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[1] The spatial distribution of snow water equivalent (SWE) within 16-, 4-, and 1-km2

grid elements surrounding six snow telemetry (SNOTEL) stations in the Rio Grande
headwaters was characterized using field observations of snowpack properties, satellite
data, binary regression tree models, and a spatially distributed net radiation/temperature
index snowpack mass balance model. In some cases, SNOTEL SWE values were
200% greater than mean grid element SWE. Analyses designed to identify the optimal
location for measuring mean grid element SWE accumulation indicated that only 2.4% of
each grid element satisfied the criteria of optimality. Similar analyses for the ablation
season showed that point SWE and mean grid element SWE were highly correlated
(r = 0.73) in areas with relatively persistent snow cover. These locations did not overlap in
space with areas deemed optimal at maximum accumulation; areas with persistent snow
cover have relatively high accumulation rates. Therefore future observations may need to
be placed with the specific objective of representing either accumulation or ablation
season processes. These results have implications for large-scale studies that require
ground observations for updating purposes; we show an example of this utility using the
SWE product of the National Operational Hydrologic Remote Sensing Center.
Furthermore, the relatively consistent spatial patterns of snow accumulation and melt have
implications for future observation network design in that results from short-term studies
(e.g., 2 years) can be used to design long-term observation networks.

Citation: Molotch, N. P., and R. C. Bales (2005), Scaling snow observations from the point to the grid element: Implications for

observation network design, Water Resour. Res., 41, W11421, doi:10.1029/2005WR004229.

1. Introduction

[2] In seasonally snow covered mountainous regions, the
spatial resolution of distributed hydrologic models is largely
dictated by the scale of the available input data [Blöschl,
1999]. The spatial distribution of snow water equivalent
(SWE) is a particularly important state variable in many of
these simulations as it provides the majority of the water
input to the system and dramatically influences energy
exchange between the land surface and the atmosphere.
The ideal spatial resolution for estimating SWE distribution
reduces subgrid element heterogeneity to a level where the
majority of the variability in the system can be modeled
explicitly [Blöschl, 1999]. However, a certain amount of
variability has to be ignored or parameterized [Beven, 1995].
[3] Managed by the Natural Resource Conservation

Service (NRCS), the snow telemetry (SNOTEL) network
provides daily snow water equivalent measurements at 768
stations across the western United States. SNOTEL stations,
which generally consist of a snow pillow, air temperature
sensor, and a storage precipitation gauge, replace the
manual snow courses that provide information for empirical

water supply forecasts. Since the data are used in regres-
sion-based water supply forecast models, snow courses
were placed in areas that are representative of the water
producing regions of a watershed [U.S. Soil Conservation
Service, 1972]. Because the main criteria for snow course
site selection were accessibility and protection from public
disturbance (M. Gillespie, NRCS, personal communication,
2004), snow courses and SNOTEL stations may not provide
the quantitative, spatial snowpack information needed for
spatially distributed modeling. Nevertheless, the network
has been used to estimate the spatial distribution of SWE
[Fassnacht et al., 2003; Molotch et al., 2004b] and to
update snowpack model state variables within hydrologic
models [Carroll et al., 2001]. The use of SNOTEL data in
these applications assumes that observed SWE at a given
SNOTEL station is representative of the corresponding grid
element. Thus there is a need to evaluate the validity of this
assumption by defining the continuum of SWE within grid
elements encompassing SNOTEL stations.
[4] Future spatial modeling and measurement of hydro-

meteorological processes in mountainous regions will
require improved observational capabilities [Consortium of
Universities for the Advancement of Hydrologic Science
Inc., 2003; GEWEX America’s Prediction Project, 2003].
Hence a statistically unbiased approach for selecting the
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most representative locations for future snowpack observa-
tions is needed.
[5] Midlatitude alpine and subalpine regions often exhibit

a distinct snow accumulation season in which snowmelt
between snowfall events is relatively insignificant with

respect to the snowpack mass balance. Conversely, a
distinct ablation season often exists in which inputs of
precipitation during the melt season are relatively insignif-
icant to the snowpack mass balance. Thus physically based
techniques for upscaling ground-based snow water equiva-
lent observations should represent both snow accumulation
and snow ablation processes.
[6] Small-scale snow distribution studies have shown that

the relationships between snow accumulation and physio-
graphic variables are nonlinear [Elder et al., 1998; Molotch
et al., 2005]. Regression tree snow depth models have been
used to explore these nonlinear relationships with consid-
erable success [Balk and Elder, 2000; Elder et al., 1998;
Erxleben et al., 2002; Molotch et al., 2005; Winstral et al.,
2002] and therefore can be used to determine how inde-
pendent variables control the continuum of snow distribu-
tion over a given area.
[7] During the snow ablation season, the mass balance of

the snowpack can be determined by knowing two of the
following three variables: (1) SWE accumulation at the
beginning of melt, (2) the melt rate, and (3) the depletion
rate of snow covered area (SCA) [Liston, 1999]. In midlat-
itude mountainous regions, where radiative fluxes dominate
snowmelt [Cline, 1997], snowmelt rates can be adequately
simulated using a temperature index model that explicitly
includes net radiation [Brubaker et al., 1996; Molotch et al.,
2004a]. Modeled snowmelt can be integrated over the time
required to melt all of the snow in a given area; the initial
SWE over that area is equal to the integrated value [Cline
et al., 1998; Molotch et al., 2004a].
[8] We use the aforementioned snow accumulation and

ablation models to characterize the spatial variability of
SWE surrounding six SNOTEL stations in and around the
Rio Grande headwaters (Figure 1). More specifically, we
use binary regression tree models, physiographic variables,
and detailed observations of snow depth and snow density
to assess SNOTEL representativeness at maximum accu-
mulation; and by proxy the accumulation season. A tem-
perature index mass balance model which explicitly
includes net radiation was then used to reconstruct daily
SWE distribution [Molotch et al., 2004a] and temporal
trends in SNOTEL representativeness. As part of this
assessment we present an approach for determining the
most representative area for future observations.
[9] Three questions are addressed. First, what is the

distribution of SWE within grid elements of various reso-
lutions (i.e., 16, 4, and 1 km2) encompassing the SNOTEL
sites and how representative are these sites relative to the
mean of the distribution? Second, what are the temporal
trends in SNOTEL representativeness throughout the snow-
melt season? Finally, what is the optimal location for future
observations of SWE for the purpose of upscaling to the
grid element?

2. Study Area

[10] This study was conducted in an area surrounding
the Rio Grande headwaters in the San Juan Mountains of
southern Colorado (Figure 1). Nested study areas surround-
ing six SNOTEL sites were included in this research.
Additional meteorological data used in this research (i.e.,
relative humidity, air temperature, and wind speed and
direction) were obtained from the Colorado State University

Figure 1. The Rio Grande above Del Norte and the
Slumgullion (1), Upper Rio Grande (2), Middle Creek (3),
Upper San Juan (4), Wolf Creek Summit (5), and Lily Pond
(6) SNOTEL sites. White rings indicate the locations of the
SNOTEL sites. Location of the Colorado State University
San Luis Valley Research Center at Center Colorado is also
indicated.
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San Luis Valley Research Center at Center, Colorado
(hereafter referred to as the Center meteorological station)
(106�803800W, 37�4202400N) (Figure 1). Physiographic attrib-
utes of the sites and average annual maximum SWE
accumulations are shown in Table 1.

3. Study Period

[11] This study was conducted from maximum SWE
accumulation (Table 2) through the end of the 2001 and
2002 snowmelt seasons. Maximum SWE accumulation at
the six SNOTEL sites averaged 128% and 34% of historical
means for water years 2001 and 2002, respectively. The
accumulation season is described below solely for back-
ground on snowpack condition at maximum accumulation.
In 2001 the snow accumulation season began early with
above average precipitation during the months of October
and November. A drier than average December and early
January was followed by above average precipitation from
late January until the end of April.
[12] In 2002 below average precipitation was recorded at

the six sites throughout the water year. The period from
1 December to 1 March was particularly dry with total
precipitation less than 10 cm on average. This cold dry
period caused substantial vapor gradients within the snow-
pack; faceted snow layers persisted from the ground surface
to the snow/atmosphere interface in many locations. The
snow accumulation season terminated relatively early, with
little precipitation recorded after 20 March. The snowmelt
season commenced and concluded approximately one
month earlier in 2002 versus 2001 (Table 2). Precipitation
during the snowmelt season was greater in 2001.

4. Methods

[13] Two approaches to estimating the spatial distribution
of SWE within the grid elements were applied. The first
approach used intensive field surveys of snow depth and
density, binary regression tree models, and remotely sensed
SCA data to estimate SWE near the time of maximum
accumulation. The second approach used remotely sensed
SCA data and a net radiation/temperature index mass
balance model [Molotch et al., 2004a] to reconstruct daily
SWE distributions throughout the snowmelt season. The
second approach was evaluated by comparing the pixel-
specific reconstructed SWE estimates, at the time of the
field surveys, with regression tree SWE estimates as they

are based on field observations. Above and hereafter the
term grid element is used to signify the 16-, 4-, and 1-km2

areas surrounding the SNOTEL sites. The term pixel is used
to signify the 30-m scale at which we model subgrid
element SWE distributions.

4.1. Field Methods

[14] Snow depth and density data were collected around
the six SNOTEL sites on 22–27 April 2001 and 3–12 April
2002. At all six sites, snow depth and density measurements
were made along four, 500-m-long transects extending
linearly in cardinal directions from the snow pillow
(Figure 2). Triplicate snow density measurements were
made at 100-m intervals along these transects using a
Federal Sampler and locations were recorded using a global
positioning system (GPS). Snow depth measurements were
made using a composite graphite probe at 25-m intervals
along these transects. Federal Sampler snow density obser-
vations were multiplied by 0.9 to account for sampling
errors [Gray and Male, 1981]. Snow pits were excavated
within five meters of the snow pillow and snow density was
measured at 10-cm vertical intervals using a 1000 cc
stainless steel snow cutter. Three to five Federal Sampler
measurements were made adjacent to the snow pit
(Figure 2). Snow depth measurements were also made at
1-m intervals along 15-m transects extending from the snow
pillows in cardinal directions (Figure 2). The snow depth on
a given snow pillow was estimated using the average value
of the four closest snow depth measurements, the depth of
the snow pit, and the ratio of the SWE measured on the
pillow and the snow density measured in the snow pit.
[15] At the Slumgullion and Upper San Juan sites

additional snow depth measurements were made at approx-
imately 250-m intervals in an evenly spaced grid pattern,
covering a total area of approximately 4 km2 (Figure 2). At
each point, three depth measurements were collected 5 m
apart from one another with the center location recorded
using a GPS. Site locations were initially determined using
GPS to determine distance from the SNOTEL site. Unlike
the measurements made along the 500-m transects, these
measurements were repeated on 27 May to 2 June 2001 and
on 5–9 May 2002. Measurements were shifted to the south
of the Upper San Juan study area by approximately 1 km
because of the inaccessibility of the steep terrain to the north
of the site.

Table 1. Attributes of the Six SNOTEL Sites in the Rio Grande

Headwaters Used in the Analysis

Sitea
Forest

Density,b % Elevation,c m Installedc
Maximum
SWE,c,d cm

1 82 3581 1980 42
2 62 2855 1987 17
3 40 3430 1980 53
4 71 3089 1979 83
5 76 3331 1987 94
6 68 3374 1980 43

aSites 1–6 are numbered as in Figure 1.
bSource: USGS EROS data center.
cSource: NRCS National Water and Climate Center.
dValues are average annual maximum Snow Water Equivalent (SWE)

from installation year to 2002.

Table 2. Dates of Annual Maximum Snow Water Equivalent and

Snow Disappearance (SWE = 0) at the Six SNOTEL Sites, 2001

and 2002a

Siteb

Date of
Maximum SWE Date of SWE = 0

Melt Season
Precipitation,

cm

2001 2002 2001 2002 2001 2002

1 24 Apr 17 Apr 1 Jun 13 May 5.33 0.76
2 15 Apr 12 Mar 11 May 25 Mar 3.05 1.02
3 23 Apr 22 Mar 9 Jun 22 Apr 3.56 3.05
4 23 Apr 27 Mar 2 Jun 26 Apr 4.32 2.54
5 28 Apr 18 Apr 21 Jun 25 May 3.56 0.00
6 23 Apr 21 Mar 20 May 22 Apr 3.56 2.03

aSnowmelt season precipitation is also shown.
bSites 1–6 are numbered as in Figure 1.
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[16] The April 2001 sampling protocol at the Middle
Creek site differed from that described above because we
were unable to locate the SNOTEL site until late in the day.
Snow depth measurements were made along north/south
transects to the east of the SNOTEL site until the site was
found.
[17] On average, the number of snow depth and density

measurements made at each of the six sites in 2001 was 184
and 15, respectively. In 2002, the average number of snow
depth and density measurements made was 159 and 16,
respectively.

4.2. Physiographic Variables

[18] Using a geographical information system (GIS), the
topographic variables elevation, slope and aspect were
obtained from the level 1 standard 7.5-min, 30-m resolution,
U.S. Geological Survey digital elevation model (DEM).
[19] The TOPQUAD algorithm [Dozier, 1980] was used

to calculate a solar radiation index assuming clear-sky
conditions. Daily integrated net solar radiation was calcu-
lated for each 30-m pixel within the study area on the 15th
of each month for the period November–May, 2001 and
2002. The solar radiation index was calculated as the sum of
daily integrated surfaces from 15 November to the 15th of
the respective month of the snow survey.

[20] The mean maximum upwind slope, Sx, is a tempo-
rally invariant terrain-based parameter designed to capture
the variability in snow deposition as a result of wind
redistribution [Molotch et al., 2005; Winstral et al., 2002].
The DEM and relative humidity, wind speed, and wind
direction data from the Center meteorological station were
used to calculate the maximum upwind slope [Molotch et al.,
2005; Winstral et al., 2002].
[21] Vegetation density can control snow distribution

by altering the energy balance at the snow/atmosphere
interface, intercepting snowfall and by influencing the
surface roughness and the wind fields that transport snow
[Gray and Male, 1981]. As a proxy for vegetation density
we use forest covered area which we determined from
Landsat enhanced thematic mapper (ETM+) derived
fractional SCA:

Fc ¼ 100� SCAs ð1Þ

Where Fc is the forest covered area (percent) and SCAs is
the fractional SCA (percent) on 1 April, 2001. Methods
used to derive fractional SCA are described later in this
section. Fractional SCA can provide sufficient estimates of
forest covered area provided there is continuous snow cover
on the ground and there is no snow in the tree canopy (R. E.
Davis, personal communication, 2005); such conditions
were present on 1 April 2001. More complex approaches for
deriving forest covered area are beyond the scope of this
work.
[22] The selection of the variables described above was

based on results of previous studies [Balk and Elder, 2000;
Elder et al., 1998; Erxleben et al., 2002; Molotch et al.,
2005; Winstral et al., 2002] that have illustrated the ability
of these variables to explain snow distribution.

4.3. Binary Regression Trees

[23] We interpolated point snow depth observations (i.e.,
the dependent variable) using binary regression tree models.
Various combinations of the aforementioned independent
variables were used to predict snow depth in a nonlinear
hierarchical fashion [Molotch et al., 2005]. Snow depth data
were binned into increasingly homogeneous subsets using
binary recursive partitioning [Chambers and Hastie, 1993].
The techniques used to construct regression trees and
perform cross validation are described in detail by Molotch
et al. [2005].
[24] The ability of inverse Distance Weighting (IDW),

kriging and cokriging (with the same 30-m resolution
independent variables) to distribute snow depth residuals
from the regression tree models was assessed following the
methods of Molotch et al. [2005]. Spherical, Gaussian and
exponential models were fit to the variograms and com-
pared. The models resulting in the lowest root-mean-square
errors (RMSE) were selected. Anisotropic variance structure
was assessed and determined nonexistent.
[25] The observed snow depths at the SNOTEL sites were

compared to the statistical distribution of the final modeled
snow depth over the surrounding 16, 4, and 1-km2 grid
elements to assess SNOTEL representativeness.
[26] Snow density observations were interpolated using

multivariate regression models that included all aforemen-
tioned independent variables [Erxleben et al., 2002;
Molotch et al., 2005].

Figure 2. Location of snow density and snow depth
measurements (dots) around the Slumgullion SNOTEL site
(white ring). Federal sampler measurements are indicated by
diamonds in the 1-km2 inset. This nested design was
duplicated at the Upper San Juan SNOTEL site. The
sampling design in the 1-km2 inset was duplicated at the
Upper Rio Grande, Middle Creek, Wolf Creek Summit, and
Lily Pond sites.
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[27] The spatially distributed snow depth estimates were
also used to identify the optimal location for future obser-
vations. The mean modeled snow depth of each simulation
was subtracted from the snow depth estimate of each pixel
to create spatially distributed estimates of deviance from the
mean value. The absolute values of the April 2001 and 2002
deviation surfaces were summed to derive spatially distrib-
uted estimates of cumulative, absolute deviance from the
mean. Areas with the lowest deviance from the mean were
identified as the optimal locations for future observations.
The range of the physiographic conditions of these areas
was determined and compared to the conditions at the
current SNOTEL sites. SWE was not used for defining
the optimal site location because there is more uncertainty
in distributed SWE estimates than in distributed snow
depth estimates; regression tree models predict snow depth
whereas SWE also includes distributed estimates of snow
density. Furthermore, exploring the structure of the regres-
sion tree snow depth models reveals the physiographic
conditions required for representative measurements.
[28] For each regression tree simulation the maximum

SWE (m) of each pixel, p, within each study area was
determined:

SWEp ¼ dp rs=rwð ÞSCAp ð2Þ

Where dp (m) is the modeled snow depth, rs (kg m�3) is
the modeled snow density, rw is the density of water
(1000 kg m�3), and SCAp is the fractional snow covered
area (described below).
[29] The measured SWE at the SNOTEL sites were

graphically compared to the spatial statistical distribution
of the regression-tree-modeled SWE of the surrounding
16-, 4-, and 1-km2 grid elements to assess SNOTEL
representativeness.

4.4. Snow-Covered Area

[30] Satellite imagery from ETM+ on 17 April 2001 and
4 April 2002 were used to construct fractional SCA images
across the study areas using the direct spectral unmixing
algorithm of Painter et al. [2003]. Cloud masks were
derived manually based on the radiances observed in
ETM+ bands 3 and 4. ETM+ data acquired on 1 April,
4 June, 20 June, and 7 July 2001, and 16 March, 6 May, and
22 May 2002 were also processed for fractional SCA for
use in snowmelt modeling.

4.5. Snow Water Equivalent Reconstruction

[31] In the absence of significant precipitation inputs, the
ablation season mass balance of the snowpack can be
approximated as

SWEn ¼ SWE0 �
X

n

j¼1

Mj ð3Þ

where Mj is the melt flux at time step j, SWEn is the SWE of
the pixel at time step n, and SWE0 is the initial SWE. Daily
SWE estimates were obtained by manipulating (3) in a
manner similar to Cline et al. [1998]; when

SWEn ¼ 0; SWE0 ¼
X

n

j¼1

Mj ð4Þ

[32] Here SWE0 is treated as each daily time step from
1 March to 31 July. This time period was chosen as it
encompasses the 2001 and 2002 snowmelt seasons (i.e.,
from maximum SWE to SWE = 0) for any given pixel in the
modeling domain. This approach allows us to simulate daily
SWE distributions as opposed to the single initial time step
simulated by Cline et al. [1998]. The time step at which
SWEn equals zero was determined from remotely sensed
SCA data; when SCAn is equal to 0, SWEn is equal to 0.
Pixel-specific melt flux was estimated as [Brubaker et al.,
1996]

Mj ¼ Td * ar þ Rn * Mq

� �

* SCAj ð5Þ

Where Td is the number of degree days (i.e., the average
daily air temperature above 0�C), ar is the degree day
coefficient (cm �C�1 d�1), Rn is the average daily net
radiation above 0 W m�2

, and Mq is a simple energy to
water depth conversion (0.026 cm W�1 m2 d�1). Vertical
melt flux (parenthetic terms in (5)) was scaled by estimates
of fractional SCA (values range from 0 to 1) using pixel-
specific snow cover depletion curves:

SCAj ¼ SCAi �

"

SCAi � SCAkð Þ

�

X

n

i¼1

Mi �
X

n

k¼1

Mk

 !#

*
X

n

i¼1

Mi �
X

n

j¼1

Mj

" #

ð6Þ

Where SCAj is the estimated fractional SCA at time step j,
SCAi and SCAk are Landsat ETM+-observed fractional
SCA values preceding and subsequent to time step j,

respectively, and
X

n

i¼1

Mi and
X

n

k¼1

Mk are the vertical melt flux

summation values corresponding to Landsat ETM+ acquisi-
tion time steps i and k, respectively.
[33] This net radiation/temperature index approach was

used instead of a physically based model for three reasons.
First, wind speed observations, required for physically
based models, are not made at SNOTEL stations; extrapo-
lating wind observations from distant locations (e.g.,
>50 km) over complex terrain would introduce significant
uncertainty. Second, we want to maintain transferability of
our approach by using a relatively simple technique; here
we study only 6 of 768 SNOTEL stations in the western
United States. Third, this approach has proven to adequately
reconstruct SWE distribution in mountainous environments
[Molotch et al., 2004a] as it explicitly represents radiative
fluxes which account for the majority of total energy
exchange at the snowpack/atmosphere interface [Cline,
1997; Marks and Dozier, 1992].
[34] Daily SWE empirical cumulative distribution plots

were generated for the six study sites and compared with
SNOTEL SWE values. For each daily time step SNOTEL
SWE, SWEs,j values were divided by the mean modeled
SWE, SWEa,j within the 16-, 4-, and 1-km2 grid elements in
order to derive a scaling coefficient, Cs,j relating SNOTEL
SWE to the SWE of the grid element:

Cs;j ¼
SWEs;j

SWEa;j
ð7Þ
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Given the inherent spatial variability in snowmelt rates, the
scaling coefficients are likely to change throughout the
snowmelt season. Thus a linear least squares fit between
SNOTEL scaling coefficients and accumulated degree days
was developed to predict the scaling coefficients. Accumu-
lated degree days were determined by summing (throughout
the snowmelt season) the observed average daily air
temperatures above 0�C. Accumulated degree days were
used as the explanatory variable because air temperature is
measured at SNOTEL sites whereas other important
variables that control snowmelt, such as solar radiation are
not. Hence transferability of our approach to other SNOTEL
sites is ensured.
[35] To identify the optimal location for future observa-

tions scaling coefficients were calculated for each 30-m
pixel within the 16-, 4-, and 1-km2 grid elements:

Cp;j ¼
SWEp;j

SWEa;j
ð8Þ

where all variables are the same as in (7) only the term for
SNOTEL SWE is replaced with pixel-specific SWE
indicated by the subscript p. A linear least squares fit was
then developed between pixel-specific scaling coefficients
and pixel-specific estimates of accumulated degree-days
derived from the spatial estimates of air temperature
described below. Spatially distributed estimates of correla-
tions were then mapped for 2001 and 2002 independently.
Areas in which correlations were consistently highest were
determined optimal locations for future observations of
ablation season SWE.
[36] The degree-day value, Td, was spatially distributed

using an environmental lapse rate and a 30-m DEM [Daly et
al., 1994; Thornton et al., 1997; Willmott and Matsuura,
1995]. Lapse rates were determined on a daily basis from air
temperature observations at the SNOTEL station within the
modeling domain and the next nearest meteorological
station (i.e., SNOTEL station or the Center meteorological
station). The degree-day coefficient, ar, was calculated
using the standard bulk transfer parameterization [Brubaker
et al., 1996] and average observed values of wind speed,
relative humidity and air temperature observed at the Center
meteorological station over the modeling period. Surface
roughness (0.0005 m) and other assumptions were consis-
tent with those of Brubaker et al. [1996]. Stability correc-
tions were calculated using the methods of Kustas et al.
[1994] with specific humidity calculated from observations
of air temperature and relative humidity.
[37] Net radiation, Rn, was calculated as

Rn ¼ S# 1� að Þ þ L# þ L" ð9Þ

Where S# is incoming solar radiation (W m�2), a is the
snow-surface albedo, and L# and L" are incoming and
outgoing longwave radiation (W m�2), respectively.
Incoming and outgoing energy flux terms were treated as
positive and negative values, respectively.
[38] TOPORAD [Dozier, 1980; Dozier and Frew, 1990]

was used to model hourly clear-sky incoming solar radiation
for each 30-m pixel within each of the six modeling
domains. Incoming solar radiation in the visible (0.3–
0.9 um), near infrared (0.9–1.2 um) and middle infrared
(0.9–1.2) was calculated separately and then integrated. To

account for terrain illumination, clear-sky incoming solar
radiation surfaces were used to downscale 1/2�-resolution
incoming solar radiation data from the Geostationary Op-
erational Environmental Satellites (GOES) [Pinker and
Laszlo, 1992] to 30-m resolution:

S# ¼

P

24

h¼1

St;h

,

P

24

h¼1

St;h

2

6

4

3

7

5

X

24

h¼1

SG;h

0

B

@

1

C

A
=24 ð10Þ

Where S# is incoming solar radiation at 30-m resolution, St,h
is modeled clear-sky incoming solar radiation for hour h, St
is the average incoming clear-sky solar radiation across the
16-km2 modeling domain, and SG is GOES-derived
incoming solar radiation. To account for the effects of
vegetation on incident shortwave radiation the result of (10)
was multiplied by a nonlinear insolation transmission
coefficient [Cline and Carroll, 1999]. To reduce computa-
tional expense, hourly values of St were simulated every
10 days and then interpolated linearly as a function of time
between the 10-day intervals. Snow surface albedo was
estimated using a snow-age-based decay function [U.S.
Army Corps of Engineers, 1956].
[39] Using the spatially distributed air temperature esti-

mates and relative humidity surfaces, we applied the Idso2
formulation [Idso, 1981] to model the spatial distribution of
incoming longwave radiation [Cline et al., 1998]. Specific
humidity was calculated from relative humidity and tem-
perature observations at the Center meteorological station.
Spatial estimates of relative humidity were then derived
from air temperature surfaces with specific humidity as-
sumed spatially constant throughout the modeling domain
[Cline et al., 1998]. The effect of vegetation on incoming
longwave radiation was accounted for by weighting emis-
sivity as a function of forest cover density [Cline and
Carroll, 1999].

5. Results

5.1. Field Surveys

[40] The mean snow depth at the six sites in April 2002
was 34% of that in April 2001, with variability also lower in
2001 (Table 3). Snow density was 25% greater in April
2001 than in 2002 (Table 3). The considerable formation of
faceted snow grains may explain the lower density in 2002
as the density of faceted snow grains is typically lower than
that of rounded snow grains.
[41] Mean snow depth at Slumgullion and Upper San Juan

decreased by 77% and 60%, respectively, between the April
2001 and May 2001 snow surveys, with snow depth vari-
ability increasing (Tables 3 and 4). In 2002, snow depth
decreased by 66% and 55% between the April andMay snow
surveys at the Slumgullion and Upper San Juan sites,
respectively. Trends in snow density are viewed with caution
given that the Federal Sampler was used to measure snow
density in April, while snow pits were used in May. Further,
only 4 snow density measurements were made at each site in
May on average versus 18 in April (Tables 3 and 4). In all
cases the variability in snow depth was greater than that of
snow density.
[42] In April 2001 snow depths at Slumgullion, Wolf

Creek Summit and Lily Pond were greater than the mean
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observed snow depth of the surrounding areas with snow
depth at Slumgullion greater than one standard deviation
above the mean (Figure 3a). Snow depths at Upper San Juan
and Middle Creek were representative of the mean of the
surrounding observations.
[43] Observed snow depths in April 2002 at Upper Rio

Grande, Middle Creek and Upper San Juan were below the
mean values (Figure 3b). Slumgullion and Wolf Creek
Summit snow depths remained well above the mean
(Figure 3b).

5.2. Binary Regression Trees

[44] Results of the cross-validation showed that regres-
sion tree snow depth models developed using the data
collected at the Upper Rio Grande and Middle Creek sites
were unstable. Instability was indicated by the absence of a
minima in the plots of deviance versus number of terminal
nodes [Chambers and Hastie, 1993]. Models developed
using the May 2002 Slumgullion data set were also unsta-
ble. These instabilities likely existed because of small
sample sizes and relatively homogeneous terrain.
[45] The relationship between snow depth and physio-

graphic variables varied from 2001 to 2002 (Table 5).
Elevation and solar radiation played the largest role in snow

distribution in 2001 and 2002, respectively as indicated by
the frequency and level of occurrence of these variables
in the regression tree models (e.g., Figure 4). Elevation
played the dominant role in controlling snow distribution in

Table 3. Summary of April 2001 and 2002 Snow Depth and Snow Density Measurements Made During the April 2001 and 2002 Field

Campaignsa

Slumgullion Upper Rio Grande Middle Creek Upper San Juan
Wolf Creek
Summit Lily Pond

Density Depth Density Depth Density Depth Density Depth Density Depth Density Depth

2001
Minimum 201 37 316 0 253 140 297 128 305 135 315 0
Maximum 341 193 401 141 382 357 456 380 407 335 455 176
Mean 287 119 355 63 344 201 378 246 343 260 385 106
CV 0.10 0.21 0.07 0.59 0.10 0.16 0.12 0.17 0.09 0.13 0.11 0.31
n 21 259 18 154 13 85 21 218 19 152 20 136
SNOTEL 284 160 370 55 366 201 355 244 357 268 402 113

2002
Minimum 162 0 222 0 194 0 219 0 195 0 209 0
Maximum 377 66 269 34 492 98 385 161 390 136 351 105
Mean 268 29 246 1 329 45 297 56 259 86 277 25
CV 0.19 0.55 0.13 5 0.23 0.47 0.19 0.57 0.16 0.27 0.17 0.96
n 25 203 2 141 20 134 17 211 19 129 11 136
SNOTEL 334 54 n/a 0 359 30 385 47 303 92 302 16

aSnow depth values are in cm, and snow density values are in kg m�3. CV is coefficient of variation.

Table 4. Summary of May 2001 and 2002 Snow Depth and Snow

Density Measurementsa

2001 2002

Slumgullion
Upper San

Juan Slumgullion
Upper San

Juan

Density Depth Density Depth Density Depth Density Depth

Minimum 337 0 422 30 294 0 289 0
Maximum 363 78 481 218 388 75 453 109
Mean 350 28 461 98 341 10 363 25
CV 0.04 0.82 0.05 0.49 0.19 1.50 0.22 1.28
n 4 49 6 76 2 45 4 72

aSnow depth values are in cm, and snow density values are in kg m�3.
CV is coefficient of variation.

Figure 3. Statistical distribution of snow depth measure-
ments surrounding the SNOTEL sites in April (a) 2001 and
(b) 2002.
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4 out of 5 cases in 2001, with solar radiation dominant in all
cases in 2002 (Table 6).
[46] Average modeled SWE was significantly lower than

that measured at the Slumgullion SNOTEL site (Figures 5a
and 5b). In April 2001 observed snow depth at Upper San
Juan was fairly representative of the mean regression-tree-
modeled snow depth. However, snow density was positively
correlated (p = 0.0004) with solar radiation (slope = 1.94)
and thus SWE did not exhibit the same spatial pattern as
snow depth. Rather, observed SWE at Upper San Juan was
significantly greater than the mean of the grid element
(Figure 5a). In April 2002 – where mean observed
(Figure 3b) and modeled snow depths were less than the
SNOTEL value – SWE was quite representative of the mean
SWE of the surrounding grid element (Figure 5b); snow
density was significantly (p = 0.007) correlated with eleva-
tion (slope = �0.28), forest covered area (slope = �2.59),
and a cosine transformation of aspect (slope = 0.2017) and
therefore SWE distribution was not identical to snow depth
distribution. Observed SWE at Wolf Creek Summit in April
2001 and 2002 was considerably greater than the mean
SWE of the surrounding grid element (Figures 5a and 5b).
[47] In April 2001 observed SWE at Lily Pond was

substantially greater than the 16- and 4-km2 grid element
mean values (Figure 5a). This was due to the strong
influence of elevation in the regression tree snow depth
model, where snow depth decreased at lower elevations.
Given that this site is located on the top of a plateau, with an
extent of approximately 1 km2 (Figure 1), it is intuitive that
SNOTEL SWE was more representative of the 1-km2 grid
element (Figure 5a). In April 2002, the dominance of solar
radiation in the regression tree model (Table 6) resulted in
greater predicted snow depths on the north facing slopes to
the north of the plateau on which the SNOTEL site resides.
Hence SWE at Lily Pond was significantly below the mean
of the 4- and 1-km2 grid elements. Solar radiation played a
more important role in the April 2002 regression tree model,
with snow depth decreasing with increasing solar radiation.
Solar radiation at Lily Pond was more representative of the
mean solar radiation over the surrounding 16 km2 grid
element.

[48] At Slumgullion, 52 pixels, out of a possible 17,689
within the 16 km2 area, were identified as satisfying the
criteria for optimality (Figure 6a). The cumulative absolute
deviance from the mean modeled snow depth of these pixels
was only 0.61 cm for the two April model simulations. Of
those 52 pixels, 20 overlapping or immediately adjacent
pixels had a mean absolute deviance of less than 3 cm for the
April and May simulations. The location of the SNOTEL
site was not considered optimal because it is situated on a
north facing slope and therefore is exposed to less radiation
than areas within the optimal terminal node of the regres-
sion tree model (Table 7). Here we refer to the optimal
terminal node as the terminal node with a snow depth value
closest to the mean predicted snow depth value over the
modeling domain.
[49] In April 2001 the physiographic conditions at the

Upper San Juan SNOTEL site met the constraints of the
optimal terminal node. Upper San Juan was not located
optimally in April 2002 because solar radiation played a
more important role in snow distribution in 2002 (Table 6);
the site is located in an area with relatively high incident
solar radiation (Table 7).

Table 5. Regression Tree Snow Depth Model Summarya

Terminal
Nodes

Additional
Variables R2

2001 2002 2001 2002 2001 2002

April
Slumgullion 9 8 Sx, slope,

aspect
slope,
aspect

0.62 0.42

Upper San Juan 9 10 Sx fca, slope 0.57 0.66
Wolf Creek Summit 9 6 Sx, fca Sx 0.64 0.60
Lily Pond 6 8 slope, aspect Sx, fca 0.47 0.50

May
Slumgullion 5 n/a none n/a 0.69 n/a
Upper San Juan 7 6 Sx, fca Sx, fca 0.77 0.75

aNote all models included elevation (m) and solar radiation (W m�2).
Regression tree models developed for the Middle Creek and Upper Rio
Grande data sets were unstable and are not shown. Maximum upwind slope
(degrees), Sx, is designed to represent the effect of wind on snow
redistribution. Slope and aspect are in degrees and forest-covered area, fca,
is in percent. R2 is the coefficient of determination for the regression tree
model.

Figure 4. Regression tree snow depth model for the Upper
San Juan study area in April 2001. The values in the
ellipsoidal and rectangular nodes are the mean snow depth
values (cm) of all samples satisfying the splitting criteria for
that node. Ellipsoidal nodes are root nodes and rectangular
nodes are terminal nodes. The solar radiation index, srad
(W m�2), is a summation of the daily integrated solar
radiation surfaces from 15 November to 15 April. The
maximum upwind slope, Sx (degrees), is a terrain-based
parameter designed to represent the variability in snow
deposition as a result of wind redistribution. Elevation (m)
is abbreviated as ‘‘elev.’’
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[50] At Wolf Creek Summit, April 2001 and 2002 opti-
mal terminal nodes did not overlap in space. However, the
second most optimal terminal node (i.e., the second closest
to the mean) in April 2001 did overlap with the optimal

terminal node of April 2002. The physiographic attributes at
Wolf Creek Summit met the criteria of the common optimal
terminal node (Figure 6c and Table 7). This was the only
site that met these criteria.
[51] At Lily Pond only 26 pixels satisfied the criteria for

optimality. Because of the low elevation and slope at the
SNOTEL site relative the surrounding area, the site was not
within the optimal area (Table 7). In 2001, a level three
regression-tree-model split on slope meant the difference
between the optimal terminal node and a value 56% greater
than the mean snow depth. In 2002, a fifth-level split on
elevation meant the difference between optimality and a
value 59% below the optimal node; increased elevation
resulted in decreased snow depth.

Table 6. Frequency of Appearance of Physiographic Variables at Different Levels in the Regression Tree Snow

Depth Models for April 2001 and 2002a

Tree Level

Solar Radia-
tion, W m�2 Elevation, m Sx, deg fca, % Slope, deg Aspect, deg

2001 2002 2001 2002 2001 2002 2001 2002 2001 2002 2001 2002

1 1 5 4 0 0 0 0 0 0 0 0 0
2 3 0 2 4 1 0 0 3 0 0 1 1
3 2 2 3 2 1 0 0 2 2 1 0 1
4 1 1 1 2 2 2 1 1 1 1 0 1
5 1 0 1 2 0 1 1 1 0 1 1 0
6 0 0 1 0 1 0 0 0 0 0 0 0

aFor example, a value of 2 for tree level 4 indicates that the specified variable appeared in the fourth level in two of the eight
models for that year. Sx is maximum upwind slope, and fca is forest-covered area.

Figure 5. Statistical distribution of modeled snow water
equivalent for April (a) 2001 and (b) 2002. Results for 16-,
4-, and 1-km2 grid elements are shown from left to right,
respectively. Measured snow depth at the SNOTEL stations
is indicated by the horizontal hash marks. Vertical lines
represent the range of modeled values and rectangles
indicate values within plus or minus one standard deviation
of the mean. Results for the Upper Rio Grande and Middle
Creek sites are not shown because regression tree models
were unstable.

Figure 6. Optimal areas for measuring mean grid element
snow depth at the (a) Slumgullion, (b) Upper San Juan,
(c) Wolf Creek Summit, and (d) Lily Pond study areas.
These areas, shaded in black, had the lowest cumulative
absolute deviance from the mean modeled snow depth.
White rings indicate SNOTEL site locations (not to scale).
Areas enclosed by the dotted line in Figure 6b had an April
deviance of 2 cm. The Wolf Creek Summit site was within
the optimal area.
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[52] Of the four sites considered, less than 2.4% of each
grid element, on average, satisfied the physiographic criteria
of optimality for future observations.

5.3. Snow Water Equivalent Reconstruction

[53] Estimates of SWE distribution using the reconstruc-
tion model adequately matched regression tree model results
(Figures 7a and 7b). Both models predicted a band of
relatively lower SWE accumulation that extends from the
northwest corner of the Wolf Creek Summit grid element to
the southeast. Similarly, high SWE accumulation was sim-
ulated in the southern and northeast portions of the grid
element. The reconstruction model did, however, have a
greater range in values. Over the six 16-km2 grid elements,
mean reconstructed SWE deviated from the mean regression
tree model derived SWE by 8% on average.
[54] Figures 8a–8f shows the empirical cumulative dis-

tribution (ECD) plots for SWE throughout the 2002 snow-
melt season. As the snowmelt season progresses the ECD
shifts toward the y axis. As SCA decreases the y intercept of
the ECD increases; subtracting the y intercept from 1 gives
the fractional SCA over the modeling domain. In some
cases SNOTEL SWE began the melt season with an
empirical cumulative probability of 0.4 to 0.6 indicating a
sufficient representation of mean SWE (Figures 8b, 8d,
and 8f). Later in the snowmelt season SNOTEL SWE
values fell lower in the distribution (Figures 8b, 8d,
and 8f), indicating that snowmelt rates at these SNOTEL
sites were greater than the average melt rate over the
surrounding 16 km2 grid element. At the beginning of the
snowmelt season relationships between reconstructed SWE
and point SNOTEL SWE (Figures 8a–8f) were consistent
with relationships between regression tree SWE estimates
and SNOTEL SWE (Figure 5). This was true for May as
well (not shown). Snow water equivalent at Wolf Creek
Summit began the 2002 snowmelt season with a SWE value
within 1 standard deviation of the 16-km2 mean (Figure 5b)
but dramatically overestimated the 16-km2 mean throughout
most of the snowmelt season (Figure 8e); snowmelt rates at
the SNOTEL site were lower than the average melt rate over
the surrounding 16 km2 grid element.
[55] The 2001 temporal trends in SNOTEL SWE repre-

sentativeness at the Slumgullion site were relatively consis-
tent at the 16-, 4-, and 1-km2 scales (Figure 9). Temporal
trends in SWE representativeness were also consistent
across the 3 different scales at the Wolf Creek Summit and
Upper Rio Grande sites (not shown). Early in the 2001
snowmelt season, SWE overestimates at the Upper San Juan

site were greatest relative to the surrounding 1-km2 grid
element (Figure 9); SNOTEL SWE empirical cumulative
probability values increased at the 1-km2 scale relative to the
4- and 16-km2 scales. Temporal trends in representativeness
at the Middle Creek and Lily Pond sites also exhibited
some sensitivity to scale, with the greatest SNOTEL SWE
cumulative probability values occurring at the 1-km2 scale
(not shown). Temporal trends in SWE representativeness at
different scales were similar in 2002; the Upper San Juan and
Lily Pond sites were sensitive to scale.
[56] Negative correlations between the scaling coef-

ficient and accumulated degree days were widespread
(Figures 10a–10f). Positive correlations were found in areas
with persistent snow cover. Unlike areas with negative
correlations, these areas provide information about the
SWE over the study domain throughout the snowmelt season
and were therefore considered optimal for future observa-
tions. Areas with correlations above 0.73 were restricted to
relatively steep north facing slopes (Figures 10a–10f).
Correlations at the 16-km2 scale surrounding Slumgullion
were fairly consistent in 2001 and 2002 (Figures 11a
and 11b). Other sites also showed repeating spatial patterns
of correlations during the two years (not shown).
[57] At Upper San Juan correlations increased with

decreasing scale (Figure 12); variability in snow cover
duration decreased at smaller scales. At other sites correla-

Table 7. Range of Physiographic Attributes at Optimal Site Locations Compared to Values at SNOTEL Sitesa

Slumgullion Upper San Juan Wolf Creek Summit Lily Pond

Minimum Maximum SNOTEL Minimum Maximum SNOTEL Minimum Maximum SNOTEL Minimum Maximum SNOTEL

Solar radiation,
W m�2

218 226 215 218 223 227 181 222 210 225 239 228

Elevation, m 3514 3530 3518 2935 3152 3089 3210 3333 3331 3356 3369 3375

Sx, degrees 4 26 13 �21 0 �3 �23 3 �4 �3 9 �3
Vegetation density,
%

0 62 45 0 82 3 0 60 46 0 64 43

Slope, degrees 8 25 9 1 31 6 0 33 15 9 31 3

Aspect, degrees 83 91 65 220 352 195 0b 360b 322 164 244 200

aBold values indicate that SNOTEL variable value is outside the range of values at the optimal site location.
bNinety-five percent of values were between 240� and 360�.

Figure 7. Modeled snow water equivalent (cm) distribu-
tion at the Wolf Creek Summit study area on 4 April 2002
using (a) a regression tree model and (b) the net radiation/
temperature index reconstruction model. SNOTEL site
location is indicated by the white ring.
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tions either stayed constant with scale or increased as
scale decreased.

6. Discussion

[58] Small-scale variability in snow distribution cannot be
resolved if the distance between observations is greater than

the correlation length scale [Blöschl, 1999]. Clearly, the
spacing of SNOTEL stations is too large to resolve this
small-scale variability. We used nonlinear snow distribution
and mass balance models to estimate the small-scale vari-
ability around SNOTEL sites, leaving the task of estimating
large-scale variability in SWE to complimentary work using
remote sensing [Chang et al., 1991; Chang and Rango,

Figure 8. Empirical cumulative distribution functions of modeled snow water equivalent during the
2002 snowmelt season over the 16-km2 grid element surrounding (a) Slumgullion, (b) Upper Rio Grande,
(c) Middle Creek, (d) Upper San Juan, (e) Wolf Creek Summit, and (f) Lily Pond. Plots are shown for
every 2 days. Mean grid element and SNOTEL-observed snow water equivalent values are indicated for
each day of year.

Figure 9. As in Figure 8 but for Slumgullion and Upper San Juan during the 2001 snowmelt season and
for the 16-, 4-, and 1-km2 grid elements.
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2000; Foster et al., 1991] and modeling [Carroll et al.,
2001; Martinec, 1991; Rango, 1988]. The relatively coarse
resolution (or support, as termed by Blöschl [1999]) of these
SWE estimation techniques cannot resolve small-scale SWE
variability and therefore this variability is smoothed out
across the grid element scale [Blöschl, 1999]. Hence eval-
uation of these remotely sensed and model estimates has
relied on the ability of ground observations to represent the
average conditions of subgrid element variability. The work
presented here has shown that SNOTEL observations do not
adequately represent average grid element SWE. Further,
we have improved the ability to scale these data to grid
elements and enhanced the utility of these six SNOTEL
stations for evaluating larger-scale remote sensing and
modeling approaches by defining the subgrid element
SWE variability. We assert that the approach outlined in
this research is transferable to other sites. We do not assert
that these results are transferable to other SNOTEL sites,
nor are we suggesting that SNOTEL stations be moved or
that our site selection criteria are suitable for the needs of
empirical water supply forecasts.
[59] As an example application of our results, we evalu-

ated the 1-km2 resolution SWE product generated by the
National Operational Hydrologic Remote Sensing Center

(NOHRSC) [Carroll et al., 2001]. NOHRSC evaluates
residuals between observed SNOTEL SWE and their
1-km2 modeled SWE estimates on a daily basis. On the
basis of the magnitude of these residuals, a decision is made

Figure 10. The spatial distribution of correlation coefficients between scaling coefficients and
accumulated degree days for the 2002 snowmelt season at (a) Slumgullion, (b) Upper Rio Grande,
(c) Middle Creek, (d) Upper San Juan, (e) Wolf Creek Summit, and (f) Lily Pond. SNOTEL site locations
are indicated by the white rings. Areas in black had correlations above 0.73 during the 2001 and 2002
snowmelt seasons and are considered optimal for future automated observation systems. U.S. Highway
160 is shown in Figures 10d and 10e.

Figure 11. As in Figure 10 but for Slumgullion during the
(a) 2001 and (b) 2002 snowmelt seasons. Note the lack of
interannual variability in the distribution of the correlation
coefficients.
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as to whether or not modeled SWE will be updated to the
observed value. At Upper San Juan in 2004, NOHRSC
updated modeled SWE several times throughout the snow-
melt season as the observed melt at the SNOTEL site was
considerably greater than their model predicted (Figure 13).
The research presented here, although undertaken during
2001 and 2002, has shown that the melt rate at Upper San
Juan is consistently greater than the surrounding 1-km2

(Figure 9). SWE residuals were not as great at Wolf Creek
Summit (Figure 13); we have shown that the snowmelt rate
surrounding Wolf Creek Summit is less than that of the
surrounding 16 km2 (Figure 8e). These comparisons indi-
cate that the NOHRSC model may actually be representing
the system more accurately than would be concluded using
the SNOTEL data alone.
[60] The six SNOTEL sites studied here are the primary

source of ground-based SWE data within the study areas of
many of the aforementioned, larger scale, complimentary
efforts [Brubaker and Menoes, 2001; Chang et al., 1991;
Rango and Martinec, 1982; Shafer et al., 1979]. The
implications of this work should inspire similar investiga-
tions, as a common resolution (or support) between snow
pillows (	2-m support), remotely sensed SWE observations
(e.g., 25-km2 resolution), and model grid elements (e.g., 1-
km2 resolution) may be far from fruition. These future

efforts should focus on the development of ground-based
observation networks that represent the continuum of SWE
distribution within their surrounding grid elements. Inter-
seasonal variability exists due to the aforementioned differ-
ences between accumulation and ablation season snowpack
processes. Thus it is particularly difficult to identify an
observation location that represents both accumulation and
ablation season processes; locations that provide snowpack
information throughout the snowmelt season (Figure 10) are
in areas with above average SWE accumulation (Figure 7).
We have identified optimal locations for these distinctly
different seasons (Figures 6 and 10), however, these optimal
locations do not overlap in space. Thus future observations
may need to be located with the specific objective
of representing either accumulation or ablation season
processes.
[61] It is particularly challenging to capture the variability

in factors that control snow distribution in forested environ-
ments (e.g., the influence of vegetation on the spatial
distribution of solar radiation, interception of snowfall,
sublimation, longwave radiation emission, and wind field
patterns). Of the previously attempted work with regression
tree snow distribution models [Anderton et al., 2004; Balk
and Elder, 2000; Elder, 1995; Elder et al., 1998; Erxleben
et al., 2002; Molotch et al., 2005; Winstral et al., 2002],

Figure 12. As in Figure 10 but for the Upper San Juan site during the 2001 and 2002 snowmelt seasons.
Correlations are shown for the 16-, 4-, and 1-km2 grid elements. Note the increased correlations at
smaller scales.
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only the work of Erxleben et al. [2002] and Elder et al.
[1998] were performed in areas with considerable forest
cover. The explanatory ability (average R2 = 0.56) of the
regression tree models developed here were encouraging
relative to these two previous works (average R2 values of
0.25 and 0.6, respectively). This research relies on the
statistical relationships represented by the regression tree
models to define the continuum of snow distribution over an
areal extent that exceeds the extent observed. It is important
to note that the relationships between snow depth and
independent variables can change over a few kilometers
[Elder, 1995]. We used as many observations as possible,
over as large an extent as possible, while trying to maintain
a sufficient sampling density to ensure satisfactory model
development.
[62] As found here, previous work [Anderton et al., 2004]

has noted an increased correlation between snow depth and
solar radiation during water years with relatively lower
snow accumulation. The dominance of orographics in the
above average snow accumulation year (i.e., 2001) may
have caused stronger correlations with elevation. In 2002, a
greater proportion of the total SWE accumulation may have
melted or sublimated before the April snow survey, increas-
ing correlations with solar radiation; radiative fluxes tend
to dominate snowmelt fluxes early in the snowmelt
season [Molotch et al., 2004a]. In April 2002 the snow
accumulation season ended about two weeks before the
snow survey. The shift in dominance from elevation to solar
radiation from 2001 to 2002 significantly impacted the
representativeness at Lily Pond (Figures 5a and 5b).
[63] The relatively short duration of the snowmelt season

and the presence of cloud cover, which prevented detection

of SCA, resulted in less favorable results than previous
applications of the SWE reconstruction technique [Cline
et al., 1998; Molotch et al., 2004a]. At times, the combi-
nation of these issues resulted in significant changes in SCA
(e.g., large areas became snow-free) with out the interme-
diate observations of SCA needed to observe depletion
rates. Hence the application of this technique may be more
challenging in continental regions where the snowpack is
relatively shallow.
[64] Application of this technique is also challenging in

forested environments where accurate detection of fractional
SCA is more difficult due to diminished viewable gap
fractions [Liu et al., 2004] and because the spectral unmix-
ing algorithm has difficulty separating the spectra of dirty
snow from snow-free end-members [Rosenthal and Dozier,
1996]. Furthermore, we currently lack the ability to detect
snow cover properties beneath the canopy. We assumed that
pixel-specific under-canopy fractional SCAwas equal to the
SCA detected within the viewable gap fraction. There are
inherent limitations to this assumption given that snow
distribution is not uniform due to interception of snowfall
and vegetation-induced variability in snowmelt and subli-
mation rates.
[65] Sicart et al. [2004] showed that daily net radiation

increases with decreasing canopy density, particularly at
lower latitudes (i.e., increased solar elevation) and when
snow-surface albedo is low (i.e., 0.5). In our simulations net
radiation increased with decreasing canopy density; rela-
tively low snow albedo (minimum albedo = 0.55) and high
solar elevations were present during the snowmelt seasons.
[66] The accuracy of the modeled turbulent flux contri-

bution to snowmelt depends largely on the degree day
coefficient. The degree day coefficient calculated here
(i.e., 0.15 cm �C�1 d�1) seems reasonable relative to the
0.20 value previously found at Sleepers River [Brubaker et
al., 1996] and the 0.17 value found at Weissfluhjoch
[Kustas et al., 1994]; relative humidity and therefore the
degree day coefficient is lower in our continental study
region.
[67] Future research efforts will be devoted toward

applying these techniques at other SNOTEL sites throughout
the western United States, conducting thorough comparisons
with coarser-scale modeling results (e.g., 4-km resolution),
and exploring the use of other variables (e.g., net radiation)
for predicting scaling coefficients.

7. Conclusion

[68] At maximum accumulation differences between
observed SWE at SNOTEL sites and the mean SWE of
the surrounding areas were not consistent from site to site.
However these differences were fairly consistent in 2001
and 2002. On average, less than 2.4% of each grid element
satisfied the physiographic criteria of optimality for future
observations of accumulation season dynamics. Temporal
trends in SWE representativeness did not exhibit significant
variability between the two years studied. Steep, north
facing slopes with relatively persistent snow cover were
determined to be optimal locations for observing SWE
during the ablation season. These locations did not overlap
in space with the accumulation-season-optimal locations
and therefore future observations may need to be placed
with the specific objective of representing either accumula-

Figure 13. Modeled snow water equivalent (from the
National Operational Hydrologic Remote Sensing Center)
over the 1-km2 grid element surrounding the Wolf Creek
Summit (WCS) and Upper San Juan (USJ) SNOTEL sites.
Observed SNOTEL snow water equivalent is also shown.
Squares across the top of the view graph indicate time steps
when the model was updated to match WCS observations.
Diamonds across the bottom of the view graph indicate time
steps when the model was updated to match USJ
observations. Note the relatively rapid deviation between
modeled grid element SWE and observed SWE at USJ.
Data source is National Operational Hydrologic Remote
Sensing Center (http://www.nohrsc.noaa.gov/).
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tion or ablation season processes. This research has shown
that SNOTEL SWE data are generally unrepresentative of
mean grid element SWE. The consistency in the relationship
between mean grid element SWE and SNOTEL SWE
during these two different water years makes these results
particularly useful for large-scale SWE variability studies
that require ground observations for evaluation, initializa-
tion or calibration purposes. Furthermore, these consisten-
cies have implications for future observation network
design in that results from short-term studies (e.g., 2 years)
can be used to design long-term observation networks.
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Blöschl, G. (1999), Scaling issues in snow hydrology, Hydrol. Processes,
13, 2149–2175.

Brubaker, K. A., and M. Menoes (2001), A technique to estimate snow
depletion curves from time-series data using the beta distribution, Proc.
East. Snow Conf., 58, 343–346.

Brubaker, K., A. Rango, and W. Kustas (1996), Incorporating radiation
inputs into the snowmelt runoff model, Hydrol. Processes, 10, 1329–
1343.

Carroll, T. R., D. W. Cline, G. Fall, A. Nilsson, L. Li, and A. Rost (2001),
NOHRSC operations and the simulation of snow cover properties for the
coterminous U.S., Proc. West. Snow Conf., 69, 1–14.

Chambers, J., and T. Hastie (1993), Statistical Models in S, 608 pp., CRC
Press, Boca Raton, Fla.

Chang, A. T. C., and A. Rango (2000), Algorithm theoretical basis docu-
ment for the AMSR-E snow water equivalent algorithm, version 3.1.,
report, NASA Goddard Space Flight Cent., Greenbelt, Md.

Chang, A., J. Foster, and A. Rango (1991), Utilization of surface cover
composition to improve the microwave determination of snow water
equivalent in a mountain basin, Int. J. Remote Sens., 12, 2311–2319.

Cline, D. (1997), Snow surface energy exchanges and snowmelt at a con-
tinental, midlatitude Alpine site, Water Resour. Res., 33, 689–702.

Cline, D. W., and T. R. Carroll (1999), Inference of snow cover beneath
obscuring clouds using optical remote sensing and a distributed
snow energy and mass balance model, J. Geophys. Res., 104, 19,631–
19,644.

Cline, D. W., R. C. Bales, and J. Dozier (1998), Estimating the spatial
distribution of snow in mountain basins using remote sensing and energy
balance modeling, Water Resour. Res., 34, 1275–1285.

Consortium of Universities for the Advancement of Hydrologic Science
Inc. (2003), A national center for hydrologic synthesis: Scientific objec-
tives, structure, and implementation, Tech. Rep. 5, Santa Barbara, Calif.

Daly, C., R. P. Neilson, and D. L. Phillips (1994), A statistical topographic
model for mapping climatological precipitation over mountainous terrain,
J. Appl. Meteorol., 33, 140–158.

Dozier, J. (1980), A clear-sky spectral solar radiation model for snow-
covered mountainous terrain, Water Resour. Res., 16, 709–718.

Dozier, J., and J. Frew (1990), Rapid calculation of terrain parameters for
radiation modeling from digital elevation data, IEEE Trans. Geosci.
Remote Sens., 28, 963–969.

Elder, K. (1995), Snow distribution in alpine watersheds, Ph.D. thesis, 309
pp., Univ. of Calif., Santa Barbara.

Elder, K., W. Rosenthal, and R. Davis (1998), Estimating the spatial
distribution of snow water equivalence in a montane watershed, Hydrol.
Processes, 12, 1793–1808.

Erxleben, J., K. Elder, and R. Davis (2002), Comparison of spatial inter-
polation methods for estimating snow distribution in the Colorado Rocky
Mountains, Hydrol. Processes, 16, 3627–3649.

Fassnacht, S.R., K.D. Dressler, and R.C. Bales (2003), Snow water
equivalent interpolation for the Colorado River Basin from snow tele-
metry (SNOTEL) data, Water Resour. Res., 39(8), 1208, doi:10.1029/
2002WR001512.

Foster, J., A. Chang, D. Hall, and A. Rango (1991), Derivation of snow
water equivalent in boreal forests using microwave radiometry, Arctic,
44, 147–152.

GEWEX America’s Prediction Project (2003), Report from the ‘‘hydrologic
sciences’’ breakout session at the GAPP Mountain Hydrology Workshop,
Seattle, Wash.

Gray, D., and D. Male (1981), Handbook of Snow, 776 pp., Elsevier, New
York.

Idso, S. B. (1981), A set of equations for full spectrum and 8- to 14-um and
10.5- to 12.5-um thermal radiation from cloudless skies, Water Resour.
Res., 17, 295–304.

Kustas, W. P., A. Rango, and R. Uijlenhoet (1994), A simple energy budget
algorithm for the snowmelt runoff model, Water Resour. Res., 30, 1515–
1527.

Liston, G. E. (1999), Interrelationships among snow distribution, snowmelt,
and snow cover depletion: Implications for atmospheric, hydrologic, and
ecologic modeling, J. Appl. Meteorol., 38, 1474–1487.

Liu, J., R. A. Melloh, C. E. Woodcock, R. E. Davis, and E. Ochs (2004),
The effect of viewing geometry and topography on viewable gap frac-
tions through forest canopies, Hydrol. Processes, 18, 3595–3607.

Marks, D., and J. Dozier (1992), Climate and energy exchange at the snow
surface in the alpine region of the Sierra Nevada: 2. Snow cover energy
balance, Water Resour. Res., 28, 3043–3054.

Martinec, J. (1991), Areal modelling of snow water equivalent based on
remote sensing techniques, in Snow, Hydrology and Forests in High
Alpine Areas: Proceedings of the Vienna Symposium, IAHS Publ., 205,
121–129.

Molotch, N. P., T. H. Painter, R. C. Bales, and J. Dozier (2004a), Incorpor-
ating remotely sensed snow albedo into a spatially distributed snowmelt
model, Geophys. Res. Lett., 31, L03501, doi:10.1029/2003GL019063.

Molotch, N. P., S. R. Fassnacht, R. C. Bales, and S. R. Helfrich (2004b),
Estimating the distribution of snow water equivalent and snow extent
beneath cloud-cover in the Salt-Verde River basin, Arizona, Hydrol.
Processes, 18, 1595–1611, doi:10.1002/hyp.1408.

Molotch, N. P., M. T. Colee, R. C. Bales, and J. Dozier (2005), Estimating
the spatial distribution of snow water equivalent in an alpine basin using
binary regression tree models: The impact of digital elevation data and
independent variable selection, Hydrol. Processes, 19, 1459–1479,
doi:10.1002/hyp.5586.

Painter, T. H., J. Dozier, D. A. Roberts, R. E. Davis, and R. O. Green
(2003), Retrieval of subpixel snow-covered area and grain size from
imaging spectrometer data, Remote Sens. Environ., 85, 64–77.

Pinker, R. T., and I. Laszlo (1992), Modeling surface solar irradiance for
satellite applications on a global scale, J. Appl. Meteorol., 31, 194–
211.

Rango, A. (1988), Progress in developing an operational snowmelt-runoff
forecast model with remote sensing input, Nord. Hydrol., 19, 65–76.

Rango, A., and J. Martinec (1982), Snow accumulation derived from mod-
ified depletion curves of snow coverage, in Hydrological Aspects of
Alpine and High Mountain Areas (Proceedings of the Exeter Sympo-
sium), IAHS Publ., 138, 83–89.

Rosenthal, W., and J. Dozier (1996), Automated mapping of montane snow
cover at subpixel resolution from the Landsat thematic mapper, Water
Resour. Res., 32, 115–130.

Shafer, B. A., C. F. Leaf, and J. K. Marron (1979), Landsat derived snow
cover as an input variable for snow melt runoff forecasting in south
central Colorado, in Satellite Hydrology, edited by M. Deutsch et al.,
pp. 218–224, Am. Water Resour. Assoc., Minneapolis, Minn.

Sicart, J. E., J. W. Pomeroy, R. E. Essery, J. Hardy, T. Link, and D. Marks
(2004), A sensitivity study of daytime net radiation during snowmelt to
forest canopy and atmospheric conditions, J. Hydrometeorol., 5, 774–
784.

W11421 MOLOTCH AND BALES: UPSCALING SNOW OBSERVATIONS

15 of 16

W11421



Thornton, P. E., S. W. Running, and M. A. White (1997), Generating
surfaces of daily meteorological variables over large regions of complex
terrain, J. Hydrol., 190, 214–251.

U.S. Army Corps of Engineers (1956), Snow Hydrology: Summary Report
of the Snow Investigations, 462 pp., North Pac. Div., Portland, Oreg.

U.S. Soil Conservation Service (1972), Snow survey and water supply
forecasting, in Soil Conservation Service National Engineering Hand-
book, pp. 1–7, U.S. Dep. of Agric., Washington, D. C.

Willmott, C. J., and K. Matsuura (1995), Smart interpolation of annually
averaged air temperature in the United States, J. Appl. Meteorol., 34,
2577–2586.

Winstral, A., K. Elder, and R. Davis (2002), Spatial snow modeling of wind-
redistributed snow using terrain-based parameters, J. Hydrometeorol., 3,
524–538.

����������������������������

R. C. Bales, Division of Engineering, University of California, Merced,
CA 95344, USA. (bales@ucmerced.edu)

N. P. Molotch, Cooperative Institute for Research in Environmental
Sciences, University of Colorado, Boulder, CO 80309, USA. (molotch@
cires.colorado.edu)

16 of 16

W11421 MOLOTCH AND BALES: UPSCALING SNOW OBSERVATIONS W11421


