

coarse-grained, step-wise and deterministic models for cell and tissue function with more 

quantitative and predictive models.

Single cell genomics: state of the art

Genome-wide transcriptional profiling and epigenomics opened the way to comprehensive 

measurements of cells’ molecular state, in lieu of strategies based on selected markers. Until 

recently, comprehensive genomic analysis has relied either on pooling heterogeneous 

mixtures or on first sorting sub-populations and then profiling them. Bulk profiling only 

provides mixture averages, enabling genome-wide screening for regulated genes and 
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detection of compositional changes between experiments, but not direct identification of the 

cellular programs composing the samples under study. Analysis of sorted populations, on the 

other hand, was limited to known sub-populations and sorting panels, while masking intra-

sample variation.

Over the past few years, several genomics, transcriptomics and epigenomics assays were 

reconfigured to allow analysis of single cells. It is now possible to collect genome-wide 

profiles of RNA13–17, DNA18–23, histone modifications24,25, chromatin accessibility26,27, 

DNA methylation28–31, nuclear lamina interactions32, and chromosomal contacts33, as well 

as single cell protein signatures34. Initial studies focused on improving the assays’ 

throughput (number of cells), robustness (performance with samples of varying quality), 

complexity (the number of distinct molecules captured from each cell), and accuracy (level 

of noise). Single cell genomics has already produced a phenomenology of cellular 

heterogeneity at unprecedented detail in several systems16,17,26,35–54.

Single cell RNA-seq (scRNA-seq) has been at the forefront of these methods, in particular in 

terms of throughput. Whereas initial studies analyzed a handful to a hundred cells13,14,17,55, 

a series of technological advances, from robotics16,56 to microfluidics39,57 to reverse 

emulsion and hydrogel droplets increased assay throughput to tens or even hundreds of 

thousands of cells in an experiment58,59. There were also advances in techniques for 

acquiring cells and processing minuscule amounts of RNA14,60, improving the robustness of 

scRNA-seq on small samples, such as biopsies54,61, fixed cells62, and even avoiding tissue 

dissociation altogether by isolating nuclei48,63. It is still not routine to apply scRNA-seq to 

clinical samples, but it is certainly within reach38,54.

In contrast to throughput and robustness, the complexity and noise of scRNA-Seq remain 

difficult to characterize and optimize. Naively, scRNA-Seq aims to measure a complete 

census of mRNA molecules in each cell with minimal error. But as individual cells have 

variable, and a priori unknown, mRNA content, and since other cellular features may affect 

mRNA recovery, it is not currently possible to estimate the assay’s performance using e.g., 

replicate experiments. Instead, complexity estimates are based on some independent 

assumptions of mRNA content in cells (which we estimate between 105–106 molecules per 

cell, when excluding rRNA from measured estimates of total RNA64,65) and noise 

estimations are performed following analysis of variance for transcripts with presumed 

lower variability, or using spiked-in controls (reviewed in 66). Unique Molecular Identifiers 

(UMIs)16,17,56,58,59,67 and techniques for error correction (reviewed in 66) greatly reduced 

the level of technical noise, by addressing PCR duplicates, detecting cross-cell 

contamination, and defining molecule counts for downstream statistical models. 

Nevertheless, scRNA-Seq still not only samples cells from tissues, but also of molecules 

within cells.

Sampling – which initially appears as an unfortunate limitation, is a remarkably powerful 

approach to design efficient experiments, when applied correctly. The optimal scRNA 

sampling strategy of a cell population or tissue depends on the question at hand. Recent 

analyses16,17,39,52,58,59,68 have suggested that since the marginal utility of sequencing 

scRNA-seq libraries decreases rapidly with sequencing depth, aiming for a larger number of 
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cells with fewer reads per cell may be better suited for cell type identification and 

classification. When a very large number of cells are profiled, clusters of cells with similar 

RNA distributions can be identified and pooled to form idealized models of single cell 

transcription with resolution that is limited only by the number of cells. Conversely, 

grouping sampled cells into fine granularity clusters cannot be achieved unless some 

minimal amount of RNA is captured from each cell. Higher sampling depth may also be 

required for analyzing the regulatory relationship between genes within single cells (below).

Throughput, robustness and complexity are also being optimized for single cell epigenomics 

assays. Currently, such assays analyze dozens to hundreds of cells, with partial automation. 

Complexity is particularly challenging in epigenomics assays, which must target single copy 

molecules per cell and, unlike scRNA-seq, cannot buffer partial sampling by analysis of high 

copy number molecules. Two pooling strategies have been applied to circumvent low-

complexity data. First, pooling single cells25–27,47 allows effective analysis even when 

molecule recovery rate is between 1% to 10%. Second, pooling signals in the same cell 

across multiple related loci25,26 (e.g., those known to be bound by the same transcription 

factor) can help recover a cell’s epigenetic state even when coverage per locus is sparse.

Importantly, DNA methylation, histone modifications, chromatin accessibility, and 

chromosome 3D organization – each carry unique information that is not available from 

scRNA-seq, even at its maximal complexity and throughput. For example, changes in 

chromatin organization may precede and foreshadow later differentiation events, before 

these are recognizable at the level of RNA expression47,69, and may be a more stable 

fingerprint of a cell’s type and stable status. DNA methylation landscapes may reflect 

developmental potential and regulatory element activity in ways that cannot be inferred for 

the instantaneous RNA levels of the cell. Emerging strategies can measure multiple types of 

profiles simultaneously within the same single cell, thus helping to match the chain of events 

from DNA through regulatory mechanism, to RNA, protein and phenotype. Current studies 

have combined DNA and RNA70–72, RNA and a signature of proteins73–76, and RNA and 

DNA methylation72, and additional pair- and multi-way combinations will likely arise soon.

Thus, single cell genomics data can now include tens of thousands of high quality scRNA-

seq profiles along with hundreds of single cell epigenomic profiles, possibly for the same 

cells. These data provide the ultimate Linnaean toolkit, supporting unbiased and 

comprehensive classification of cells into sub-populations, and simultaneously defining 

genome-wide transcription and epigenomic states for each of the detected “cell-types”. But 

going beyond such data and its classification and into mechanistic models of genome and 

tissue regulation, we must first interpret and measure single cells in their temporal and 

spatial contexts.

The temporal axis: inferring dynamics

Biological processes are dynamic at multiple time scales, from fast responses to 

environmental stimuli (minutes to hours), through cell differentiation (hours to days) to 

pathogenesis (up to years). Characterizing the series of regulatory events that underlie such 

dynamic processes can be surprisingly challenging, because cells are rarely perfectly 
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synchronous and their dynamics is non-deterministic (Fig. 1). Previously, genome scale 

studies of regulatory dynamics required either successful synchronization, or the ability to 

isolate specific sub-populations of cells at distinct functional points along the process (Fig. 

1a). However, robust genomic profiling of even a process like the cell cycle remained 

challenging77,78.

Single cell genomics partially alleviates these limitations. While current genomic techniques 

mostly remain incompatible with live-cell tracking, sampling cells in an asynchronously 

progressing population allows in principle to computationally devise models for cellular 

dynamics at any time scale that is represented in the cell population under study79. Single 

cell genomics thus suggests a universal, computationally-driven, approach for inferring 

dynamics in genome function and regulation.

A basic principle in the inference of cellular dynamics from single cell data is maximum 

parsimony. Based on this principle, out of all possible models of dynamics that connect the 

observed cellular states, the one involving minimal transcriptional changes is preferred. This 

principle is effective for inferring cellular dynamics that proceed directionally and 

irreversibly along a succession of focal points through coordinated changes in gene 

expression. In such cases, it should be possible to infer the ‘ordering’ of cells, and the 

positions of key branching or differentiation points. Moreover, since each sampled single 

cell is positioned along the functional process, the ‘residence time’ in a phase of the process 

relates to the proportion of cells sampled from that phase79. If the number of cells is 

substantial, even very transient (and hence rare) states can be positioned confidently within 

an inferred trajectory. Thus, biological asynchrony becomes an asset, and for short-term 

processes that recur continuously (e.g., hematopoiesis), the entire dynamical process can be 

effectively sampled in a single experiment with very deep sampling of single 

cells35,37,40,80–85 (reviewed in Ref. 66).

A series of studies35,37,40,80–85 have now used these principles to infer dynamics from single 

cell profiles, while assuming linear35,40,48,86, cyclic45,87, or bifurcating37,80–84 trajectories. 

For example, one early method, Wanderlast, used single cell multiplex protein 

measurements from mass cytometry (CyTOF) data to build a trajectory of B cell 

differentiation35. Related approaches successfully ordered cells from scRNA-seq data 

sampled during multiple time points along adipocyte differentiation in vitro40 or 

neurogenesis in vivo48,86. For the cell cycle, while bulk profiles of synchronized cell 

populations have proven challenging to compare across systems77,78, a single cell ‘cycle’ 

can be readily reconstructed, and appears robustly conserved in cell lines and tissues, in both 

human and mouse45,54,58,88,89. The most recent methods have also reconstructed 

bifurcations with some encouraging progress37,80–84. Cellular dynamics was also inferred 

from epigenomic data; this is particularly important when major cell-cell variation is 

present, as in studies of chromosomal conformation in cycling cells90 (Peter Fraser and A. 

Tanay, personal communication).

However, de-novo inference of chains of events or branching structure of a dynamical 

process is computationally challenging even for deeply sampled processes, and it may 

quickly become under-determined by the data, especially if little or no prior knowledge 
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exists to determine anchor points. In particular, the principle of maximum parsimony may 

not always be appropriate. Analogous to difficulties in phylogenetic reconstruction under a 

model considering lateral-transfer of genes91, the possibility of trans-differentiation, 

plasticity, or incomplete cell lineage sorting calls for the integration of new computational 

and experimental approaches with the current parsimony-based reconstruction algorithms. 

Moreover, any given cell undergoes multiple dynamic processes simultaneously (responds to 

a nutrient, undergoes cell division, is at a point in its differentiation), and methods are 

needed to delineate these processes and distinguish convergent programs from commitment 

and differentiation. It will be important to peg the inferred dynamical models to other, 

independent, measures of the process, such as morphological92 or genetic features. For 

example, in B cells, trajectory analysis identified a very early putative population of 

comprising only 0.007% of all analyzed cells. The temporal position of this new population 

could be confirmed by assaying the status of the IgH locus. Indeed, in T and B lymphocytes, 

TcR and BcR/Ig sequences provide a unique tool, because their genetic status can be 

determined from scRNA-Seq data directly53,54,93.

Inference of cellular dynamics will be greatly enhanced by advances in assays that measure 

both DNA and RNA in the same cell. Cell lineage maps – which relate sampled extant cells 

through the cell division events and progenitor cells that gave rise to them – can be inferred 

from genetic information, either through engineered tools in model organisms94, or through 

the natural accrual of mutations at each DNA replication event95,96. Coupled with the 

functional identity of a cell, for example through scRNA-Seq, it should be possible to further 

derive cell fate maps, determining which earlier cell types give rise to later ones, a 

cornerstone of developmental biology97.

Understanding temporal dynamics of single cells is important for shedding light on human 

disease, especially cancer, where it will often require to infer cellular histories rather than 

measure them directly. Tumorigenesis is highly dynamic and involves both genetic and 

epigenetic changes in the context of a heterogeneous environment98. However, only one or a 

few snapshots are obtained of a patient’s tumor. Simultaneous measurements of both the 

genetic and functional state of each malignant cell in a tumor biopsy, as well as of the cells 

in the microenvironment, would provide an extraordinary opportunity to track a tumor’s 

evolution, understand metastasis and monitor and predict response to therapy. Emerging 

studies have shown the promise of this and related approaches in melanoma54, 

glioblastoma38,99, breast cancer23, leukemia101, and oligodendroglioma100.

The spatial axis: measurement and inference

Although physiological processes take place in tissues, and spatial organization is critical to 

tissue function, most single cell genomics approaches currently dissociate specimens and 

cannot maintain a registry of the cells’ 3D organization. While a general solution is not yet 

fully realized, this is an area of intense study, with several emerging solutions56,102–110. One 

class of approaches48,56,102–104 relegates the spatial resolution problem to the computational 

model (Fig. 2). The cell’s transcriptome carries the imprint of its location, and by combining 

single cell profiles with a reference map of a small number of marker genes, several studies 

have mapped back single cell profiles to their spatial position48,56,102–104. For example, a 
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study in early fish embryos56, used a reference map of legacy in situ expression data for a 

few dozen markers (each measured independently, and not at single cell resolution) together 

with single cell RNA-Seq from the same developmental stage, to map cells into 100-cell 

spatial “bins”. Because the expression patterns of cells in the embryo is a super-position of 

spatial gradients and early cell type specification, this also allowed distinguishing cell type 

signatures that are independent of the spatial position per se. A similar computational 

strategy103 mapped punctate spatial patterns in a worm brain. Other studies have shown 

similar imprint of both discrete regions and morphogen gradients in single cell profiles from 

early mouse embryos104 to the hippocampus48.

These examples suggest that even experimental designs where cruder information (e.g., from 

microdissection) is combined with single cell profiles can help provide rich spatial 

genomics. However, the compatibility of single cell genomics methods with such dissection 

must be improved to minimize batch bias and improve consistency across sections. More 

fundamentally, computational spatial reconstruction as currently implemented relies on the 

idea of canonical tissue organization in embryogenesis or organogenesis, such that multiple 

experiments can faithfully reproduce the same structure. We hypothesize that even in less 

constrained developmental, differentiation or pathological scenarios reproducible spatial 

structure can be used for computational analysis. For example, histopathology suggests that 

there are higher order features, at different length scales, which are preserved across 

samples, and indeed are the basis of clinical pathology. In order to devise universal strategies 

for spatial analysis in single cell genomics, new and flexible computational approaches that 

can work at multiple scales (e.g., identifying spatial motifs) would have to be integrated with 

improved experimental techniques that directly interrogate spatial structures.

To meet these challenges, techniques for genome-scale analysis of single cells in tissue 

sections in situ are evolving rapidly. Multiplexing RNA fluorescence in situ hybridization 

(RNA-FISH), for example using MERFISH105, reliably measures the expression and spatial 

position of thousands of different transcripts in multiplex in situ. Other techniques have 

produced encouraging proof-of-concept data of in situ RNA sequencing in preserved tissue 

sections and in cells106,109. It is also possible to determine the spatial expression of dozens 

of proteins in multiplex, by coupling either laser or ion beam ablation of the tissue with mass 

cytometry measurements of each ablated ‘pixel’107,108. Recent studies (Bernd Bodenmiller, 

personal communications) have used such imaging mass cytometry107 to analyze breast 

cancer tissues, and group cells into types not by their intrinsic profiles, but by the 

neighborhood that they inhabit. When using these types of methods, the notion of cell type 

may be generalized to include spatial context, or even be redefined completely as a spatial 

feature on top of which gene regulatory mechanisms and programs must be superimposed.

One major implication of a tissue’s spatial structure is the relative localization of cells of 

specific types and the molecular composition of physical contacts between them. Direct 

cellular contacts are particularly important when modeling intra-cellular regulatory 

mechanisms. While a complete 3D map of a tissue can theoretically also characterize all 

cell-cell junctions, approaches are being developed to directly measure these, for example by 

assessing small, tightly coupled bone marrow microniches of two cells (Alexander van 

Oudenaarden, personal communication). When restricting the spatial organization problem 
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to a question on the distribution of contacts between cell types, it may be possible to devise 

computational strategies analyzing correlations between existence and fractions of specific 

cell types across many samples. This can be used to generate hypotheses on the mutual 

dependency and cellular interactions within complex niches, as has been recently shown in 

tumors54.

The mechanism axis: modeling gene regulation

Moving beyond phenomenology, new approaches are needed for modeling the regulatory 

mechanisms underlying the observed repertoire of cellular behaviors. Despite intensive 

research, systematic dissection of the regulatory mechanisms has remained a substantial 

challenge. Single cell genomics provides new opportunities to combine observational, 

mechanistic and perturbational approaches for inference and modeling of regulatory 

mechanisms within and between cells (Fig. 3). Given the natural cellular resolution of the 

data, studies in this emerging domain are initially focusing at the intra-cellular level, often 

restricted to transcriptional regulation. We first discuss some these approaches, and then turn 

to the challenges of embedding intra-cellular regulation within inter-cellular contexts in the 

outlook.

The observational approach for inferring gene regulatory mechanism was classically applied 

through inference of correlations between molecular profiles of mRNA levels and/or 

epigenetic marks across a diverse set of bulk samples (e.g., different tissue types, cell types, 

or stimuli). Such analyses were confounded by the inherently mixed state within profiled 

cellular ensembles, which could generate indirect correlations or hide other important 

regulatory interactions. In contrast, single cell analysis is highly powered for co-variation 

analysis at the intra-cellular level (Fig. 3a). The most basic approach takes a large number of 

single cell profiles that capture multiple transcriptional states and generates candidate 

regulatory interactions by computing gene-gene correlations. Such analyses thus identify 

candidate regulators controlling cell types by the correlation between their expression 

pattern and the profiles of genes defining the types’ transcriptional signatures. At higher 

resolution, single cell analysis refines the definition of types and sub-types, and allows 

sensitive identification of correlation or lack of correlation within small cellular niches, thus 

allowing us to progressively exclude more spurious gene-gene putative interaction. Such 

analyses helped predict regulators controlling cell types in immune cells16, epithelial cells44, 

and neurons48,52,111,112.

But even at the single cell level, correlation does not imply causation, and predictive 

modeling of gene regulation must rely on perturbations of the system and on integration of 

mechanistic constraints into the inferred models. First, there is inherent variation between 

cells even within a seemingly homogeneous population, due to extrinsic noise66,113 or 

asynchrony in response17, such that every individual cell can be viewed as its own 

perturbation system. In this case, observational strategies (e.g., correlation) can theoretically, 

and even practically, support causal inference. For example, an early study used co-variation 

analysis across 15 dendritic cells after stimulation with LPS17, to recover a module of co-

expressed anti-viral genes and correctly associate Stat2 and Irf7 as its regulators. A similar 

approach detected Irf7 as a regulator of a common in vivo response to LPS in several 
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dendritic cell subtypes, each of which implementing a distinct basal transcriptional 

program16. In other systems, even in steady state, cells in a population may naturally span a 

spectrum of transcriptional states rather than a few discrete modes, corresponding to some 

phenotypic variation. For example, cell cycle regulated gene modules can be detected45,89, 

or modeled separately from programs controlling cellular differentiation46. In another 

application, single cell profiling recovered a spectrum of transcriptional states corresponding 

to Th17 pathogenicity and auto-immunogenic potential and identified gene modules and 

putative regulators associated with this spectrum, which were experimentally validated in 

animal models43. The computational sophistication of the techniques used for inferring 

regulatory models from single cell data is bounded by the size of the data set and the 

reliability of the readout. Very large numbers of single cells were shown to support more 

quantitative modeling in Mass Cytometry data36, suggesting that a similar approach may 

soon become applicable for single cell genomics.

Temporal resolution can play a key role in inferring regulatory mechanisms from 

observational data. For dynamic processes occurring on a time scale longer than 

transcription itself, such as stable induction of cell-type specific transcription factors, it is 

possible to use datasets ordered along temporal trajectories and significantly enhance the 

power of causal inference by identifying time-lags between the activity profiles of early and 

late regulators associated with specific transitions. This approach has been applied to predict 

and validate a role for the IL7/Stat5 pathway in early B cell development in vivo35, for 

different transcriptional regulators in myoblast differentiation in vitro40, and for 

neurogenesis during embryonic development86 and in the adult48. However, many regulatory 

processes occur at much shorter time scale, or involve post transcriptional and translational 

mechanisms that are not observed at the transcriptional level, thereby restricting our ability 

to infer regulatory relationship from observations even in time-resolved single cell data sets.

The incorporation of epigenomics data, especially at the single cell level, into models of 

gene regulation can power up a causal inference framework, by adding considerations that 

are not represented in observations of transcriptional states. Population and reference 

epigenomics may help bound the census of potential regulatory interactions by linking TFs 

with binding sites, or enhancer elements with target genes, helping to exclude putative 

regulatory relationships that are incompatible with the epigenomic mechanistic constraints. 

Single cell epigenomics, independently or simultaneously with RNA profiles, can define the 

regulatory landscape in a genome with an even better resolution, linking epigenetic activity 

at particular regulatory elements with the activities at other elements, or with the RNA 

output of target genes. Such epigenetic activity can be identified by methods for assessing 

chromosome accessibility26,27 or DNA hypomethylation28,31. Inference of gene regulation 

from single cell epigenomics is still limited by the depth and breadth of the data, and 

computational approaches allowing pooling of a large number of epigenomic profiles to 

compute robust correlations25–27,31 must be further developed. Such approaches may 

eventually help us develop quantitative mechanistic models of transcription, and uncover the 

molecular basis of intrinstic and extrinsic factors that drive transcriptional variability and 

noise.
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Ultimately, combining single cell genomics with experimental perturbation of the systems 

under study provides the most direct avenue for causal inference. Analysis of classical 

knockout models ex vivo17,39 or in vivo46, allowed for example to validate and refine the 

regulatory interactions between factors, such as Cebpa and Cebpe during myeloid cell 

differentiation46. Moreover, modern high throughput perturbation methods, especially those 

based on CRISPR technology, can be combined with single cell genomics to perform causal 

analysis at unprecedented scale and resolution. This can be achieved by coupling existing 

CRISPR screens with a single cell RNA-seq readout, providing intimate dissection of the 

molecular response to perturbations and going beyond pre-defined, lower-content 

phenotypes. Such combination require massive throughput from scRNA-seq technology, and 

reading the (multiplexed) perturbation with the profiling method. Finally, perturbation 

screens can be designed specifically to perturb regulatory systems and test hypotheses 

derived by mechanistic models of single cell gene regulation.

Outlook

Efforts for mapping and classification of cellular programs in human and in model 

organisms are becoming increasingly ambitious, aiming at a comprehensive atlas of cell 

types and subtypes in organs and organisms. This opens remarkable opportunities to go 

beyond descriptive studies of cell type and state and to develop mechanistic-predictive 

models of regulatory programs. Reference maps are an essential starting point for inference 

and testing of predictive models. Mechanistic models, in turn, make it possible to dissect, 

annotate and contextualize large reference maps. Thus, a comprehensive atlas of normal 

cellular states in human or mouse will open the way for, but will not substitute, the need for 

predictive and mechanistic models. This is because each disease, and each individual’s 

genetic variants, span a new system and possible new variation on the reference state, which 

must be characterized. In the context of an extensive reference atlas, however, and given that 

some features appear quite robust to inter-individual variation, the focus of gene regulatory 

modeling need not be complete de novo inference of states from e.g., sequence or 

epigenomes, but on the ability to infer the effect of small perturbations, given the availability 

of measured states with very similar characteristics. Thus, modeling how known cellular 

states are perturbed may shed critical light on diseases mechanisms, while providing a 

tractable path to predictive model of cellular function, despite the incredible computational 

complexity of the cellular process.

By way of metaphor, the existence of a “periodic-table” of cell states may be sufficient for 

understanding the “physics” of individual cells, but not the “chemistry” by which they 

combine in tissues. Thus, as single cell genomics is revolutionizing our ability to map cell 

states and infer mechanisms for intra-cellular gene regulation (the “periodic elements”), 

another grand challenge remains to integrate such individual cellular states into models of 

functioning tissues (the “chemistry”). Cells are the building blocks of tissues, and the 

emerging techniques we discuss above may allow their mapping within 3D space, or the 

tracking of their immediate cellular neighborhoods and lineage trees. Methods to measure 

and model key intercellular molecular markers, such as metabolites, signaling molecules and 

components of the extracellular matrix will be critical in order to assemble single cells into 

cohesive models of tissues. As with cell state models, descriptive tissue models are only a 
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starting point towards understanding and predicting the higher order organization and 

function of tissue. While the complexity of the processes and the molecular decisions made 

by communities of interacting cells may appear daunting, it is likely that there exists an 

intermediate molecular-anatomical level of “tissue modules” with distinct functionalities1. 

We thus envision a framework that combines information on spatial proximity, molecular 

communication between cells, and the functional impact of those interactions on cell states 

to identify and study recurrent multi-cell modules in tissues. Such modules may consist, as 

previously proposed1, of cells with complementary functions, including the core specialized 

cell of the tissue (e.g., adipocyte cells in the fat; myocytes in muscle; epithelial cells in the 

gut mucosa, etc.) along with accessory cells providing key support functions1. If and when 

such modules can be characterized and studied experimentally, single cell genomics may 

lead toward a real revolution in our fundamental understanding of biology.
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Figure 1. The temporal axis

(a) Bulk assays sample cell populations that progressively lose synchrony, limiting the 

precise inference of the temporal dynamics. (b) Sampling of a single heterogenous mixture 

of single cells in different states can be used to infer temporal dynamics based on a 

maximum parsimony principle, where the sampled cells are organized along a linear or tree-

like process, such that differences in the molecular profiles of the sampled cells are captured 

fatefully by the inferred topology. (c) The maximum parsimony approach for inferring 

temporal dynamics from single cell samples is challenged when transition between frequent 

states are rare (left), or when cells undergo complex, non-hierarchical, or non-deterministic 

dynamics (right). In either case, the maximum parsimony model for the data may become 

under-determined. (d) Adding anchor points, such as known stem cell states or differentiated 

states, may help distinguishing between different alternative dynamical models in single cell 

data. Experimental information on the clonal relationship within a single cell sample can 

lead to correct identification of a bifurcation process as illustrated schematically here.

Tanay and Regev Page 17

Nature. Author manuscript; available in PMC 2018 January 18.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. The spatial axis

(a) Spatial mapping takes as input single cell profiles (left) and a reference map of the 

spatial expression patterns of a small number of landmark genes. The expression of the 

landmark genes in the cells is used to determine the spatial position of the entire cell. (b–d) 

Examples of successful spatial mapping in the early fish embryo (b) (adapted from 56), 

where a few cells, with a distinct apoptotic-like profile, were mapped to a salt-and-pepper 

pattern; in the early mesoderm, where single cell expression can define an anterior-posterior 

pseudospace (adapted from 104); and in the hippocampus (d) where pyramidal neuron cell 

clusters from the CA1 region map along lateral-medial and anterior-posterior axis (adapted 

from 48).
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Figure 3. The mechanism axis

(a) Inference through co-variation across single cells. Using expression profiles for 

regulators and targets (left, columns) across cells (rows), a correlation graph (right) is 

constructed between genes and identify candidate regulators. With increasing number of 

cells, the correlation approach can help exclude putative regulatory relationships, if they are 

inconsistent with observing states. In the schematic example, gene 7 is unlikely to regulate 

genes 1,2,4,5, or 6, but may regulate genes 3 and 8. (b) Inference through temporally 

resolved single cell data. Putative regulatory interactions are identified as time lags between 

the activity profiles of regulators and their potential targets. In the schematic example, the 

data suggest that gene 7 is unlikely to regulate gene 3. (c) Refinement of regulatory models 

with epigenetic information. A schematic depiction of a regulatory region around gene 3, 

including three putative enhancer elements that are targeted by two putative regulators, 

encoded by genes 2 and 7. Pooled single cell epigenomics data identifies two states: (1) gene 

3 is active and targeted by gene 2, and (2) gene 3 is inactive and targeted by gene 7, 

suggesting together, that gene 2, but not gene 7, is activating gene 3. (d) Causal inference of 
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regulatory models by perturbations. Top: Perturbation experiments of specific genes, 

followed by single cell profiling help determine causal relationships. Bottom: Perturbations 

performed in a pool, combinatorially for multiple loci, followed by single cell monitoring of 

both the perturbation and its effect on transcription, with enhanced power for causal 

inference.
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