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Abstract—Federation of geo-distributed cloud services is a
trend in cloud computing which, by spanning multiple data
centers at different geographical locations, can provide a cloud
platform with much larger capacities. Such a geo-distributed
cloud is ideal for supporting large-scale social media streaming
applications (e.g., YouTube-like sites) with dynamic contents and
demands, owing to its abundant on-demand storage/bandwidth
capacities and geographical proximity to different groups of
users. Although promising, its realization presents challenges on
how to efficiently store and migrate contents among different
cloud sites (i.e. data centers), and to distribute user requests to
the appropriate sites for timely responses at modest costs. These
challenges escalate when we consider the persistently increasing
contents and volatile user behaviors in a social media application.
By exploiting social influences among users, this paper proposes
efficient proactive algorithms for dynamic, optimal scaling of
a social media application in a geo-distributed cloud. Our
key contribution is an online content migration and request
distribution algorithm with the following features: (1) future
demand prediction by novelly characterizing social influences
among the users in a simple but effective epidemic model; (2) one-
shot optimal content migration and request distribution based
on efficient optimization algorithms to address the predicted
demand, and (3) a∆(t)-step look-ahead mechanism to adjust
the one-shot optimization results towards the offline optimum.
We verify the effectiveness of our online algorithm by solid
theoretical analysis, as well as thorough comparisons with ready
algorithms including the ideal offline optimum, using large-scale
experiments with dynamic realistic settings on Amazon Elastic
Compute Cloud (EC2).

I. I NTRODUCTION

The cloud computing paradigm of late enables rapid on-
demand provisioning of server resources to applications with
minimal management efforts. Most existing cloud systems,
e.g., Amazon EC2 and S3, Microsoft Azure, Google App
Engine, organize their shared pool of servers from one or a few
data centers, and serve their users using different virtualization
technologies. The services provided by one individual cloud
provider are typically deployed to one or a few geographic re-
gions, prohibiting it from serving application demands equally
well from all over the globe. To truly fulfill the promise of
cloud computing, a rising trend is to federate disparate cloud
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services (in separate data centers) from different providers, i.e.,
interconnecting them based on common standards and policies
to provide a universal environment for cloud computing [1],
[2]. The aggregate capabilities of a federated cloud would
appear to be limitless and can serve a wide range of demands
over a much larger geographic span [2].

A geo-distributed federated cloud is ideal for supporting
large-scale social media streaming applications. Social net-
work applications (e.g., Facebook, Twitter, Foursquare) are
dominating the Internet today, and they are uniting with
conventional applications, such as multimedia streaming,to
produce newsocial media applications, e.g., YouTube-like
sites. Compared with traditional Internet video services,social
media applications feature highly dynamic contents and de-
mands, and typically more stringent requirements on response
latency in serving viewing requests—since most of their videos
are short,e.g., several minutes, a latency of more than a few
tens of seconds would be intolerable to a viewer. It is therefore
challenging to design and scale a social media application cost-
effectively. The conventional approaches use dedicated servers
owned by the application providers (i.e., private clouds), or
to outsource to a content distribution network (CDN). Geo-
distributed clouds provide a much more economic solution:
“infinite” on-demand cloud resources meet well with the ever-
increasing demand for storage and bandwidth, while capable
of absorbing frequent surges of viewing demands on the fly;
cloud sites situated in different geographic locations offer
efficient services to groups of users in their proximity; elastic
charging models of the clouds can significantly cut down
operational costs of the application providers.

To realize the potentials of geo-distributed federated clouds,
in supporting social media applications, challenges remain to
be resolved: How should the social media contents be stored
and migrated across different cloud sites, and viewing requests
be distributed, such that the operational costs are minimized
while the average response delays are bounded according to
a pre-set QoS target by the application provider? It may not
be too hard to design optimal strategies for the case where
the number of contents and the scale of user requests are
fixed, which is what a CDN or a cache network is most
capable in handling. What is really challenging is to design
an online algorithm that can make use of cloud resources
to accommodate dynamic contents/demands on the fly, and
further pursue the optimality achieved by an optimal offline
solution with complete knowledge of the system over a long



time.
Our work proposes such an online algorithm for dynamic,

optimal scaling of a social media application in a geo-
distributed cloud. Our contributions are as follows:

First, we enable proactive content migration, by predicting
future demand based on social influence among the users
and correlation across videos. More specifically, a simple but
effective epidemic model is built to capture propagation of
video views along both social connections (i.e., people view
the videos posted or retweeted by their friends) and interest
correlations (e.g., people watched a French Open clip may
view another one from the Wimbledon).

Second, to serve the predicted demands, we decide on the
one-shot optimal content migration and request distribution
strategy by formulating the problem as a mixed integer pro-
gram. We show that efficient solutions to the problem exist,
using dual decomposition and linear programming techniques.

Third, a ∆(t)-step look-ahead mechanism is proposed to
adjust the one-shot optimization results towards the offline
optimality, which gives rise to the online algorithm. We
prove the effectiveness of the algorithm using solid theoretical
analysis, and demonstrate how the algorithm can be practically
implemented in a real-world geo-distributed cloud with low
costs. We also design an efficient optimal offline algorithm
that derives the offline optimum of the long-term optimization
problem, as a benchmark to evaluate performance of our online
algorithm.

Finally, performance of our algorithm is evaluated via large-
scale experiments under dynamic realistic settings on Amazon
EC2. We extensively compare the performance of our online
algorithm with that of ready, heuristic dynamic algorithms, as
well as against the offline optimum derived by the optimal
offline algorithm. The results show that our online algorithm
enables high-performance social media applications on a geo-
distributed cloud with an operational cost much lower than
those achieved by the dynamic heuristics, and close to the
offline minimum.

The remainder of this paper is organized as follows. We
discuss related work in Sec. II, and present the system model
and the offline optimal content migration and request distri-
bution problem in Sec. III. We predict viewing demands and
solve the one-shot optimization in Sec. IV. The design of the
online algorithm with∆(t)-step look-ahead and the optimal
offline algorithm is given in Sec. V, for which we discuss the
evaluation results in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Federation of geo-distributed cloud services is a recent
development of cloud computing technologies. Several stan-
dardization projects [2] [3] [4] [5] have emerged, which aim
to realize a global, interoperable federated cloud ecosystem.
For instance, the open data center alliance [2] aims to provide
solutions to unify cloud resources from different providers to
produce a global-scale cloud platform. The current literature
and industry efforts focus on designing inter-connecting stan-
dards [1] [6] [7], while our study here, as a complement to the
existing work, explores utilization of a geo-distributed cloud
platform for efficient application support.

There were a few proposals on migrating applications from
conventional private server clusters to the new public cloud
platforms. Hajjatet al. [8], Sharmaet al. [9], and Zhang
et al. [10] advocate migrating enterprise IT applications to
exploit the computation and storage capacities of a cloud. Wu
et al. [11] and Li et al. [12] discuss migration of VoD services
onto a cloud platform, by exploring demands and user patterns
in a conventional VoD application. Pujolet al. [13] and Xuet
al. [14] investigate migration of social network applications,
focusing on user profile replication on cloud servers according
to their social connections. Different from all these work,
our study is the first to explore dynamic migration of the
novel social media applications, and to use socialinfluence
among users for viewing demand prediction; and we target at
a solution with over-time optimality guarantee.

Prediction of application behaviour is important for fully
exploiting agile resource provisioning of a cloud [15]. The
measurement study by Zhouet al. [16] reveals the important
of related video recommendation on YouTube video viewing
counts. Wanget al. [17] and Laiet al. [18] unveil the correla-
tion between video popularity and the propagation behaviour
of links to the videos in a social network via web crawling
methodologies. In contrast, our work aims to design a tractable
epidemic model for future video demand prediction by fully
exploiting the social influences among users and correlations
among video contents. Scellatoet al. [19] exploit geographic
information extracted from social cascades to improve multi-
media file caching in different CDN sites. A location-aware
cache replacement policy is proposed, which ensures that
content relevant to a social cascade is kept close to the users
who may be interested in it. No content migration across
different sites nor request dispatching are investigated.We are
going to compare our algorithm with this caching strategy with
experiments in Sec. VI.

A substantial body of literature has been devoted to con-
tent replication and scheduling in a CDN or cache network
[20][21], which mostly targets at relative static scenarios
where the contents and user scales are fixed. Our work
differs from those work in that we focus on a geo-distributed
cloud platform, with significantly different charging models
and elastic “pay-per-use” usage patterns, which calls for a
more flexible online algorithm. A recent study by Chenet
al. [22], which appeared in the same venue as the conference
version of our work [23], advocates to build CDNs on top
of the cloud infrastructure by proposing a set of online and
offline heuristics for site replication and distribution path
selection. In contrast, our work focuses on content replication
and request dispatching in a social media application and
our proposed offline and online algorithms exploit the unique
social influences in such an application.

In the online algorithm literature [24], paging problems
resemble ours from some perspectives,e.g., contents can be
migrated among nodes and the access costs depend largely on
the distances between the requester and the replica. There have
been a variety of work [25] [26] proposing online algorithms,
both deterministic and random ones, for the classical paging
problems. However, the optimization problem in our work
follows closely the realistic parameters of a cloud system and
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Fig. 1. The geo-distributed cloud model.

is hence much more complicated than the classical paging
problems, preventing the application of any ready online
algorithms.

III. SYSTEM MODEL

A. The Geo-distributed Cloud

We consider a geo-distributed cloud infrastructure (Fig. 1)
which consists of multiple disparatecloud sitesdistributed
in different geographical locations, and owned by one or
multiple cloud service providers. Each cloud site resides in
one data center, and contains a collection of interconnected and
virtualized servers. A representative structure of servers inside
each data center is as follows [27]: There are two categories
of servers,storage serversto store data files andcomputing
servers to support the running and provisioning ofvirtual
machines(VMs); all computing and storage servers inside a
cloud site are inter-connected with high speed switches and
LAN buses. Different cloud sites are connected over a WAN.
We investigate the IaaS (Infrastructure as a Service) mode of
cloud computing in this work [28].

We assume the computing (storage) servers inside a cloud
site have similar hardware configurations, and charge the same
prices for usage. Hardware configurations and usage charges
are likely to be different across different cloud sites. We take
into account the following three types of charges to a cloud
consumer: storage cost to keep data on the storage servers,
rental fee of VMs to run the application, and charges for
incoming/outgoing traffic to/from each cloud site. The former
two are charged by usage time on a per unit time rate, and the
last one is by traffic volume on a per byte rate. These follow
the representative charging models of leading commercial
cloud products, such as Amazon EC2 [29] and S3[30].

B. The Social Media Application

In a social media streaming application, registered users
generate and upload videos to the servers, and download and
view videos uploaded by others. The videos are assumed to be
short clips of a few tens or hundreds of mega bytes. Users of
the application are interconnected in a social network: besides
video browsing and watching, a platform is provided where
each user can add other users as friends, post microblogs to
comment on videos, and follow microblogs of their friends to

watch a video. On the other hand, the system can recommend
videos to users (e.g., by listing recommended videos alongside
the video currently played) based on such parameters as user
location, video types, metadata (tags), top hits, etc. A concrete
example of social media application is YouTube enhanced by
social networking functions,i.e., a combination of YouTube
and twitter (which is an emerging move for YouTube-like
applications [16]).

C. The Offline Optimal Content Migration and Request Dis-
tribution Problem

The conventional approach to provisioning for this social
media application is to use a private server cluster (the
application provider’s private cloud). We advocate migrating
the application into the geo-distributed cloud infrastructure, for
better scalability, lower management overhead, and proximity
to users. The private cloud may or may not be part of the
federated cloud. As a cloud consumer, the application provider
deploys its web service on the VMs on the computing servers,
and video files in the storage servers.

Our objective is to design an online algorithm to optimally
replicate videos onto cloud sites with different charges and
proximities to users, and dispatch video requests to the sites
such that timely responses at the lowest cost is achieved. We
first formulate anoffline optimizationproblem which gives the
“ideal” optimal strategies for content replication and request
dispatching, assuming complete information of the system
over the entire time span is known.

Suppose that time is slotted into equal intervals, wheret = 0
indicates the initial state. LetC(t) denote the set of videos in
the social media application at time slott. We assume that all
videos in the system have the same unit size, and the length
of a time slot is sufficient for downloading one video at the
video playback rate. LetF denote the set of regions that the
cloud infrastructure spans,i.e., one region hosts one cloud site.
D

(c)
f (t) represents the set of users in regionf (f ∈ F )1, who

choose to view videoc (c ∈ C(t)) in time slot t.
Let ~y and ~α be the optimal decision variables: Binary

variable y
(c)
f (t) indicates whether a copy of videoc should

be stored on the cloud site in regionf (referred to as cloud
sitef hereinafter) in time slott; α

(c)
jf (t) ∈ [0, 1] is the portion

of |D(c)
j (t)| (the total number of requests for contentc from

regionj at t), to be dispatched to and served by cloud sitef .
On cloud sitef , pf is the storage cost per unit size per

time slot,mf is the rental cost of one VM per time slot, and
bf is the outgoing bandwidth cost per unit size. We model
the cost incurred for using the cloud platform as follows: (1)
The storage cost in time slott for video c on cloud sitef

is y
(c)
f (t) × pf . (2) Suppose the number of requests a VM

on cloud sitef can serve per time slot isnf . The cost for
cloud sitef to serve requests from regionj for video c in

t includes (i) VM rental cost
α

(c)
jf

(t)×|D
(c)
j

(t)|

nf
× mf and (ii)

upload bandwidth costα(c)
jf (t) × |D

(c)
j (t)| × bf . Let vf =

1Users residing in regions without deployed cloud sites are considered in
setsD

(c)
f

(t) of regionsf ∈ F that they are geographically closest to.



mf

nf
+ bf denote the unit cost to serve each request on cloud

sitef . The cost above can be simplified toα
(c)
jf (t)×|D

(c)
j (t)|×

vf . (3) Let ϕf denote the migration cost to move one video
into cloud sitef ,2 which includes bandwidth cost and other
management overheads; therefore,[y

(c)
f (t)−y

(c)
f (t−1)]+×ϕf

is the potential migration cost for moving videoc into cloud
site f at t, where [y

(c)
f (t) − y

(c)
f (t − 1)]+ = max{y

(c)
f (t) −

y
(c)
f (t − 1), 0}.
The offline optimization to minimize the overall operational

cost of the social media application on the geo-distributed
cloud over a possibly long time interval,i.e., [1, T ], is for-
mulated as follows:

min H(~y, ~α) =
PT

t=1(
P

c∈C(t)

P

f∈F y
(c)
f

(t) × pf

+
P

c∈C(t)

P

j∈F

P

f∈F α
(c)
jf

(t) × |D
(c)
j (t)| × vf

+
P

c∈C(t)

P

f∈F [y
(c)
f

(t) − y
(c)
f

(t − 1)]+ × ϕf )

(1)

subject to: (repeat each constraint fort = 1, . . . , T )

(a) y
(c)
f

(t) ∈ {0, 1}, ∀c ∈ C(t),∀f ∈ F,

(b) α
(c)
jf

(t) ≤ y
(c)
f

(t), ∀c ∈ C(t),∀j ∈ F, ∀f ∈ F,

(c)

P

j∈F

P

f∈F α
(c)
jf

(t)×|D
(c)
j

(t)|×rjf

P

j∈F |D
(c)
j

(t)|
≤ R, ∀c ∈ C(t),

(d)
P

c∈C(t)

P

j∈F α
(c)
jf

(t) × |D
(c)
j (t)| ≤ Uf , ∀f ∈ F,

(e)
P

f∈F α
(c)
jf

(t) = 1, ∀j ∈ F, ∀c ∈ C(t),

(f) 0 ≤ α
(c)
jf

(t) ≤ 1, ∀j ∈ F, ∀f ∈ F, ∀c ∈ C(t).

Constraint (a) indicates that videoc can be either stored at
regionf at t or not. Constraints (b), (e) and (f) guarantee that
requests would only be dispatched to a cloud site that stores
the required video. In constraint (c),rjf represents the round-
trip delay between regionj and regionf (reflecting proximity
in between)3, R is the upper bound of average response delay
per request, set by the application provider; this constraint
ensures that the average response delay meets the QoS target.
(d) is the bandwidth constraint at each cloud site, whereUf

denotes the maximum reserved bandwidth for this application
at cloud sitef , in terms of the number of requests to serve. We
will address the bandwidth reserving problem as an orthogonal
topic in our future work.

In our model, storage and VM capacity limits are not
considered at each cloud site, as it is reasonable to assume
that these capacities can be provisioned on demand to the
application.

To derive optimal solution to the offline optimization (1),
complete knowledge about the system over the entire time
span is needed, which is apparently not feasible in a dy-
namic system. We seek to design an online algorithm that
pursues this optimal solution (referred to asoptimal offline
solution or offline optimumhereinafter) on the fly, with only
limited predicted information into the future. In particular,
optimization (1) can be decomposed into possibly manyone-
shotoptimization problems, each to minimize the operational
cost occurred in one time slot. Our idea is to solve the one-

2We assume that there is permanent storage owned by the social media
application provider to store one authentic copy of each video, and video
replica will be copied from this storage to different cloud sites.

3The round-trip delay between each pair of regions can vary from one time
slot to the next; we omit(t) from the more rigorous notationrjf (t) for
simplification of notation in the paper.

TABLE I
NOTATION

Symbol Definition
F Set of regions the geo-distributed cloud spans
C(t) Set of videos in the social media application at t

y
(c)
f (t) binary variable: to store videoc at cloud sitef at t (1) or not (0)

α
(c)
jf (t) Portion of the total number of requests for video c from region j

at t, to be dispatched to cloud sitef

D
(c)
f (t) Set of users in regionf requesting videoc at t

pf Storage cost per unit size per time slot on cloud sitef

vf Cost to serve each request on cloud sitef (VM rental+bandwidth)
rjf Round-trip delay between regionj and regionf
ϕf Migration cost to move one video into cloud sitef

R Maximum average response delay per request
Uf Maximum reserved bandwidth at cloud sitef

t
(c)
0 Uploading time of videoc

o(c) Uploader of videoc
s(c)(t) Number of potential viewers of videoc at t

A(c)(t) Set of users who have not watched videoc by the end oft
L(c)(t) Set of users that videoc is recommended to att
E(c)(t) Set of users who comment on videoc at t

Ω Set of all registered users
N(i) User i’s set of friends
ηc Initial popularity of video c
γc Decreasing speed of video c’ popularity

shot optimization problem in each time slot, and adjust the
derived solutions towards the offline optimum using predicted
demands in∆(t) time slots in the future.

In what follows, we discuss efficient solutions to the one-
shot optimization in Sec. IV, and propose strategies to adjust
the one-shot optimum in Sec. V. Important notations in the
paper are summarized in Table I for ease of reference.

IV. ONE-SHOT OPTIMIZATION

The one-shot optimization problem from the offline opti-
mization (1) is as follows, for time slott:

min F(~y(t), ~α(t)) =
P

c∈C(t)

P

f∈F y
(c)
f

(t)pf

+
P

c∈C(t)

P

j∈F

P

f∈F α
(c)
jf

(t)|D
(c)
j (t)|vf

+
P

c∈C(t)

P

f∈F [y
(c)
f

(t) − y
(c)
f

(t − 1)]+ϕf

subject to: Constraints (a) — (f) in (1),

(2)

where ~y(t) = (y
(c)
f (t),∀c ∈ C(t),∀f ∈ F ) and ~α(t) =

(α
(c)
jf (t),∀c ∈ C(t),∀f ∈ F,∀j ∈ F ). In time slot t − 1, we

predict the number of upcoming requests for different videos
from different regions,i.e., |D(c)

j (t)|, for the next time slott,
and solve the above one-shot optimization to derive the best
content migration and request distribution strategies fort. This
proactive approach is adopted in order to deploy videos in a
timely fashion to serve the upcoming requests. We next discuss
efficient methods to predict the demand and to solve the one-
shot optimization, respectively.

A. Predicting the Number of Viewing Requests

Based on our social media application model in Sec. III-B,
potential viewers of videoc at t mainly come from two
sources: (i) the friends of a user who has watched and
commented on the video in her microblog beforet, and (ii) the
users to whom the system has recommended the video before



t, when they are watching other videos. We predict the number
of viewing requests for a video by modeling the propagation
of video viewing among users using a model similar to the
SIR epidemic model [31].

Let t
(c)
0 denote the time videoc is uploaded by usero(c).

s(c)(t) is the number of all potential viewers of videoc at
time t. d(c)(t) =

∑

f∈F |D
(c)
f (t)| denotes the number of users

who request and view videoc at t in the entire system, and
D(c)(t) is this set of users. Note thatd(c)(t) is different from
s(c)(t), in that the latter counts all users who may possibly
issue a viewing request (since they belong to category (i) or
(ii) above), while the former includes the actually issued ones.
Let A(c)(t) be the set of users who have not watched videoc

by the end of time slott. Ω represents the set of all registered
users in the system, andN(i) is useri’s set of friends4. L(c)(t)
represents the set of users to whom the system recommends
videoc in t. E(c)(t) is the set of users who comment on video
c on her microblog int.

Measurements of video sharing sites have shown that pop-
ularity of a video is typically the highest when it is a new
upload, and decreases over time [12] [32]. We employ an
exponential decreasing model to describe this phenomenon:

we useηc×γ
(t−t

(c)
0 )

c to represent the probability that a potential
viewer of videoc may actually watch the video att, where
factorηc ∈ [0, 1] andγc ∈ [0, 1] correspond to the initial value
and the decreasing speed of videoc’s popularity, respectively.
In practice, bothηc andγc can be summarized from historical
traces on viewing requests for videoc, and are dynamically
calibrated with the propagation of that video.

Without loss of generality, we assume that a user will not
issue viewing requests again for a video that she has requested
before, and the first batch of viewing requests come att

(c)
0 +1,

but not in t
(c)
0 when the video is newly shared. The epidemic

model to describe the propagation of video viewing in the
system is as follows, wheret > t

(c)
0 :

(i) s(c)(t
(c)
0 ) = 0,

(ii) d(c)(t
(c)
0 ) = 0,

(iii) A(c)(t
(c)
0 ) = Ω\{o(c)},

(iv) s(c)(t) = s(c)(t − 1) − d(c)(t − 1)

+ | ∪
i∈E(c)(t−1) (N(i) ∩ A(c)(t − 1)) ∪ L(c)(t − 1)|,

(v) d(c)(t) = s(c)(t) × ηc × γ
(t−t

(c)
0 )

c ,

(vi) A(c)(t) = A(c)(t − 1)\D(c)(t).

(3)

The rationale is as follows: When videoc is uploaded at
t
(c)
0 , no other users thano(c) have watched it (Eqn.(i)—(iii) in

(3)). The potential set of viewers att is derived in Eqn.(iv)
by excluding those who have viewed videoc at t−1 from the
previous set of potential viewers (s(c)(t−1)−d(c)(t−1)), and
adding the newly emerged potential viewers,i.e., the friends
of those commented onc at t− 1, who have not yet viewed it
(∪i∈E(c)(t−1)N(i) ∩ A(c)(t − 1)), and users that the system
recommendsc to att−1 (L(c)(t−1)). Since a potential viewer
may not actually watch the video, in Eqn.(v) the number

4We only consider fixed friendship graph and ignore newly registered users.

of actual viewers is estimated by multiplying the number of

potential viewers by probabilityηc × γ
(t−t

(c)
0 )

c . Finally, the set
of users who have never watched the video by the end oft

will be reduced by the set who have viewed it att, described
by Eqn. (vi).

Predict all viewing requests: We predict the total number
of actual viewers for videoc in the system,i.e., d(c)(t), based
on Eqn. (iv) and (v), using known information att − 1: the
number of potential viewers (s(c)(t−1)), the number of actual
viewing requests (d(c)(t−1)), the users who comment on video
c (E(c)(t − 1)) and their neighbors who have not viewed the
video, as well as the users receiving system recommendation
(L(c)(t − 1)).

Map to geographic regions: Next, we calculate the number
of potential viewers in regionf , s

(c)
f (t), using an equation

similar to Eqn. (iv), which only counts users inf in each
term:
s
(c)
f (t) = s

(c)
f (t− 1)− |D

(c)
f (t− 1)|+ | ∪i∈E(c)(t−1) (Nf (i) ∩

A(c)(t − 1)) ∪ L
(c)
f (t − 1)|, where Nf (i) and L

(c)
f (t − 1)

representi’s neighbors in regionf and users receiving sys-
tem recommendation in regionf , respectively. We can then
estimate the number of actual viewing requests for videoc

from regionf asd
(c)
f (t) =

s
(c)
f

(t)

s(c)(t)
× d(c)(t).

B. Solving the One-Shot Optimization
Define

pf (t) =

(

pf , if y
(c)
f

(t − 1) = 1,

pf + ϕf , if y
(c)
f

(t − 1) = 0,
∀f ∈ F.

Wheny
(c)
f (t−1) (video replication int−1) is given,pf (t) is a

constant. We can rewrite one-shot optimization (2) as follows:

min F(~y(t), ~α(t)) =
P

c∈C(t)

P

f∈F y
(c)
f

(t)pf (t)

+
P

c∈C(t)

P

j∈F

P

f∈F α
(c)
jf

(t)|D
(c)
j (t)|vf

s.t.

8

<

:

~y(t) ∈ C1,
~α(t) ∈ C2,

α
(c)
jf

(t) − y
(c)
f

(t) ≤ 0, ∀c ∈ C(t),∀j ∈ F, ∀f ∈ F,

(4)

whereC1 is the set defined by constraint(a) in (1), andC2 is
the set defined by linear constraints(c)—(e) in (1). This op-
timization problem is a mixed integer program. Nevertheless,
we next show that an efficient solution indeed exists through
dual decomposition[33].

We derive the dual problem of (4) by relaxing its last
constraint group. Associating dual variables~λ(t) = (λ

(c)
jf (t))

with those constraints, the Lagrangian is:

L(~y(t), ~α(t), ~λ(t))

=
P

c∈C(t)

P

f∈F y
(c)
f

(t)(pf (t) −
P

j∈F λ
(c)
jf

)

+
P

c∈C(t)

P

j∈F

P

f∈F α
(c)
jf

(t)(|D
(c)
j (t)|vf + λ

(c)
jf

).

(5)

The dual function is then as follows, which is separable:

g(~λ(t)) = g1(~λ(t)) + g2(~λ(t))

where

g1(~λ(t)) = min
P

c∈C(t)

P

f∈F y
(c)
f

(t)(pf (t) −
P

j∈F λ
(c)
jf

)

s.t. ~y(t) ∈ C1,
(A)

g2(~λ(t)) = min
P

c∈C(t)

P

j∈F

P

f∈F α
(c)
jf

(t)(|D
(c)
j (t)|vf + λ

(c)
jf

)

s.t. ~α(t) ∈ C2.
(B)



TABLE II
ALGORITHM SKETCH TO SOLVE ONE-SHOT OPTIMIZATION IN (2)

Repeat

Solve subproblems (A) and (B) (in parallel)
Find optimal content replication~y(t) that solvesg1(~λ(t))

Find optimal request distribution~α(t) that solvesg2(~λ(t))

Update dual variables byλ(c)
jf

(t) := λ
(c)
jf

(t)+βk(α
(c)
jf

(t)−y
(c)
f

(t)),
∀c ∈ C(t),∀j ∈ F, ∀f ∈ F

The dual problem is:max g(~λ(t)) s.t. ~λ(t) � 0.

The dual problem can be solved by the subgradient algo-
rithm [33], which gives the optimal primal variable values as
well (i.e., the optimal solution to one-shot optimization (2)).
The sketch of the subgradient algorithm is given in Table. II,
which has a nice intuitive interpretation as follows:

We start with any initial non-negative dual variable values
λ

(c)
jf (0). In thekth iteration, given current values ofλ(c)

jf (t)’s,
we solve the optimal content replication subproblem (A) and
the optimal request dispatching subproblem (B) independently,
and derive the content replication and request dispatching
strategies,i.e., y

(c)
f (t)’s and α

(c)
jf (t)’s, respectively. Subprob-

lem (B) is a linear program and can be solved efficiently using
polynomial-time algorithms [34]. Integer program (A) can be
solved efficiently too: we relax the integer constraintsy

(c)
f (t) ∈

{0, 1} in C1 to 0 ≤ y
(c)
f (t) ≤ 1 (∀c ∈ C(t),∀f ∈ F ), and

prove that the optimal solution to the integer program can be
instantly derived from the optimal solution to the resulting
linear program in Lemma 1.

Lemma 1. There exists an integer optimal solution to the
relaxed linear program of the integer subproblem (A), which
is the optimal solution to the integer subproblem (A).

The proof of the lemma is given in Appendix A.
In Table II, after efficiently solving the two subproblems, we

update the value of dual variables. Here,βk = 1
k

, which is a
step size used in thekth iteration.λ(c)

jf can be seen as the price

of violating constraintα(c)
jf (t) − y

(c)
f (t) ≤ 0. If it is violated,

i.e., the solution to subproblem A indicates that requests for
videoc are to be dispatched to regionf (α(c)

jf (t) > 0) while the
solution to subproblem B states that videoc is not to be stored
in region f (y(c)

f (t) = 0), then λ
(c)
jf is increased, such that

content replication and request dispatching will be adjusted in
the next iteration towards satisfaction of this constraint.

The steps repeat until converging to the optimal decisions
which satisfy all constraints and minimize the aggregate op-
erational cost in time slott in (2). We have therefore derived
an efficient algorithm to solve the one-shot optimization.

V. ONLINE ALGORITHM WITH ∆(t)-STEPLOOK-AHEAD

Although one-shot optimal decisions can be efficiently made
in any single time slot, they do not guarantee the optimality
of the offline optimization (1) over a possibly long time.
Let ~y∗ = (y

∗(c)
f (t),∀c ∈ C(t),∀f ∈ F, t = 1, . . . ,∞) and

~α∗ = (α
∗(c)
jf (t),∀c ∈ C(t),∀f, j ∈ F, t = 1, . . . ,∞) denote

the optimal offline solutionfor (1). For example, suppose
video c is stored in regionf at t − 1, and removingc from

f is cost-optimal att (y(c)
f (t) = 0) according to the one-

shot optimization (e.g., because the demand forc in f drops
significantly att); however, it is possible thatc should remain
in f at t and for a number of following time slots in the offline
optimum (y∗(c)

f (t) = 1), since the demand for the video in the
region will rise again soon, and keeping videoc there could
have saved the migration cost.

We first design an optimal offline algorithm to derive the
offline optimum based on the one-shot optimization problems,
with complete knowledge of the system in the entire span. We
next explore dependencies among video replication decisions
across consecutive time slots, and design a practical online
algorithm to improve solutions towards offline optimum.

A. An Optimal Offline Algorithm

The algorithm is designed using dynamic programming. Let
P(t) denote the set of all possible content replication strategies
at time slott:

P(t) = {~y(t) |y
(c)
f (t) ∈ {0, 1},∀c ∈ C(t), f ∈ F}.

Let Opt(t, ~y(t)) denote the optimal cost from the first time
slot to t with ~y(t) as the content replication decision att. The
algorithm begins with
Opt(1, ~y(1)) = min

~α(1):(b)-(f) in (1)
F(~y(1), ~α(1)),∀~y(1) ∈

P(1), and computes optimal costs in later time slots (t > 1)
inductively:

Opt(t, ~y(t)) = min
~y(t − 1) ∈ P(t − 1)
~α(t) : (b)-(f) in (1)

(6)

{Opt(t − 1, ~y(t − 1)) + F(~y(t), ~α(t))}.

Given ~y(t), Opt(t, ~y(t)) computes the minimum cumulative
cost from time slot 1 up tot, by choosing among all possible
content replication decisions~y(t− 1) ∈ P(t− 1) in t− 1, and
all feasible request dispatching decisions~α(t) in t. The term
Opt(t−1, ~y(t−1)) is the minimum cumulative cost in[1, t−1]
with the specific~y(t−1) as the content replication decision at
t−1; the termF(~y(t), ~α(t)) is the cost incurred in time slott.
Here~y(t − 1) is related toF(~y(t), ~α(t)), since it decides the
potential migration cost att. If there is no feasible solution to
the minimization problem in (6), then we setOpt(t, ~y(t)) =
+∞.

The rationale of the dynamic programming approach is as
follows. At each timet, fixing the content replication strategy,
we trace back and examine each possible content replication
strategy in timet − 1, by adding the cost incurred int to the
minimum cumulative cost up tot−1; that is, we compute the
cumulative costs up tot in |P(t − 1)| cases (corresponding
to these many content replication strategies int − 1), and
then decide the minimum cumulative cost up tot via the
best content replication strategy int − 1. Eventually when
the computation up to time slotT is completed, the minimum
overall cost of the system in[1, T ], i.e., the optimal objective
function value of the offline optimization problem in (1), is
given by

Copt = min
~y(T )∈P(T )

Opt(T, ~y(T )).



The optimal content replication decision in time slotT

is ~y∗(T ) = arg min
~y(T )∈P(T )

Opt(T, ~y(T )), and the optimal

request dispatching strategy~α∗(T ) is the one leading to
Opt(T, ~y∗(T )) by solving (6). The optimal content replication
and request dispatching decisions in previous time slots can
be derived accordingly, by tracing the optimal decision path
back.

Theorem 1. Consider solving the one-shot optimization prob-
lem in (2) in each time slott with given replication decision
~y∗(t), to derive the optimal request dispatching strategy~α∗(t),
as one atomic operation. The optimal offline algorithm to com-
pute the offline optimum of (1) has a computation complexity

of O(T2
2|F |· max

t∈[1,T ]
|C(t)|

).

The proof is given in Appendix B. The optimal offline
algorithm designed in this section is to serve as a benchmarkin
performance evaluation. We will compare the offline optimum
derived by this algorithm with the cost achieved by our online
algorithm, to be discussed next.

B. An Online Algorithm Pursuing Offline Optimality with
∆(t)-step Look-ahead

We next design an efficient online algorithm, which makes
decisions in each time slot with only limited predicted infor-
mation into the future. The basic idea is that, at each time slot
t−1, we solve the one-shot optimization (2) for the next time
slot t, and then adjust the one-shot optimal solution towards
the offline optimum. In the following discussions, we focus on
content replication strategy (y

(c)
f (t)’s), knowing that request

distribution strategy (α(c)
jf (t)’s) can be determined accordingly

by solving (2), given the content replication strategy. There
are two possible replication decisions for videoc in region
f at t: y

(c)
f (t) = 1 (caching the video) andy(c)

f (t) = 0 (not
caching the video), respectively.

(i) If y
(c)
f (t) = 1 is the derived one-shot optimal decision,

we argue that it is also offline optimal to storec in f at t:

Lemma 2. Given replication decisions att−1, i.e., ~y(t−1), if
solving one-shot optimization (2) fort givesy

(c)
f (t) = 1, i.e.,

videoc should be stored in regionf at t, then in the optimal
offline solution, we havey∗(c)

f (t) = 1.

The rationale is intuitive: If one-shot optimization gives
y
(c)
f (t) = 1, it shows that cachingc in f is desirable to address

requests att, even if storage and possibly migration cost would
be incurred. In the offline optimum where future demands are
considered, ifc is still needed inf in later time slots, storing
c there att is more cost-effective than removing it; even ifc

is not needed inf later, caching it there is the best strategy
for t at least — in both cases,y∗(c)

f (t) = 1. Rigorous proof
of the lemma is given in Appendix C.

(ii) If y
(c)
f (t) = 0 according to the one-shot optimization, we

need to be more cautious, judge whether it is offline optimum
by looking ahead for a few time slots, and adjust the decisionif
we are (almost) sure that it is not. Our adjustment mechanism
below focuses on cases that the effect of changingy

(c)
f (t) is

isolated,i.e., it does not affect videoc’s deployment in other

regionsf ′(6= f) in t+1 after solving the one-shot optimization
for t + 1, as in these cases we can prove the correctness of
our adjustment.

Let ∆(t) ≥ 0 denote the number of look-ahead time slots
beyondt, whose viewing demands we need to learn in order
to decide whether adjustingy(c)

f (t) from 0 to 1 is more cost
beneficial over time. We will show how we set∆(t) soon.
Suppose the number of viewing requests in those∆(t) time
slots can be predicted5 or known,e.g., based on summarized
daily patterns. According toy(c)

f (t) = 0, we calculate the
one-shot optimal solutions int + 1, t + 2, . . . , by solving
(2) for the respective times. Suppose afterδt intervals, the
one-shot optimumy

(c)
f (t + δt) becomes1, i.e., demands arise

and video c should be cached inf at t + δt. If we use
~y
(c)
f [t, δt] = (y

(c)
f (t), . . . , y

(c)
f (t + δt)) to denote replication

decision variables of videoc in regionf duringt to t+δt, then
strategy sequence~y0(c)

f [t, δt] = (0, 0, . . . , 0, 1) corresponds to

one-shot optimal solutions duringt to t+δt wheny
(c)
f (t) = 0.

If we adjusty(c)
f (t) from 0 to 1 and solve one-shot opti-

mization in the subsequentδt time slots, we can obtain another
strategy sequence~y1(c)

f [t, δt]. We argue thaty1(c)
f (t + δt) = 1

in this sequence based on the following lemma.

Lemma 3. Given replication decisions of other videos and
video c in other regions, if one-shot optimal solution is to
cachec in f in t, i.e., y

(c)
f (t) = 1, by assumingc is not there

in t− 1, i.e., y
(c)
f (t− 1) = 0, theny

(c)
f (t) = 1 is the one-shot

optimum no matter whethery(c)
f (t − 1) is indeed0 or 1.

Proof of Lemma 3 is given in Appendix D. Since
y
0(c)
f (t + δt) = 1 is the one-shot optimum att + δt when

y
0(c)
f (t+δt−1) = 0, theny

1(c)
f (t+δt) = 1 no matter whether

y
1(c)
f (t+δt−1) is 1 or 0. Therefore, at mostδt time slots after

adjustingy(c)
f (t) from 0 to 1, the replication strategy sequences

~y
0(c)
f [t, δt] and ~y

1(c)
f [t, δt] merge. In fact, the two sequences

may merge sooner,i.e., δt′(< δt) slots after the adjustment,
if it turns out y

1(c)
f (t + δt′) = 0, and then all subsequent

y
1(c)
f (t+δt′+1), . . . , y1(c)

f (t+δt−1) will be 0. Hence, when

evaluating the impact ofy(c)
f (t)’s adjustment on cost change,

we only need to compare the change of total cost duringt to
t + min(δt, δt′), when the two replication strategy sequences
diverge, but not afterwards when they merge. The number of
look-ahead time slots,∆(t), is then set to bemin(δt, δt′).

Let G
(c)
f (~y

1(c)
f [t,∆(t)], ~y

0(c)
f [t,∆(t)]) denote the cost dif-

ference duringt to t + ∆(t) when adopting the above two
replication strategy sequences, respectively. It can be calcu-
lated as

G
(c)
f

(~y
1(c)
f

[t, ∆(t)], ~y
0(c)
f

[t, ∆(t)])

=

t+∆(t)
X

τ=t

{F(y
1(c)
f

(τ)) − F(y
0(c)
f

(τ))}.

If G
(c)
f (~y

1(c)
f [t,∆(t)], ~y

0(c)
f [t,∆(t)]) < 0, adjusting y

(c)
f (t)

5The prediction can be done following our epidemic model in (3),or using
other regression techniques [35].



Algorithm 1 An online algorithm with∆(t)-step Look-ahead
Input : ~y(t − 1), D(t − 1), L(t − 1), E(t − 1).
Output :~y(t), ~α(t).

1: Estimate number of viewersd(c)
j (t), ∀j ∈ F, ∀c ∈ C(t);

2: Derive the one-shot optimumy(c)
f (t) andα

(c)
jf (t), ∀j, f ∈ F, c ∈

C(t);
3: for video c ∈ C(t) do
4: Form subset of regionsΨ = {f |y

(c)
f (t) = 0};

5: for regionf ∈ Ψ do
6: ∆(t) = 1;
7: while ∆(t) ≤ Wthresh do
8: Derive one-shot optimumy(c)

f ′ (t + ∆(t)), ∀f ′ 6= f ,

based ony(c)
f (t) = 0 andy

(c)
f (t) = 1, respectively;

9: if y
(c)

f ′ (t+∆(t)) derived in the two cases are different
for any f ′ 6= f then

10: break;
11: end if
12: if y

0(c)
f (t + ∆(t)) = y

1(c)
f (t + ∆(t)) then

13: if G(~y1(c)[t, ∆(t)], ~y0(c)[t, ∆(t)]) < 0 then
14: Sety(c)

f (t) = 1;
15: end if
16: break;
17: end if
18: ∆(t) + +;
19: end while
20: Derive α

(c)
jf (t), ∀j ∈ F, f ∈ F , based on adjusted

y
(c)
f (t)’s;

21: end for
22: end for

from 0 to 1 reduces the cost in the long run; otherwise, we
should retainy(c)

f (t) = 0.
We note that∆(t) could be quite large or it is possible that

y
0(c)
f (t+δt) = 1 never happens whenδt → ∞. To handle both

cases, we set a thresholdWthresh to the number of look-ahead
steps: if sequences~y0(c)

f (t,Wthresh) and~y
1(c)
f (t,Wthresh) still

diverge afterWthresh steps, we will just retainy(c)
f (t) = 0.

An online algorithm in Algorithm 1 is designed to adjust
one-shot optimal solutions towards offline optimum, following
the above discussions. Theorem 2 guarantees that Algorithm
1 can derive a solution closer to the offline optimum, than a
solution that consists of one-shot optimum in individual time
slots.

Theorem 2. Given the predicted numbers of viewing requests
within the next∆(t) time slots, Algorithm 1 improves the one-
shot optimal solution at each time slott to one achieving a
lower overall operational cost over the system spanT .

Proof of Theorem 2 is given in Appendix. E.

C. Practical Implementation of the Online Algorithm

We briefly discuss how our online Algorithm 1, together
with demand prediction and one-shot optimization modules,
can be practically implemented in a real-world system. The
algorithm can be deployed on the tracker server(s) in the social
media application, which is (are) responsible for receiving
users’ requests and dispatching them to the cloud cites. Key
modules of the algorithm are illustrated in Fig. 2.
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Fig. 2. Key modules in online algorithm implementation.

During each intervalt, the Collector collects the number
of requests for each video from received viewing requests,
the friend relationship among users and their geographic
distribution, as well as the list of users that the social media
system recommends a video to. All these are stored in asocial
information table, as shown in Fig. 2. Based on statistics
collected over time, the collector also adjusts the estimates for
γc and η introduced in Sec. IV-A. The summarized statistics
are fed into thePrediction Engine, which estimates the number
of viewing requests for each video in the upcoming time slot.
With the demand prediction from the prediction engine and
current video replication status from thereplica information
table, the One-Shot Optimization Solversolves the one-shot
optimization (2). TheLook-ahead Mechanismreads in the
solution from the one-shot solver and adjusts them towards
offline optimality following Algorithm 1. The resulting content
replication decisions are sent to the cloud sites, for them to
pre-deploy videos and VMs in cases of increased demands and
remove videos with decreased demands; request distribution
strategies are employed by the social media application to
dispatch upcoming requests to different cloud sites.

A number of practical concerns may arise when running the
algorithm in real-world social media platforms:

Update frequency. Our algorithm runs periodically. As
hourly resource rental is commonly supported in cloud systems
[29], the algorithm can be run at intervals of a few hours.

Initial deployment of videos. For a newly uploaded video,
a default strategy is to store it in the cloud site closest to the
uploader. From this time onwards, the video is included in
calculation of the optimal replication strategies.

Large numbers of videos.Social media application may
host a large number of videos, which increases over time.
Though all videos are included in our optimization formula-
tions, our algorithm is flexible in the set of videos to attendto
in each run: A closer investigation of optimization (1) reveals
that the replication decisions of one video is largely decoupled
from those of other videos. Therefore, we can optimize the
replication of a subset of videos in each time slot, but not
necessarily all of them. For example, viewing demands of
popular videos may expand quickly across regions; we may
update their replication at higher frequencies, while dealing
with unpopular videos at longer intervals.

Accuracy of multi-step prediction. Our algorithm requires



∆(t)-step prediction. In fact, as long as the prediction can
roughly estimate the evolution trend of viewer populations
(e.g., in cases of apparent daily patterns shown by many mea-
surements [36] [37]), our algorithm provides nice guidelines
for optimal pre-deployment of videos.

VI. PERFORMANCEEVALUATION

We evaluate the performance of our online algorithm, by
building a prototype system on Amazon Elastic Compute
Cloud (EC2) [29], under realistic settings.

A. Prototype Implementation and Experimental Settings

We create a geo-distributed cloud by emulating a cloud
site using an Amazon “High-CPU Medium Instance” (1.7
GB Ram, 5 EC2 Compute Units) in each of the following
8 regions: Northern Virginia, Oregon, Northern California,
Ireland, Singapore, Tokyo, Sydney, and Sao Paulo. The round-
trip delays (RTT) between each pair of cloud sites are the
real-life measured values of the dispersed instances. Different
charges are applied in the8 cloud sites, as given in Table III.6

The prices are set based on the charging model of Amazon
Web Services [29][30], with minor adjustments.

One extra “Micro Instance” (613 MB Ram, 2 EC2 Compute
Units) is provisioned in each region to simulate the group of
users located in the region, which produces viewing requests
to dispatch to the cloud sites. The RTT between a user and
a cloud site is20 ms (manually injected) if they are in the
same region, or the real-world measured values otherwise. The
targeted maximal average response delay per request,R, is
set to 150 ms, since a latency up to200ms will deteriorate
the user experience significantly [38]. Another “High-Memory
Extra Large Instance” (17.1 GB Ram, 6.5 EC2 Compute Units)
is created as the tracker server, implementing theCollector,
Prediction Engine, One-Shot Optimization Solver, and Look-
ahead Mechanismdiscussed in Sec. V.

In our experiments, each time slot is1 hour long, the same
as the provisioning granularity of Amazon EC2 instances. A
user relationship matrixU is specified to define how users
are socially connected,i.e., Uij = 1 denotes usersi and
j are friends, andUij = 0 otherwise. Another user-content
matrix V keeps track of the users’ viewing activities,i.e.,
Vij = 1 denotes that useri has viewed videoj andVij = 0

otherwise. The number of friends of each user follows a
lognormal distribution [39],80% of which are from the same
region where the user resides. To emulate a highly dynamic
online social UGC system, for each hour,3% brand new videos
are uploaded to the system by users located in an ‘active’
region — where the local time is between 9am and 9pm in
a day, and the number of viewing requests issued follows
the well-known daily patterns [37], where most of the initial
viewers of the videos are friends from the same regions of the
uploaders. The videos are evenly divided into four types, and
each video is 100M-byte long. We generate synthesized traces
that describe the evolution of popularity and propagation of

6Large migration costsϕf are set to capture the large management
overheads incurred during content migration.

each video over time, by following closely patterns revealed
in the measurement work [40] and [41], respectively. Besides
its propagation following the social relationship among users,
each video is also recommended to0.5% of all users in the
system in each hour, who have recently watched a video of
the same type. We assume each viewer of a video immediately
comments on the video after watching it. Due to the prohibitive
traffic cost among EC2 instances, the total number of emulated
users in the system is limited to10, 000 and the initial number
of videos is60. We run the system for over100 hours.

B. Prediction accuracy

We first investigate effectiveness of our epidemic model for
forecasting future viewing demands, by comparison against
ARIMA, a widely used model for non-stationary time series
prediction [42]. In our epidemic model, we set the values
of ηc and γc for each videoc by matching the resulting
evolution of the video popularity with that captured by the
traces. We found our model matches the traces best whenηc

is set to a value around0.5 and γc is chosen in the range
of [0.9, 0.99999], for each videoc. When fitting an ARIMA
model, we collected 96-hours’ user requests in a single dry
run. The original series of the number of requests becomes
stationary after being differenced twice, and we therefore
chose an ARIMA(p,2,q) model; and after carefully checking
the partial autocorrelations, an autoregressive model ofp = 3
andq = 0 is applied.

In Fig. 3, the solid blue curve plots the actual viewing
request number in a time span of 48 hours, following the syn-
thesized traces we applied. The dotted red curve corresponds
to the ARIMA prediction results, using the ARIMA(3,2,0)
model. The black square dots represent the prediction results
using our epidemic model for5 consecutive time slots, made
at the time slots marked by ‘+’:e.g., the first five square
dots are prediction results done att = 1 for the next5 time
slots, the next batch of five square dots are prediction results
done att = 14 for the next 5 time slots, and so on. For
better readability of the figure, we only show the prediction
results made at selected time slots oft = 1, 14, 27 and 40,
respectively. We can observe that predicted numbers using
our epidemic model follow the actual numbers quite well,
especially within a4-hour look-ahead window (i.e., the first
four square dots in each batch are well aligned with the blue
curve). However, the ARIMA model fails to capture the social
influence among users and performs poorly.

0 24 48
0

100

200

300

400

Time (hour)

N
um

be
r 

of
 R

eq
ue

st
s

 

 

Actual Number
ARIMA prediction
Prediction Point
Predicted Number

Fig. 3. Evolution of popularity of a sample video.



TABLE III
CONFIGURATIONS OF8 GEO-DISTRIBUTED CLOUD SITES

Northern Virginia Oregon Northern California Ireland Singapore Tokyo Sydney Sao Paulo
ϕf ($ per video) 6.66 7.44 7.20 7.80 7.50 7.11 7.74 6.96
pf ($ per byte per hour) 0.599 0.559 0.574 0.620 0.562 0.580 0.598 0.576
vf ($ per request) 0.038 0.035 0.038 0.040 0.039 0.038 0.035 0.034
Uf (requests per hour) 8,800 7,300 9,100 9,400 8,100 8,000 7,800 87,00

C. Impact of Look-ahead Window Size

We next investigate the performance of our online algorithm
when different look-ahead window sizes are employed,i.e.,
Wthresh in Alg. 1. Fig. 4 plots cost savings,i.e., cost incurred
with one-shot optimal solutions minus cost with our online
algorithm, in each time slot when different maximal window
sizes Wthresh are used in our look-ahead mechanism. To
better illustrate the observations from Fig. 4, Fig. 5 plotsthe
corresponding cost saving percentage when the look-ahead
window is adjusted,e.g., Wthresh2 → 3 represents that the
look-ahead window size is adjusted from2 to 3, and the
corresponding cost saving percentage is computed as the cost
of our online algorithm withWthresh = 3 minus the cost of
our online algorithm withWthresh = 2, and then divided by
the later. We observe that a larger window may give larger cost
savings, but the gap decreases with the increase of window
size,e.g., Wthresh = 2 or 3 achieve similar costs over time.
All these promise that a small look-ahead window is enough
to achieve good cost savings in realistic environments. In our
following experiments, we will use a look-ahead window size
Wthresh = 2 as the default.
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Fig. 4. Evolution of cost saving between our online algorithm and the one-
shot optimum: different window sizes.
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Fig. 5. Evolution of cost saving percentages with differentwindow sizes in
our online algorithm.

D. Performance Comparison with Other Algorithms

We compare the performance of our online lookahead
algorithm against other potential solutions, including a simple

CDN algorithm, a smart CDN algorithm, the one-shot opti-
mum algorithm and the offline optimal algorithm.

⊲Simple CDN: It replicates a copy of each video in each
cloud site at all times. User requests are routed to any
cloud site with sufficient bandwidth, as long as the latency
constraints are met.

⊲Smart CDN: This algorithm resembles the one proposed
by Scellatoet al. [19], except that we further consider content
migration costs as well as the capacity constraint in each
individual cloud site: Upon requests from users in a region,a
copy of the requested video will be replicated in an on-demand
fashion to the cloud site closest to the social cascade, which
has sufficient upload bandwidth.

⊲One-shot Optimum: The algorithm uses one-shot optimal
solutions in each time slot for video replication and request
dispatching, such that the cost is minimized in individual time
slots.

⊲Offline Optimum: It carries out the optimal offline solution
derived by the optimal offline algorithm designed in Sec. V-A,
with complete knowledge of the system over the entire time
span.

Fig. 6 shows the excessive costs against that of our looka-
head algorithm at each time incurred by the simple CDN
algorithm, the smart CDN algorithm and the one-shot opti-
mum algorithm, respectively. We can see that our algorithm
performs significantly better than both the simple CDN and the
smart CDN algorithms, with the latter incurring much more
cost due to the request dispatching heuristic applied: the smart
CDN algorithm focuses on locality awareness, where each
request is routed to the closest available cloud site, even though
serving a request there may be more expensive than in other
cloud sites. The cost incurred by the one-shot optimal solution
is much less, as compared to the former two, but is still higher
than the lookahead algorithm, verifying the effectivenessof the
online adjustment mechanism.

Fig. 7 shows that the operational cost achieved by our
algorithm is very close to the offline optimum over 24 hours,
with a gap of approximately8%. It is interesting to see that the
offline optimum algorithm incurs higher cost at the beginning,
due to content prefetch for future request serving.

Fig. 8 shows that the smart CDN algorithm achieves the
lowest response latencies, and the other three algorithms
achieve similar latencies and all meet the service quality target,
i.e., 150ms.

E. Simulation at Larger Scales

Due to the prohibitive traffic cost for running experiments
on Amazon EC2, we further evaluate our algorithms using
large-scale simulations, to examine their performance with the
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Fig. 7. Operational cost comparison with the offline optimum.

increase of the system scale. Since our algorithms only deal
with the aggregate number of user requests per region, the
influence of the increasing number of users on the algorithm
performance is limited. We therefore only show the simulation
results when the number of videos increases in the system,
while fixing the total number of users at1, 000, 000. Fig. 9
plots the excessive cost percentages of all four algorithms
against the offline optimum. The excessive cost percentage
of an algorithm (i.e., the Lookahead Algorithm, the One-shot
Optimum Algorithm, the Simple CDN Algorithm, the Smart
CDN Algorithm) is computed as follows, where the cost is
the overall cost incurred by an algorithm in the entire (same)
simulation span:

cost of the algorithm – offline optimum cost
offline optimum cost

.

We can see that the excessive cost percentages of all four
algorithms are relatively stable as the number of videos grows,
and the cost incurred by the lookahead algorithm is always
closest to that of the offline optimum.
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Fig. 8. Average response delay comparison.
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Fig. 9. Excessive operational cost against the offline optimum: a simulation
study with increasing numbers of videos.

VII. C ONCLUDING REMARKS

This paper introduces a proactive, online algorithm to scale
social media streaming applications for operating in geo-
distributed clouds. Exploiting the underlying social influences
among the users, we build a simple, effective epidemic
model to predict future viewing demands for proactive service
deployment. Aiming at operational cost minimization with
service delay guarantees, we formulate an optimal content
migration and request distribution problem, with long-time and
one-shot flavors, respectively. Efficient methods are proposed
to solve the one-shot optimization, and a novel∆(t)-step look-
ahead mechanism is designed with guarantees to adjust the
one-shot optimum to the offline optimum, which is based on
solid theoretical analysis. Our large-scale evaluations on an
emulated distributed cloud over the Amazon EC2 platform un-
der realistic settings confirm the excellent performance ofour
online algorithm in pursuing the ultimate optimal replication
and request dispatching solutions, using limited information
within small look-ahead windows.

APPENDIX A
PROOF OFLEMMA 1

Proof: For the relaxed linear program of subproblem (A),
the optimal solution(s) can only be the vertex (vertices) ofthe
polyhedron formed by the constraints:











−
∑

f∈F y
(c)
f (t) ≤ −1,∀c ∈ C(t)

y
(c)
f (t) ≤ 1,∀c ∈ C(t),∀f ∈ F

−y
(c)
f (t) ≤ 0,∀c ∈ C(t),∀f ∈ F

(7)

Let M denote the constraint matrix:
M =





M1(|C(t)|)×(|C(t)|×|F |)

M2(|C(t)|×|F |)×(|C(t)|×|F |)

M3(|C(t)|×|F |)×(|C(t)|×|F |)



 ,

whereM1 =






−1 · · · 0 −1 · · · 0 · · · −1 · · · 0
. ..

...
. . .

...
.. .

...
.. .

...
−1 −1 −1 −1






,

M2 = E, andM3 = −E, whereE is the unit matrix. Letb =
(−1,−1, . . . ,−1, 1, 1, . . . , 1, 0, 0, . . . , 0)T , which is a|C(t)|+
|C(t)| × |F | + |C(t)| × |F |-dimension vector.

If M is totally unimodular, then every vertex of the polyhe-
dron formed byM~y ≤ b is integral. So we can prove Lemma
1 if we can show thatM is totally unimodular.



For any1-by-1 sub matrix ofM , we know the determinant
can only be -1, +1 or 0, since the entry ofM is in {+1, -
1, 0}. By inductive hypothesis, we assume that the possible
determinant of any square sub matrix ofM with a dimension
of no greater thanN ×N is in {-1, +1, 0}. We will prove that
the determinant of any sub matrixM ′

(N+1)×(N+1) can only
be +1, -1 or 0.

For sub matrixM ′
(N+1)×(N+1), there are two cases:

(i) There is a rowr in M ′
(N+1)×(N+1) which is (part of)

a row in M3. We can easily see that, the correspond-
ing row in M ′

(N+1)×(N+1) has at most one non-zero
entry, i.e., −1. DenoteM ′

r as the corresponding row in
M ′

(N+1)×(N+1). Therefore,

det(M ′
(N+1)×(N+1))

=

{

0, if M ′
r = ~0

{+1,−1} × det(M ′
N×N ) = {+1,−1, 0}, otherwise

(ii) M ′
(N+1)×(N+1) consists only of rows from

(

M1(|C(t)|)×(|C(t)|×|F |)

M2(|C(t)|×|F |)×(|C(t)|×|F |)

)

.

The above (|C(t)| + |C(t)||F |) × (|C(t)||F |)-
dimensional matrix istotally unimodularaccording to
the Ghouila-Houri’s characterization[43], since each
column has exactly one1 and−1. Then based on the
definition of total unimodularity [34], we know that
the determinant of every square submatrix of the above
matrix (consisting ofM1 and M2) is in {-1, +1, 0}.
Therefore, sinceM ′

(N+1)×(N+1) is a square submatrix
of the above matrix, its determinant is in{-1, +1, 0}.

Therefore, we have proven that the determinant of any sub
matrix ofM is in {+1, -1, 0}, and thusM is totally unimodular
and the lemma is proven.

APPENDIX B
PROOF OFTHEOREM 1

Proof: In each time slott, , the number of replication
strategies for each content is

(

|F |
0

)

+
(

|F |
1

)

+
(

|F |
2

)

+ ...+
(

|F |
|F |

)

,
and the number of replication strategies for all contents int

is

|P(t)| =

((

|F |

0

)

+

(

|F |

1

)

+

(

|F |

2

)

+ ... +

(

|F |

|F |

))|C(t)|

= (2|F |)|C(t)|.

In any given time slott, the number of allOpt(t, ~y(t))’s to
compute is|P(t)|, each at a given~y(t) ∈ P(t). To compute
each Opt(t, ~y(t)) at a given ~y(t) using (6), we can loop
through|P(t−1)| possible choices of~y(t−1) ∈ P(t−1), and
at each fixed~y(t−1), we solve a linear minimization problem
as follows,

min
~α(t):(b)-(f) in (1)

F(~y(t), ~α(t)), (8)

to derive ~α(t) where~y(t) is given. (8) is the one-shot opti-
mization problem in (2) to compute the request dispatching

strategies~α(t) with content replication strategies~y(t) given.
Therefore, if we take the derivation of the optimal request

dispatching strategy~α∗(t) based on the one-shot optimization
problem in (2) with given replication decision~y∗(t) as one
atomic operation (i.e., solving (8) as one atomic operation),
the computation complexity to calculate allOpt(t, ~y(t))’s in a
time slott is at mostO((maxτ∈[1,T ] |P(τ)|)2), i.e., the number
of Opt(t, ~y(t))’s to compute is at mostmaxτ∈[1,T ] |P(τ)| and
each Opt(t, ~y(t)) is computed by looping through at most
maxτ∈[1,T ] |P(τ)| possible choices of~y(t − 1). Given the
total number of time slots isT , the overall computational
complexity is:

O(T ( max
τ∈[1,T ]

|P(τ)|)2) = O(T ((2|F |)maxτ∈[1,T ] |C(τ)|)2)

= O(T22|F |×maxτ∈[1,T ] |C(τ)|).

APPENDIX C
PROOF OFLEMMA 2

Proof: We prove Lemma 2 by contradiction. Let~y∗ de-
note the offline optimal solution and assumey

∗(c)
f (t) = 0. We

create another feasible solution~y∗∗ of the offline optimization
in (1) by changingy

∗(c)
f (t) from 0 to 1, i.e., the one-shot

optimum derived by solving one-shot optimization (2) att,
while keeping all other caching decision variables to be the
same values as those in~y∗.

We compare the overall operational cost over infinite time
when ~y∗∗ and ~y∗ are applied as the caching strategies over
time, respectively. Let~α∗∗ and ~α∗ be the corresponding
request distribution decisions, derived by solving the one-shot
optimization at each time with given caching strategies~y∗∗ and
~y∗, respectively. Let notationF(~y(t + 1), ~α(t + 1))|

y
(c)
f

(t)=x

denote the operational cost incurred int + 1 in the entire
system, giveny(c)

f (t) = x, wherex = 1 or 0 denotes videoc
is cached or not in regionf in the previous time slott. The
overall cost difference is:

H(~y∗∗, ~α∗∗) − H(~y∗, ~α∗)
= F(~y∗∗(t), ~α∗∗(t)) − F(~y∗(t), ~α∗(t))

+F(~y∗(t + 1), ~α∗(t + 1))|
y
(c)
f

(t)=1

−F(~y∗(t + 1), ~α∗(t + 1))|
y
(c)
f

(t)=0

= F(~y∗∗(t), ~α∗∗(t)) − F(~y∗(t), ~α∗(t))

−y
∗(c)
f (t + 1) × ϕf

≤ F(~y∗∗(t), ~α∗∗(t)) − F(~y∗(t), ~α∗(t)) ≤ 0.

In the above, the first equality holds because the operational
cost when applying the two different strategies only differs at
time slott andt+1. The reason is that decisions made in the
past (before timet) can not be altered. The second equality is
because the operational cost difference att+1 only lies in the
migration cost,i.e., a migration cost may occur ify(c)

f (t) = 0,

but not if y(c)
f (t) = 1. The last inequality holds because~y∗∗(t)

and the corresponding~α∗∗(t) constitute the one-shot optimal
solution for time slott.

The result shows that~y∗∗ leads to smaller overall cost,
which contradicts our assumption that~y∗ is offline optimum.



APPENDIX D
PROOF OFLEMMA 3

Proof: We only need to show thaty(c)
f (t) = 1 is the

one-shot optimum att wheny
(c)
f (t − 1) = 1. We prove it by

contradiction by assuming that the one-shot optimumy
(c)
f (t) =

0 wheny
(c)
f (t − 1) = 1.

Suppose~y
′

(t) is the one-shot optimal solution including
y

′(c)
f (t) = 0. We create another feasible solution~y

′′

(t) by

changingy
(c)
f (t) from 0 to 1, while keeping all other caching

decision variables to be the same values as those in~y
′

(t). Then
we compare the one-shot operational cost att when ~y

′′

(t)
and ~y

′

(t) are applied as the caching strategies, respectively.
Let ~α

′′

(t) and~α′(t) be the corresponding request distribution
decisions, derived by solving the one-shot optimization (2)
with given caching strategies~y

′′

(t) and~y
′

(t), respectively. Let
notationF(~y(t), ~α(t))|

y
(c)
f

(t−1)=x
denote the operational cost

incurred in t in the entire system, ify(c)
f (t − 1) = x, where

x = 1 or 0 denotes videoc is cached or not in regionf in the
previous time slott − 1.

F(~y
′′

(t), ~α
′′

(t))|
y
(c)
f

(t−1)=1
− F(~y

′

(t), ~α
′

(t))|
y
(c)
f

(t−1)=1

= F(~y
′′

(t), ~α
′′

(t))|
y
(c)
f

(t−1)=0
− y

(c)
f (t) × ϕf

−F(~y
′

(t), ~α
′

(t))|
y
(c)
f

(t−1)=1

= F(~y
′′

(t), ~α
′′

(t))|
y
(c)
f

(t−1)=0
− y

(c)
f (t) × ϕf

−F(~y
′

(t), ~α
′

(t))|
y
(c)
f

(t−1)=0

< F(~y
′′

(t), ~α
′′

(t))|
y
(c)
f

(t−1)=0
− F(~y

′

(t), ~α
′

(t))|
y
(c)
f

(t−1)=0

≤ 0.

In the above, the first equality holds because a migration cost
may be occurred int if y

(c)
f (t − 1) = 0, i.e., video c is not

stored inf in the prior time slot. The second equality is derived
based on the fact that, if the one-shot optimal replication
decision att is not to store a videoc in f , c’s storage status in
f in the prior time slott− 1 has no effect on the operational
cost at t. The last inequality is due to our assumption that
y
(c)
f (t) = 1 is the one-shot optimal solution ify(c)

f (t−1) = 0.

The result shows that~y
′′

(t) leads to smaller operational cost
in t given y

(c)
f (t− 1) = 1 , which contradicts our assumption

that ~y
′

(t) is the one-shot optimum int wheny
(c)
f (t− 1) = 1.

APPENDIX E
PROOF OFTHEOREM 2

Proof: According to Lemma 2, if to cache videoc in
region f at t is the one-shot optimal replication decision,
i.e., y

(c)
f (t) = 1, for any c ∈ C(t), f ∈ F , it is already

offline optimal, i.e., y
∗(c)
f (t) = 1. Thus adjustment will only

be attempted if it is one-shot optimal not to cache videoc in
f in t, i.e., y

(c)
f (t) = 0, as done by Algorithm 1.

Algorithm 1 only adjusts ay(c)
f (t) from 0 to 1, if (i) the

two sequences of~y0(c)
f [t,∆(t)] and ~y

1(c)
f [t,∆(t)] merge at

some∆(t) ≤ Wthresh steps aftert, i.e., y
0(c)
f (t + ∆(t)) =

y
1(c)
f (t + ∆(t)), (ii) the cost incurred after the adjustment is

smaller, i.e., G(~y1(c)[t,∆(t)], ~y0(c)[t,∆(t)]) < 0, as well as
that (iii) the adjustment does not affect videoc’s replication
decisions in regions other thanf during [t,∆(t)]. In this
case, since the two caching decision sequences become the
same again fromt + ∆(t) onwards and no other replication
of c is affected by the adjustment, the difference of overall
cost over infinite time after and before the adjustment, is
exactly G(~y1(c)[t,∆(t)], ~y0(c)[t,∆(t)]). Therefore, the above
three conditions guarantee that Algorithm 1 only adjusts the
one-shot optimumy

(c)
f (t) = 0 to y

(c)
f (t) = 1 when the

aggregate operational cost over long run of the system will
decrease, which is a better solution approximating the offline
optimum.
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