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Abstract—Federation of geo-distributed cloud services is a services (in separate data centers) from different prosjde.,
trend in cloud computing which, by spanning multiple data interconnecting them based on common standards and policie
centers at different geographical locations, can provide a cloud to provide a universal environment for cloud computing [1],

platform with much larger capacities. Such a geo-distributed
cloud is ideal for supporting large-scale social media streaming [2]. The aggregate capabilities of a federated cloud would

applications (e.g., YouTube-like sites) with dynamic contents and appear to be limitless and can serve a wide range of demands
demands, owing to its abundant on-demand storage/bandwidth over a much larger geographic span [2].

capacities and geographical proximity to different groups of A geo-distributed federated cloud is ideal for supporting
users. Although promising, its realization presents challenges on large-scale social media streaming applications. Soc! n

how to efficiently store and migrate contents among different K licati = book. Twitt F
cloud sites (.e. data centers), and to distribute user requests to work applications &.g, Facebook, Twitter, Foursquare) are

the appropriate sites for timely responses at modest costs. Thes dominating the Internet today, and they are uniting with
challenges escalate when we consider the persistently increasingconventional applications, such as multimedia streamiag,

contents and volatile user behaviors in a social media application. produce newsocial media applicationse.g, YouTube-like
By exploiting social influences among users, this paper proposesgjtes Compared with traditional Internet video servises;al

efficient proactive algorithms for dynamic, optimal scaling of - L . .
a social media application in a geo-distributed cloud. Our media applications feature highly dynamic contents and de-

key contribution is an online content migration and request Mands, and typically more stringent requirements on respon
distribution algorithm with the following features: (1) future  latency in serving viewing requests—since most of their o&de
demand prediction by novelly characterizing social influences are shorte.g, several minutes, a latency of more than a few
among the users in a simple but effective epidemic model; (2) one- o y5 of seconds would be intolerable to a viewer. It is theeef
shot optimal content migration and request distribution based hall ina to desi d | ial di licatiet:
on efficient optimization algorithms to address the predicted cha e.nglng o aesign ah scale a social media apP Icanst
demand, and (3) aA(t)-step look-ahead mechanism to adjust effectively. The conventional approaches use dedicateeise
the one-shot optimization results towards the offline optimum. owned by the application providersg, private clouds), or
We verify the effectiveness of our online algorithm by solid to outsource to a content distribution network (CDN). Geo-
theoretical analysis, as well as thorough comparisons with ready yistrihyted clouds provide a much more economic solution:
algorithms including the ideal offline optimum, using large-scale . finite” d d cloud t well with th
experiments with dynamic realistic settings on Amazon Elastic .'n ni e. on-demand cloud resources mee We wi . € ever
Compute Cloud (EC2). increasing demand for storage and bandwidth, while capable
of absorbing frequent surges of viewing demands on the fly;
cloud sites situated in different geographic locationseroff
I. INTRODUCTION efficient services to groups of users in their proximity;sélza

The cloud computing paradigm of late enables rapid OIgharging models of the clouds can significantly cut down

demand provisioning of server resources to applicatiorth Wloperatlon'al costs of th? apphcathQ pr.owders.
minimal management efforts. Most existing cloud system_s,To realize the potentials of geo-distributed federatedd$o

e.g, Amazon EC2 and S3, Microsoft Azure, Google Ap ! SUpp?rtlgg |_S|OC|aIhmeI((jjla;happl|c§1t||0ns,d<_:haller:ge;s rsrmn: d
Engine, organize their shared pool of servers from one owa f € resolved: How shou € soclal media conten's be store

data centers, and serve their users using different vizatan and migrated across different cloud sites, and viewingestiu

technologies. The services provided by one individual (d:lOLPe distributed, such that the operational costs are miwhiz

provider are typically deployed to one or a few geographic rt\é\'h”e the average response delays are bouqded according to
gions, prohibiting it from serving application demands &tyu a pre-set QoS target by the application provider? It may not

well from all over the globe. To truly fulfill the promise of be too hard to design optimal sirategies for the case where

cloud computing, a rising trend is to federate disparateld:lot.he numper 9f contents and the scale of user req.uests are
fixed, which is what a CDN or a cache network is most
The research was supported in part by a grant from Hong Kong R@ler capablle In handlmg. What is really challenging is to design
the contract HKU 717812E, by a grant from RGC under the con845613, an online algorithm that can make use of cloud resources
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solution with complete knowledge of the system over a long



time. There were a few proposals on migrating applications from
Our work proposes such an online algorithm for dynamicpnventional private server clusters to the new public alou
optimal scaling of a social media application in a geglatforms. Hajjatet al. [8], Sharmaet al. [9], and Zhang
distributed cloud. Our contributions are as follows: et al. [10] advocate migrating enterprise IT applications to
First, we enable proactive content migration, by predictingxploit the computation and storage capacities of a cloud. W
future demand based on social influence among the usetsl.[11] and Liet al.[12] discuss migration of VoD services
and correlation across videos. More specifically, a simple bonto a cloud platform, by exploring demands and user pattern
effective epidemic model is built to capture propagation of a conventional VoD application. Pujet al. [13] and Xuet
video views along both social connectiori®e( people view al. [14] investigate migration of social network applicatipns
the videos posted or retweeted by their friends) and interéscusing on user profile replication on cloud servers adogrd
correlations €.g, people watched a French Open clip majo their social connections. Different from all these work,
view another one from the Wimbledon). our study is the first to explore dynamic migration of the
Secondto serve the predicted demands, we decide on thevel social media applications, and to use soaifllence
one-shot optimal content migration and request distributi among users for viewing demand prediction; and we target at
strategy by formulating the problem as a mixed integer pra-solution with over-time optimality guarantee.
gram. We show that efficient solutions to the problem exist, Prediction of application behaviour is important for fully
using dual decomposition and linear programming techisiguexploiting agile resource provisioning of a cloud [15]. The
Third, a A(t)-step look-ahead mechanism is proposed t@easurement study by Zhat al. [16] reveals the important
adjust the one-shot optimization results towards the efflirof related video recommendation on YouTube video viewing
optimality, which gives rise to the online algorithm. Wecounts. Wanget al. [17] and Laiet al. [18] unveil the correla-
prove the effectiveness of the algorithm using solid théosk tion between video popularity and the propagation behaviou
analysis, and demonstrate how the algorithm can be prégticaf links to the videos in a social network via web crawling
implemented in a real-world geo-distributed cloud with lownethodologies. In contrast, our work aims to design a thdeta
costs. We also design an efficient optimal offline algorithrapidemic model for future video demand prediction by fully
that derives the offline optimum of the long-term optimieati exploiting the social influences among users and correlgtio
problem, as a benchmark to evaluate performance of oure@nlgmong video contents. Scellagd al. [19] exploit geographic
algorithm. information extracted from social cascades to improve imult
Finally, performance of our algorithm is evaluated via largemedia file caching in different CDN sites. A location-aware
scale experiments under dynamic realistic settings on Amazcache replacement policy is proposed, which ensures that
EC2. We extensively compare the performance of our onlimentent relevant to a social cascade is kept close to the user
algorithm with that of ready, heuristic dynamic algorithras who may be interested in it. No content migration across
well as against the offline optimum derived by the optimalifferent sites nor request dispatching are investigatésl are
offline algorithm. The results show that our online algarith going to compare our algorithm with this caching strategghwi
enables high-performance social media applications oroa gexperiments in Sec. VI.
distributed cloud with an operational cost much lower than A substantial body of literature has been devoted to con-
those achieved by the dynamic heuristics, and close to tie@it replication and scheduling in a CDN or cache network
offline minimum. [20][21], which mostly targets at relative static scenario
The remainder of this paper is organized as follows. Wghere the contents and user scales are fixed. Our work
discuss related work in Sec. Il, and present the system modgters from those work in that we focus on a geo-distributed
and the offline optimal content migration and request distitloud platform, with significantly different charging mdse
bution problem in Sec. Ill. We predict viewing demands angind elastic “pay-per-use” usage patterns, which calls for a
solve the one-shot optimization in Sec. IV. The design of thaore flexible online algorithm. A recent study by Chenh
online algorithm withA(t)-step look-ahead and the optimakl. [22], which appeared in the same venue as the conference
offline algorithm is given in Sec. V, for which we discuss thgersion of our work [23], advocates to build CDNs on top
evaluation results in Sec. VI. Sec. VIl concludes the paper.of the cloud infrastructure by proposing a set of online and
offline heuristics for site replication and distribution tipa
Il. RELATED WORK selection. In contrast, our work focuses on content reftina
Federation of geo-distributed cloud services is a receamd request dispatching in a social media application and
development of cloud computing technologies. Several-stavur proposed offline and online algorithms exploit the ugiqu
dardization projects [2] [3] [4] [5] have emerged, which ainsocial influences in such an application.
to realize a global, interoperable federated cloud ecesyst In the online algorithm literature [24], paging problems
For instance, the open data center alliance [2] aims to geoviresemble ours from some perspectiveg), contents can be
solutions to unify cloud resources from different provelés migrated among nodes and the access costs depend largely on
produce a global-scale cloud platform. The current liteat the distances between the requester and the replica. Taege h
and industry efforts focus on designing inter-connectitezns been a variety of work [25] [26] proposing online algorithms
dards [1] [6] [7], while our study here, as a complement to tHeoth deterministic and random ones, for the classical gagin
existing work, explores utilization of a geo-distributeldwed problems. However, the optimization problem in our work
platform for efficient application support. follows closely the realistic parameters of a cloud systeth a



watch a video. On the other hand, the system can recommend
videos to userse(g, by listing recommended videos alongside
the video currently played) based on such parameters as user
location, video types, metadata (tags), top hits, etc. Acczte
example of social media application is YouTube enhanced by
social networking functionsi,e., a combination of YouTube
and twitter (which is an emerging move for YouTube-like
applications [16]).

LN C. The Offline Optimal Content Migration and Request Dis-

Computing . .
Server tribution Problem

Storage
Server

The conventional approach to provisioning for this social
Fig. 1. The geo-distributed cloud model. med_ia f_ipplicati(_)n is to use a private server clus_t_er (the
is h h i d th he classical application provider’s private cloud). We advocate mimgt
s hence much more complicated than the classical pag application into the geo-distributed cloud infrastae, for

problems, preventing the application of any ready Onllrl?etter scalability, lower management overhead, and pribxim

algorithms. to users. The private cloud may or may not be part of the
federated cloud. As a cloud consumer, the application geovi
I1l. SYSTEM MODEL deploys its web service on the VMs on the computing servers,
A. The Geo-distributed Cloud and video files in the storage servers.

We consider a geo-distributed cloud infrastructure (Fig. 1 OUr Obiective is to design an online algorithm to optimally
which consists of multiple disparateloud sitesdistributed replicate videos onto cloud sites with different charged an

in different geographical locations, and owned by one &roximities.to users, and dispatch video requgsts tol thess sit
multiple cloud service providers. Each cloud site resides F,UCh that timely responses at the lowest cost Is agh|eved. We
one data center, and contains a collection of intercondestd first formulate aroffline optimizatiorproblem which gives the

virtualized servers. A representative structure of seriegide ideal” optimal strategies for content replication and uest

each data center is as follows [27]: There are two categorfd§Patching, assuming complete information of the system

of servers,storage servergo store data files andomputing over the entire t'_me span 1S kr_lown. ,
serversto support the running and provisioning efrtual Suppose that time is slotted into equal intervals, whese)

machines(VMs); all computing and storage servers inside igdicate; the initial stgte..LG{t'(t).denote the set of videos in
cloud site are inter-connected with high speed switches am soc!al media application at time skotWe assume that all
LAN buses. Different cloud sites are connected over a WAN!d€os in the system have the same unit size, and the length
We investigate the laaS (Infrastructure as a Service) méde®) @ time slot is sufficient for downloading one video at the
cloud computing in this work [28]. video .playback rate. Leﬁ denote thg set of regions that fche
We assume the computing (storage) servers inside a clcﬁﬁ%d infrastructure spanse., one region hc_>sts one cioud site.
site have similar hardware configurations, and charge tmesal’; (¢) represents the set of users in regib/ < F)*, who
prices for usage. Hardware configurations and usage chargBgose to view videe (c € C(#)) in time slott. _
are likely to be different across different cloud sites. \aket L€t ¥ E(U;d a be the optimal decision variables: Binary
into account the following three types of charges to a clovdriabley;” (t) indicates whether a copy of video should
consumer: storage cost to keep data on the storage ser/gsstored on the cloud site in regigh(referred to as cloud
rental fee of VMs to run the application, and charges fdite f hereinafter) in time slot; a;?(t) € [0,1] is the portion
incoming/outgoing traffic to/from each cloud site. The fem of |D§C)(t)| (the total number of requests for contenfrom
two are charged by usage time on a per unit time rate, and tlegion j at ), to be dispatched to and served by cloud gite
last one is by traffic volume on a per byte rate. These follow On cloud sitef, p; is the storage cost per unit size per
the representative charging models of leading commercighe slot,m is the rental cost of one VM per time slot, and
cloud products, such as Amazon EC2 [29] and S3[30]. b, is the outgoing bandwidth cost per unit size. We model
the cost incurred for using the cloud platform as follows: (1
B. The Social Media Application The storage cost in time sldtfor video ¢ on cloud site f

S y}c) (t) x ps. (2) Suppose the number of requests a VM

In a social media streaming application, registered USER cloud sitef can serve per time slot is¢. The cost for
generate and upload videos to the servers, and download a %d site f to serve requests from regionfor video ¢ in
view videos uploaded by others. The videos are assumed to be o (1) x| DY (1)

t J J

short clips of a few tens or hundreds of mega bytes. Userstofncludes (i) VM rental cos ; x my and (i)
the application are interconnected in a social networkidess upload bandwidth cosﬁﬁ) (t) x |DJ(,C) (t)| x bs. Let vy =
video browsing and watching, a platform is provided where

each user can add other users as friends, post microblogs t@sers residing in regions without deployed cloud sites amsidered in
comment on videos, and follow microblogs of their friends t@etsD(fc) (t) of regionsf € F that they are geographically closest to.



2L 4+ by denote the unit cost to serve each request on cloud TABLE |
5 . i c) (c) NOTATION
site f. The cost above can be S|mpI|f|ed@§f (t) x| D7 (t)] x

vs. (3) Letp, denote the migration cost to move one vided Symbol [ Definition- .
into cloud site f,2 which includes bandwidth cost and other £ Set of regions the geo-distributed cloud spans
t heads: th N Qéc) ; (c) 1t C(t) Set of videos in the social media application at t
managemen_ over ea_ S, there Q ! ( >,_ yf ( - )] Xef y}c)(t) binary variable: to store video at cloud sitef att¢ (1) or not (0)
IS. the potentlal mlg[gtlon CO%E)fOI’ moving Vldwnt(%dOUd a;”)(t) Portion of the total number of requests for video ¢ from ragjo
site f at ¢, where[y;”(t) — y; ' (t — 1)]" = max{y;"(t) — att, to be dispatched to cloud sife
ygcc) (t _ 1)7 0}_ D}c)(t) Set of users in regiotf requesting videe at ¢
7 X . . L . Df Storage cost per unit size per time slot on cloud gite
The offline op'qmlzatlo_n to mn_qlm!ze the overall ope_ratybna vy Cost to serve each request on cloud gite/M rental+bandwidth)
cost of the social media application on the geo-distributed-; Round-trip delay between regighand regionf
cloud over a possibly long time intervale., [1,7], is for- #1 m@r_anon cost to move one V'ddelo into cloud sife
. aximum average response delay per request
mUIate?niiS f}fﬂ'('ﬁ"’;)s-_ ST (3 > (C)(t) « Uy Maximum reserved bandwidth at cloud sife
Y= 2= C(%c(t) fe(i)yf Py 00 Uploading time of videa:
+2cecw) 2jer 2per @ (U) X [ D7 ()] X vp (€ 0©) Uploader of videa:
+2cecq) ZfeF[yScc) (t) — ySf) (t—D]T x ¢f) s©(¢) | Number of potential viewers of videoat ¢
) ) A©(t) | Set of users who have not watched videby the end oft
subject to: (repeat each constraint for 1,...,T) L©)(t) | Set of users that videois recommended to at
(e) EW©(t) | Set of users who comment on videat ¢
(a) Yy (t) €{0,1}, Vee C(t),Vf € F, Q Set of all registered users
®) i) <y\? (1), Vee Ct),Vj e FYfEF, N() | User i's set of friends
Soep a9 ) x| DL ()| xr, s Ne Initial popularity of video ¢
(c) 155 f; ]f‘D(c)(t)J‘ = <R, VeeC(t), Ve Decreasing speed of video ¢’ popularity
JEF J

(@) Teeon Sjeras® x D@ <Uy, VfeF, o _ _ ,

© Yrer a;_?(t) —1, VjeFVeeC®), shqt optimization problem in ea(_:h time slot, ar_ld adjust the

(f) 0< a;?(t) <1, VjeFVfeFNVeeC®). derived solutions towards the offline optimum using prestict

demands inA(¢) time slots in the future.

Constraint (a) indicates that videocan be either stored at In What fO||0WS, we diSCUSS efﬁcient SO|uti0nS to the one-
region f at¢ or not. Constraints (b), (€) and (f) guarantee th&hot optimization in Sec. IV, and propose strategies tosadju
requests would only be dispatched to a cloud site that stof8§ one-shot optimum in Sec. V. Important notations in the
the required video. In constraint (e);; represents the round-Paper are summarized in Table | for ease of reference.

trip delay between region and regionf (reflecting proximity

in between), R is the upper bound of average response delay IV. ONE-SHOT OPTIMIZATION

per request, set by the application provider; this constrai
ensures that the average response delay meets the QoS targ
(d) is the bandwidth constraint at each cloud site, whi¢fe
denotes the maximum reserved bandwidth for this applicatio
at cloud sitef, in terms of the number of requests to serve. We

The one-shot optimization problem from the offline opti-
Shtion (1) is as follows, for time slot

min  F(§(t), @(t)) = Zcecgt) Srervs Opy
+Yecem Dier Drer 087 (0D (#)]vy

will address the bandwidth reserving problem as an orthalgon o (© i )
topic in our future work. + o) Lrerlyy (#) =yt = D]ty
In our model, storage and VM capacity limits are not subject to: Constraints (a) — (f) in (1)

considered at each cloud site, as it is reasonable to assume . . (¢ SN
that these capacities can be provisioned on demand to M%S)re gt) = (y; (t),Ve € Ct),Vf G. F) and a(t) =
To derive optimal solution to the offline optimization (1)Predict the number of upcoming requests for different video

complete knowledge about the system over the entire tiff@m different regionsi.e., ID\)(t)], for the next time slot,
span is needed, which is apparently not feasible in a d@,nd solve the above one-shot optimization to derive the best
namic system. We seek to design an online algorithm tHe@ntent migration and request distribution strategies.fahis
pursues this optimal solution (referred to agtimal offline Proactive approach is adopted in order to deploy videos in a
solution or offline optimumhereinafter) on the fly, with only timely fashion to serve the upcoming requests. We next discu
limited predicted information into the future. In partiagl €fficient methods to predict the demand and to solve the one-
optimization (1) can be decomposed into possibly mang- Shot optimization, respectively.

shotoptimization problems, each to minimize the operational

cost occurred in one time slot. Our idea is to solve the ong: Predicting the Number of Viewing Requests

2We assume that there is permanent storage owned by the soci@ med Based on our social media application model in Sec. IlI-B,
application provider to store one authentic copy of eactejdand video potential viewers of videac at ¢ mainly come from two
replica will be copied from this storage to different cloutes. sources: (I) the friends of a user who has watched and

3The round-trip delay between each pair of regions can vany fone time ) . . . .
slot to the next; we omift) from the more rigorous notation; s (t) for commented on the video in her microblog befgrand (i) the

simplification of notation in the paper. users to whom the system has recommended the video before



t, when they are watching other videos. We predict the numbafr actual viewers is estimated by multi v)lying the number of
of viewing requests for a video by modeling the propagati%tentia| viewers by probability, x ,y(t*to ) Finally, the set

of video viewing among users using a model similar to thgs ysers who have never watched the video by the entl of
SIR epgd)emlc model [31]. will be reduced by the set who have viewed ittatlescribed
Let t,” denote the time videe is uploaded by uses ). by Eqn. (vi).
s(°)(t) is the number of all potential viewers of videoat " predict all viewing requestsWe predict the total number
timet. d\(t) =3 e p |D§vc) (t)| denotes the number of usersof actual viewers for videa in the systemi.e, d()(t), based
who request and view video at ¢ in the entire system, andon Eqn. (iv) and (v), using known information at — 1: the
D()(t) is this set of users. Note that)(t) is different from number of potential viewers:(®) (¢ —1)), the number of actual
s((t), in that the latter counts all users who may possibliewing requestsd(® (t—1)), the users who comment on video
issue a viewing request (since they belong to category (i) @(F(¢) (¢t — 1)) and their neighbors who have not viewed the
(i) above), while the former includes the actually issueg® video, as well as the users receiving system recommendation
Let A“)(t) be the set of users who have not watched video(z,(®) (¢ — 1)).
by the end of time slot. (2 represents the set of all registered Map to geographic regiondNext, we calculate the number
users in the system, and(i) is useris set of friend$. L()(t)  of potential viewers in regiory, sgf) (t), using an equation
represents the set of users to whom the system recommesiéi§ilar to Eqn.(iv), which only counts users irf in each
videoc in t. E(°)(t) is the set of users who comment on videgerm:
¢ on her microblog . o sP() = 57t = 1) = [DF (t = D) +] Ui peore—1) (N5 (0) N
M'easurem(.ents qf wdep sharing gltes have shqwn that POPr) (t—1) U L(c)(t 1), where N;(i) and L(c)(t _
ularity of a video is typically the highest when it is a neV\Fepr 4 f
upload, and decreases over time [12] [32]. We employ T
exponential decreasing model to describe this phenomen

_4() . i
we usencxyﬁt o) to represent the probability that a potenti

viewer of videoc may actually watch the video &t where
factorn. € [0, 1] and~. € [0, 1] correspond to the initial value
and the decreasing speed of vidé® popularity, respectively.
In practice, both). and~. can be summarized from historical ‘
traces on viewing requests for videp and are dynamically pp(t) = { Pfs if y;c(>gt -1 =1,
calibrated with the propagation of that video. prtes, if yp (-1 =0,
Without loss of generality, we assume that a user will not (© ) o L )
issue viewing requests again for a video that she has resgiesfVN€nv; " (1—1) (video replication i —1) is given,p; () is a

before, and the first batch of viewing requests com{éfé&l, constant. We can rewrite one-shot optimization (2) as ¥sto

but not intéc) when the video is newly shared. The epidemic ~ min F(7(t), &(t)) = Xpeci) X rer vl Eps (1)

model to describe the propagation of video viewing in the +3 .o >Zjer ZfeFoz;?(tnD;c)(t)wf

esent’s neighbors in regionf and users receiving sys-
m recommendation in regioj, respectively. We can then
88timate the number of a((:t)ual viewing requests for video
¥om region f asd(fc) (t) = Sf)g x d©)(t).

s(e

B. Solving the One-Shot Optimization
Define

VfeF

system is as follows, where> ¢{: g(t) € C1, @
s.t a(t) € Ca,
i) @) =0, { oDt~y (1) <0,Yee O(t),Vj e FYf €T,
(iy 4@y =o, whereC;, is the set defined by constraift) in (1), andCs is
iy A@ ) = \{o(}, the set defined by linear constrainiis—(e) in (1). This op-
(v) s©(t) =@ —1)—d—1) timization problem is a mixed integer program. Neverthgles

(3) we next show that an efficient solution indeed exists through
dual decompositiofi33].

W) A = () x ne ngt—tfﬁ We derive the g:aa{ problem of (4) by relaxing its last

’ constraint group. Associating dual variableg) = ()\g.‘}) (t))

with those constraints, the Lagrangian is:

+Uiepo_1) (N@) nADE—1) UL (e -1)],

(i) A (1) = A — 1)\DE (2).

The rationale is as follows: When videois uploaded at H:(g(t)’&(t)’x(t)) © Nz
t{”, no other users than(® have watched it (Eqr(i)—(ii) in = 2cec) 2rer Yy (t)(pf((tc))‘ Ej%g if) “ ®)
. . : = . o Sier X rer 2D ()vg + A(D).
(3)). The potential set of viewers atis derived in EqnJiv) €C(t) ~jeF ~feF Tjf J if
by excluding those who have viewed videatt —1 from the The dual function is then as follows, which is separable:
previous set of potential viewers(¢)(t —1) —d(*) (¢t —1)), and . - -
adding the newly emerged potential vieweirs,, the friends 9A®) = g1A®) + 2 (A1)

of those commented anatt — 1, who have not yet viewed it where

(UieE<“)(t—1)N(7’) n A(C) (t — 1)), and- users that the sfystem a (X(t)) — min ch()(t) ZfeF y(fc) ) (py(t) — Z‘jeF )\;?) )
recommends to att—1 (L(¢)(¢t—1)). Since a potential viewer  s.t. (t) € Cy,

may not actually watch the video, in Eq(u) the number (5. —minY o Dyer Orer ol OUDEO Olos +A()

oAt .
4We only consider fixed friendship graph and ignore newlysteged users. (g,) at) € Ca



TABLE I f is cost-optimal att (yﬁf)(t) = 0) according to the one-

ALGORITHM SKETCH TO SOLVE ONE-SHOT OPTIMIZATION IN (2) shot optimization €.g, because the demand ferin f drops
Reopoat significantly att); however, it is possible thatshould remain
Solve subproblems (A) and (B) (in parallel) in f att and for a number of following time slots in the offline
Find optimal content replicatiog(t) that solvesg: (A(t)) optimum (y;i(c) (t) = 1), since the demand for the video in the
Find optimal request distributiod(¢) that solvesgz (A(t)) region will rise again soon, and keeping videdhere could
Update dual variables by') () := A< (¢ () (1) —y' (¢ irati
pdate dual variables by, (t) := X; ¢ (£)+ Bk (a7 () v~ (¢)), have saved the migration cost.

VeeClt), Vi EFRVIER We first design an optimal offline algorithm to derive the

offline optimum based on the one-shot optimization problems
The dual problem ismax g(X(£)) s.t.  A(t) = 0. with complete knowledge of the system in the entire span. We

The dual problem can be solved by the subgradient a|913)ext explore dependencies among video replication derssio
rithm [33], which gives the optimal primal variable values a@Cross consecutive time slots, and design a practical enlin
well (i.e, the optimal solution to one-shot optimization (2))algorithm to improve solutions towards offline optimum.

The sketch of the subgradient algorithm is given in Table. Il
which has a nice intuitive interpretation as follows: A. An Optimal Offline Algorithm

We start with any initial non-negative dual variable values The algorithm is designed using dynamic programming. Let
)\;?(0). In the £t iteration, given current values Olﬁ‘}) (t)'s, P(t)denote the set of all possible content replication stragegi
we solve the optimal content replication subproblem (A) arat time slott:
the optimal request dispatching subproblem (B) indepetfylen e (c)
and derive the content replication and request dispatching P(t) ={gt) ly;"(t) € {0,1},¥e € C1), f € F}.
strategiesj.e., yj(f)(t)’s and aﬁ)(t)’s, respectively. Subprob- Let Opt(t,4(t)) denote the optimal cost from the first time
lem (B) is a linear program and can be solved efficiently usirgjot to¢ with ¢(¢) as the content replication decisiontafThe
polynomial-time algorithms [34]. Integer program (A) ca@ balgorithm begins with

solved efficiently too: we relax the integer constraimjﬁ(t) e Opt(l,y(l)) = (bin(ifl)l ) (1)F(g(1),&(1)),vg(1) €
. (¢) a(1):(D)-(1) In

{0,1}in C, 0 0 < y,7(t) < 1 (Ve € Ct),Vf € F), and  p(1) and computes optimal costs in later time sldts-(1)

prove that the optimal solution to the integer program can uctively:

ipstantly deriveq from the optimal solution to the resugtin Opt(t, (1)) = min ©6)
linear program in Lemma 1. gt—1) e P(t—1)

Lemma 1. There exists an integer optimal solution to the a(t) : (b)-(f) in (1)

relaxed linear program of the integer subproblem (A), which {Opt(t — 1,9(t — 1)) + F(y(t), a(t))}.

is the optimal solution to the integer subproblem (A). . . .
P g P ) Given ¥(t), Opt(t,y(t)) computes the minimum cumulative

The proof of the lemma is given in Appendix A. cost from time slot 1 up te, by choosing among all possible
In Table 11, after efficiently solving the two subproblemse w content replication decisiongt—1) € P(t—1) in t—1, and
update the value of dual variables. Hefk, = % which is a all feasible request dispatching decisiang@) in ¢. The term
step size used in theh iteration.ﬂj) can be seen as the priceOpt(t—1,%(t—1)) is the minimum cumulative cost i, ¢t —1]
of violating constrainta;? (t) - y}c)(t) < 0. If it is violated, with .the specifiqjﬁ(tf {) as _the content replicatipn _decision at
i.e., the solution to subproblem A indicates that requests tbr L Ehe termE(y(t),a(t)) |sjhe CqOSt mcgrred. In time slat
videoc are to be dispatched to regigfr(ag.? (t) > 0) while the Herey(t — 1) is related toF(y(t), a(t)), since it decides the

solution to subproblem B states that videis not to be stored potential migration cost at If there is no feasible solution to

in region f (y}c) (t) = 0), then )\y}) is increased, such thatthe minimization problem in (6), then we sé¥t(t,y(t)) =

content replication and request dispatching will be aéjdish o . . : .
The rationale of the dynamic programming approach is as

the next iteration towards satisfaction of this constraint . 7 2
. . . .. follows. At each timet, fixing the content replication strategy,
The steps repeat until converging to the optimal decisions . . 9
) . . P we trace back and examine each possible content replication
which satisfy all constraints and minimize the aggregate o

erational cost in time slot in (2). We have therefore derivedgtrategy in timet — 1, by adding the cost incurred into the

. . L minimum cumulative cost up to— 1; that is, we compute the
an efficient algorithm to solve the one-shot optimization. . : :
cumulative costs up to in [P(t — 1)| cases (corresponding

to these many content replication strategiest in 1), and
then decide the minimum cumulative cost up ttovia the
Although one-shot optimal decisions can be efficiently madmst content replication strategy in— 1. Eventually when
in any single time slot, they do not guarantee the optimalithe computation up to time sl@t is completed, the minimum
of the offline optimization (1) over a possibly long timeoverall cost of the system ifi, 7], i.e., the optimal objective
Let §* = (y;i(c)(t),Vc € C(t),Vf € F,t = 1,...,00) and function value of the offline optimization problem in (1), is
@ = (a(t),Ye € O(1),Vf.j € F;t = 1,...,00) denote 9Ven by
the optimal offline solutionfor (1). For example, suppose

\ : . : . Coni = in  Opt(T,(T)).
video ¢ is stored in regionf att — 1, and removinge from pt g(Tf)%lg(T) pt(T, §(T))

V. ONLINE ALGORITHM WITH A(t)-STEPLOOK-AHEAD



The optimal content replication decision in time slbt regionsf’(# f) in t+1 after solving the one-shot optimization
is y(T) = arg mln( )Opt(T, y(T)), and the optimal for ¢t + 1, as in these cases we can prove the correctness of
eP(T

¥(T) ;
request dispatching strategy*(7T') is the one leading to our adjustment.

Opt(T, y*(T)) by solving (6). The optimal content replication Let ﬁt(t) E 0 de.not'e thgz numZer of Iook(—ja?e?d time Slodts
and request dispatching decisions in previous time slots ¢ cyondt, Whose viewing demands we need 1o learn in order

. ) .
be derived accordingly, by tracing the optimal decisiorhpaL0 decide whether adjusting; *(¢) from 0 to 1 is more cost
back. eneficial over time. We will show how we sét(¢) soon.

_ _ S Suppose the number of viewing requests in thage) time
Theorem 1. Consider solving the one-shot optimization probsiots can be predictécr known, e.g, based on summarized
lem in (2) in each time slot with given replication decision daijly patterns. According t@(c)( t) = 0, we calculate the
™ (t), to derive the optimal request dispatching stratégyt), one-shot optimal solutions in +1,t+2, ..., by solving
as one atomic operation. The optimal offline algorithm to €om2) for the respective times. Suppose afferintervals, the
pute the offhne oPtlmum of (1) has a computation complexighe-shot optimuny 2 (t + 6t) becomesl, i.e., demands arise
0fO(T2 g ). and videoc st(leuld be cz';u):hed if at ¢ + ét. If we use
o . : . . yf [t 6] = (y; ' (t),...,y;”(t + ot)) to denote replication
Th? proof IS given In Appendllx B. The optimal Of.ﬂmedeusmn variables of wdeom region f duringt to t+4t, then
algorithm designed in this section is to serve as a benchmark (c)
Strategy sequen@D [t,0t] = (0,0,...,0,1) corresponds to
performance evaluation. We will compare the offline optimum f ©
derived by this algorithm with the cost achieved by our aalin®"€-shot optimal solutions duririgo t+5t wheny ;- (t) = 0.
algorithm, to be discussed next. If we adjusty; (t) from 0 to 1 and solve one-shot opti-
mization in the subs(e)queﬁlt time slots, we ca(n)obtaln another
1(c 1(c
B. An Online Algorithm Pursuing Offline Optimality withStrategy sequencg, (¢, dt]. We argue thay (¢ + 6t) = 1
A(t)-step Look-ahead in this sequence based on the following Iemma

We next design an efficient online algorithm, which makdsemma 3. Given replication decisions of other videos and
decisions in each time slot with only limited predicted info video ¢ in other regions, if one-shot optimal solution is to
mation into the future. The basic idea is that, at each tioe stachec in f in t, i.e, y)(f)( ) =1, by assuming: is not there
t—1, we solve the one-shot optimization (2) for the next timgy ; _ 1 je, y(0>( ~1)=0, theny )(t) = 1 is the one-shot
slot ¢, and then adjust the one-shot optimal solution towar% timum no matter whethef (t — 1) is indeedo or 1.
the offline optimum. In the following discussions, we focus o
content replication strategyyj( (t)'s), knowing that request Proof of Lemma 3 is given in Appendix D. Since

distribution strategyc( ) (t)'s) can be determined accordlnglyyj( (t +6t) = 1 is the one-shot optimum at+ 6t when
by solving (2), given the content replication strategy. r'Eheyf( )(t+5t— 1) =0, thenyl(c) (t+0t) = 1 no matter whether

are two (p)055|ble replication decisions for wdeon region (C)(t+§t 1) is 1 or 0. Therefore, at mostt time slots after
fattyp(t) = 1 (caching the video) a”@ () = 0 (not adjustlngy(c (t) from 0 to 1, the replication strategy sequences

caching the video), respectively. 0O 5 ETEIA In fact, the t
(i) If ygf)(t) = 1 is the derived one-shot optimal decision?# [t,6t] and 7, [, 5] merge. In fact, the two sequences
we argue that it is also offline optimal to staren f at: may merge sooner €. ot'(< 4t) slots after the adjustment,
_ o o _ ~if it turns out yf( )( t + 6t') = 0, and then all subsequent
Lemma 2. Given replication decisions a@t-1, i.e., g(t—1), if 1(c)(t+5t/+1) y} c)(H_&_ 1) will be 0. Hence, when

solving one-shot optimization (2) forg|ve3y(”) =1,ie,
video ¢ should be stored in regioifi at ¢, then |r$ t)he optimal evaluating the impact Oﬁ ( )'s adjustment on cost change,
offline solution, we havg*(c) () = 1. we ortly need to compare the chapge_ of total cost duritg
f t + min(dt, 6t'), when the two replication strategy sequences
The rationale is intuitive: If one-shot optimization givesliverge, but not afterwards when they merge. The number of
y¥(t) = 1, it shows that cachingin f is desirable to addresslook-ahead time slotsA(¢), is then set to benin(dt, 5t).
requests at, even if storage and possibly migration cost would Let G“)(*l(c) [t, A(t )],g?c(c) [t, A(t)]) denote the cost dif-
be incurred. In the offline optimum where future demands aference durlngt to ¢t + A(t) when adopting the above two
considered, ifc is still needed inf in later time slots, storing replication strategy sequences, respectively. It can hbauca
c there att is more cost-effective than removing it; evercif lated as
is not needed inf later, caching it there is the best strategy

for ¢ at least — in both caseg;(c) (t) = 1. Rigorous proof G (71t AW, 77O A®))
of the lemma is given in Appendix C. t+A®)
(i) If y}c) (t) = 0 according to the one-shot optimization, we Z {F( 1(C)(T F(y?“) (™)}

need to be more cautious, judge whether it is offline optimum
by looking ahead for a few time slots, and adjust the deciiﬁion () / =1(c) n((:) (e)
we are (almost) sure that it is not. Our adjustment mechanlsfmG ( [t A@L g, AD]) < 0, adjusting y ®)

t)elow fO_CUSQS on cases that th_e effect of Chan@'ﬁgt ) is 5The prediction can be done following our epidemic model in ¢B)sing
isolated,i.e., it does not affect vide@'s deployment in other other regression techniques [35].



Algorithm 1 An online algorithm withA(¢)-step Look-ahead To Cloud Sites
Input: ¢(t — 1), D(t — 1), L(t — 1), E(t — 1). S I !
Output:i(t), a(t). ' B C Y
Replication—— [ «—-——
1. Estimate number of viewer$( (t),Vj € F\Ve e C(t); InfoTable |25 yf (1)

Social Info

Table t‘i&i

2: Derive the one-shot optimumﬁf)( ) anda(c)( t),Vj,f e F,ce : . :

C(t); : yr(t=1) |

5 Viewing 1 v A4 1

3: for videoc € C(t) do Requests' ‘% Nc Ve _(Prediction df (1) (One-shot !
4: Form subset of region& = {f\y ( ) =0} | ”|_Engine Optimization Solver | | |
5. for region f € ¥ do | Collector c |
6: A( ) =1, | ys (1) X
7. while A() < Winresn do (Lodkahead ) :
8: Derive one-shot optlmur@(“)(t + A1), Vf' # f, L di (t+1),...,df(t+ A (1) _'\i‘e_dja_m_s”_‘_ o

based ory<c)( t) =0 and y(c>( t) = 1, respectively; To Request Dispatching Module J,@jf (1)
9: if y(c) (t+A(t)) derived in the two cases are different

for any [ # f then Fig. 2. Key modules in online algorithm implementation.
10: break;
11: endo(nz) 1(e) During each intervak, the Collector collects the number
12: if yy (tj(ﬁ(t)) =Y (S“FA( )) then of requests for each video from received viewing requests,
13: U G(y [f A@®)], gt A)]) < 0 then the friend relationship among users and their geographic
1a: Sety () =1 distribution, as well as the list of users that the social imed
15: end if . .
16 break: system recommends a video to. All these are storedsiocéal
17: end if information table as shown in Fig. 2. Based on statistics
18: A(t) + +; collected over time, the collector also adjusts the esgmédr
19: end while ‘ _ 7. andn introduced in Sec. IV-A. The summarized statistics
20: " Derive o}y (t),Vj € F.f € F, based on adjusted 44 feq into thérediction Enginewhich estimates the number

vy @)'s; of viewing requests for each video in the upcoming time slot.

21: end for

22 end for With the demand prediction from the prediction engine and

current video replication status from thmeplica information
table the One-Shot Optimization Solvesolves the one-shot

from 0 to 1 reduces the cost in the long run; otherwise, ngumlza'uon (2). TheLook-ahead Mechanismeads in the
should retalry(c)( £ =0. solution from the one-shot solver and adjusts them towards

We note thaTA( ) could be quite large or it is possible that® offline optimality following Algorithm 1. The resulting coent

0(c) repllcatlon decisions are sent to the cloud sites, for them t
Yy (t-+4t) = 1 never happens wheit — co. To handle both pre-deploy videos and VMs in cases of increased demands and
cases:,.we set athre(Shthhmh to the number of look-ahead o e videos with decreased demands; request distnibutio
steps: if sequenceﬁ (t; Wenresh) andyf (t, Wanrean) stil strategies are employed by the social media application to
diverge afteriViy, .., steps, we will just reta|ry(°)( t)=0.  dispatch upcoming requests to different cloud sites.

An online algorithm in Algorithm 1 is deS|gned to adjust A number of practical concerns may arise when running the
one-shot optimal solutions towards offline optimum, folio@  algorithm in real-world social media platforms:
the above discussions. Theorem 2 guarantees that Algorithmupdate frequency. Our algorithm runs periodically. As
1 can derive a solution closer to the offline optimum, than [®ourly resource rental is commonly supported in cloud syste
solution that consists of one-shot optimum in individuahei [29], the algorithm can be run at intervals of a few hours.
slots. Initial deployment of videos. For a newly uploaded video,
%default strategy is to store it in the cloud site closeshto t
uploader. From this time onwards, the video is included in
calculation of the optimal replication strategies.

Large numbers of videos.Social media application may
host a large number of videos, which increases over time.
Proof of Theorem 2 is given in Appendix. E. Though all videos are included in our optimization formula-
tions, our algorithm is flexible in the set of videos to atteod
in each run: A closer investigation of optimization (1) rele
that the replication decisions of one video is largely dgted

We briefly discuss how our online Algorithm 1, togethefrom those of other videos. Therefore, we can optimize the
with demand prediction and one-shot optimization modulesgplication of a subset of videos in each time slot, but not
can be practically implemented in a real-world system. Theecessarily all of them. For example, viewing demands of
algorithm can be deployed on the tracker server(s) in thsogopular videos may expand quickly across regions; we may
media application, which is (are) responsible for recegjvinupdate their replication at higher frequencies, while ideal
users’ requests and dispatching them to the cloud cites. K&ith unpopular videos at longer intervals.
modules of the algorithm are illustrated in Fig. 2. Accuracy of multi-step prediction. Our algorithm requires

Theorem 2. Given the predicted numbers of viewing reques
within the nextA(¢) time slots, Algorithm 1 improves the one-
shot optimal solution at each time slotto one achieving a

lower overall operational cost over the system sgan

C. Practical Implementation of the Online Algorithm



A(t)-step prediction. In fact, as long as the prediction cagach video over time, by following closely patterns reveale
roughly estimate the evolution trend of viewer populations the measurement work [40] and [41], respectively. Beside
(e.q, in cases of apparent daily patterns shown by many me#s propagation following the social relationship amongrss
surements [36] [37]), our algorithm provides nice guide$in each video is also recommended®$% of all users in the

for optimal pre-deployment of videos. system in each hour, who have recently watched a video of
the same type. We assume each viewer of a video immediately
VI. PERFORMANCEEVALUATION comments on the video after watching it. Due to the prohibiti

traffic cost among EC2 instances, the total number of endilate

We evaluate the performance of our online algorithm, Bysers jn the system is limited 1@, 000 and the initial number

building a prototype system on Amazon Elastic Compuig \igeos is60. We run the system for ovei0 hours.
Cloud (EC2) [29], under realistic settings.

A. Prototype Implementation and Experimental Settings  B. Prediction accuracy

We create aAgeo—dlstE||t_)|ytEnglou<:A bé’. emllJIatlng a CIfUd We first investigate effectiveness of our epidemic model for
site using an Amazon "High-CPU Medium Instance (_ '?orecasting future viewing demands, by comparison against

GB Ram, 5 EC2 Compute Units) in each of the followingyp\a a widely used model for non-stationary time series
8 regions: Northern Virginia, Oregon, Northern California rediction [42]. In our epidemic model, we set the values

Ireland, Singapore, Tokyo, Sydney, and Sao Paulo. The Fouﬁq e and ~, for each videoc by matching the resulting

rip d_elays (RTT) between each .pair of C!OUd sites are tI%‘?/olution of the video popularity with that captured by the
real-life measured values of the dispersed instancesei@ift traces. We found our model matches the traces best when
charge; are applied in ttgecloud sites, as'given in Table K. is set to a value around.5 and ~. is chosen in the range
The prices are set based on the charging model of Amazg, g . 99999], for each videoc. When fitting an ARIMA
web SerV|ce“s [.29][30]’ with ”mlnor adjustments. model, we collected 96-hours’ user requests in a single dry
One extra “Micro Instance” (613 MB Ram, 2 EC2 Compute,, The original series of the number of requests becomes
Units) is provisioned in each region to simulate the group Qiationary after being differenced twice, and we therefore
users located in the region, which produces viewing regueg, ce an ARIMA(p,2,q) model; and after carefully checking

to dispatch to the cloud sites. The RTT between a user ajidh o rial autocorrelations, an autoregressive model-ef3
a cloud site is20 ms (manually injected) if they are in theandq — 0 is applied.

same region, or the real-world measured values othem@. T In Fig. 3, the solid blue curve plots the actual viewing
targeted maximal average response delay per reqisis request number in a time span of 48 hours, following the syn-

tsﬁé Ltj?s::?%xmzlriesgzzcees? rﬁ‘tzgtr?t/l u[%g]bo ganosthv:rll“gietﬁr:arateo thesized traces we applied. The dotted red curve correspond
P - g y ' 9 O 10 the ARIMA prediction results, using the ARIMA(3,2,0)
Extra Large Instance” (17.1 GB Ram, 6.5 EC2 Compute Unltsrﬁ o
odel. The black square dots represent the predictiontsesul

is created as the tracker server, implementing Godlector, . X . -
- . P using our epidemic model fd¥ consecutive time slots, made
Prediction Engine One-Shot Optimization Solveand Look- . e i )
ahead Mechanisrdiscussed in Sec. VV at the time slots marked by ‘+'e.g, the first five square
In our experiment h tim I. tﬁ§1 f lona. th m dots are prediction results donetat 1 for the next5 time
thou expenments, eacl " est ou EOCS,' f same élots, the next batch of five square dots are prediction tesul
T oo s e o g one att — 1 for the 5 tme scs, and 50 on. For
are sociall cor?nected o U_P — 1 denotes users and better readability of the figure, we only show the prediction
Car fril né/ ndU - 0 tf;J r&i Another . r-cont ntresults made at selected time slotstof 1, 14, 27 and 40,
‘?n atreix V? ks, a ir Uk_f ﬂ? € fe’.vi vf/)ine ufi\e/it-icp € respectively. We can observe that predicted numbers using
Va 1 der?gtzss thzct usoa'rhaes l\J/iseeWSed v?de 'gaizlv efeo our epidemic model follow the actual numbers quite well,
Yo 9 N especially within a4-hour look-ahead windowi.g., the first

otherwise. The number of friends of each user follows fBur square dots in each batch are well aligned with the blue

Iognormaﬂ d|st':|hbut|on [39]’33% ofrwh|ch larte frorr:? t:le Zame curve). However, the ARIMA model fails to capture the social
region where e user resides. 10 emuate a highly dynanig, o ce among users and performs poorly.

online social UGC system, for each ho8f brand new videos
are uploaded to the system by users located in an ‘active’

region — where the local time is between 9am and 9pm in 400 ‘ — Aol Number
"3 Predcion pon.
O Predicted Number

a day, and the number of viewing requests issued follows
the well-known daily patterns [37], where most of the iditia
viewers of the videos are friends from the same regions of the
uploaders. The videos are evenly divided into four types, an
each video is 100M-byte long. We generate synthesizeddrace
that describe the evolution of popularity and propagatibn o 0

Number of Requests

24 48
Time (hour)

SLarge migration costspy are set to capture the large managemer‘&ig. 3. Evolution of popularity of a sample video.
overheads incurred during content migration.



TABLE Il
CONFIGURATIONS OF8 GEO-DISTRIBUTED CLOUD SITES

Northern Virginia| Oregon Northern California  Ireland Sappre| Tokyo| Sydney Sao Paulo
oy (§ per video) 6.66 7.44 7.20 7.80 7.50 711 774 6.96
ps (S per byte per hour 0.599 0.554 0.574 0.620  0.562  0.580 0.598 .5760
vy ($ per request) 0.038 0.035 0.038 0040  0.039  0.038 0.035 0.034
Uy (requests per hour) 8,800 7,300 9,100 9,400 8,100 8,000 07,80 87,00
C. Impact of Look-ahead Window Size CDN algorithm, a smart CDN algorithm, the one-shot opti-
We next investigate the performance of our online algorithuUm algorithm and the offline optimal algorithm.
when different look-ahead window sizes are employiegl, >>Simple CDN It replicates a copy of each video in each

Winresn in Alg. 1. Fig. 4 plots cost savingsge., cost incurred cloud site at all times. User requests are routed to any
with one-shot optimal solutions minus cost with our onlineloud site with sufficient bandwidth, as long as the latency
algorithm, in each time slot when different maximal windovconstraints are met.

sizes Wypresy, are used in our look-ahead mechanism. To ~Smart CDN This algorithm resembles the one proposed
better illustrate the observations from Fig. 4, Fig. 5 plibts by Scellatoet al. [19], except that we further consider content
corresponding cost saving percentage when the look-aheaigration costs as well as the capacity constraint in each
window is adjustede.g, Winresn2 — 3 represents that the individual cloud site: Upon requests from users in a region,
look-ahead window size is adjusted fromto 3, and the copy of the requested video will be replicated in an on-deinan
corresponding cost saving percentage is computed as the ¢ashion to the cloud site closest to the social cascade,hwhic
of our online algorithm withiWy,,.s, = 3 minus the cost of has sufficient upload bandwidth.

our online algorithm withiWi,,..., = 2, and then divided by  ~One-shot OptimumThe algorithm uses one-shot optimal
the later. We observe that a larger window may give larger caslutions in each time slot for video replication and redques
savings, but the gap decreases with the increase of windg@igpatching, such that the cost is minimized in individ et
size,e.qg, Winresn = 2 Or 3 achieve similar costs over time.sjots.

All these promise that a small look-ahead window is enough > Offline Optimumlt carries out the optimal offline solution

to achieve good cost savings in realistic environments.un oderived by the optimal offline algorithm designed in Sec. V-A
following experiments, we will use a look-ahead window siz@ith complete knowledge of the system over the entire time
Winresh = 2 as the default. span.

Fig. 6 shows the excessive costs against that of our looka-

300} W, =1 head algorithm at each time incurred by the simple CDN
250] Wy =2 algorithm, the smart CDN algorithm and the one-shot opti-
200k - Wyresn = 31| mum algorithm, respectively. We can see that our algorithm

performs significantly better than both the simple CDN ared th
smart CDN algorithms, with the latter incurring much more
cost due to the request dispatching heuristic applied: rieats
CDN algorithm focuses on locality awareness, where each
request is routed to the closest available cloud site, dvaumgh
serving a request there may be more expensive than in other
cloud sites. The cost incurred by the one-shot optimal swlut

Fig. 4. Evolution of cost saving between our online algentand the one- js much less, as compared to the former two, but is still h'ighe
shot optimum: different window sizes. than the lookahead algorithm, verifying the effectivensfisthe

Cost Saving($)
[
ol o a0
c_8 ¢

o

24 72 96

o

48
Time(hour)

100% ‘ ‘ online adjustment mechanism.
5 B ivesr 2 -2 Fig. 7 shows that the operational cost achieved by our
€ Wi L - 2 algorithm is very close to the offline optimum over 24 hours,
§ [Wivesn' © = 1 with a gap of approximatel$%. It is interesting to see that the
o S0% ] offline optimum algorithm incurs higher cost at the begimgpin
§ due to content prefetch for future request serving.

g WAMWWJW Fig. 8 shows that the smart CDN algorithm achieves the
0 0 A lowest response latencies, and the other three algorithms
0 24 Time4(smur) 7 9% gch|<1a\5/g similar latencies and all meet the service qualityet,

i.e, 150ms.

Fig. 5. Evolution of cost saving percentages with differemdow sizes in
our online algorithm. . .
E. Simulation at Larger Scales

D. Performance Comparison with Other Algorithms Due to the prohibitive traffic cost for running experiments
We compare the performance of our online lookaheamh Amazon EC2, we further evaluate our algorithms using
algorithm against other potential solutions, includingrade large-scale simulations, to examine their performanch thie
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Time (hour) study with increasing numbers of videos.

i . ) ) . VIl. CONCLUDING REMARKS
Fig. 6. Excessive operational cost against the lookahegafitim.

This paper introduces a proactive, online algorithm toescal

2000 o Optimal Offine Algorithm social media streaming applications for operating in geo-
~-a- Lookahead Algorithm distributed clouds. Exploiting the underlying social irfhces
1500r . a 8 | among the users, we build a simple, effective epidemic
@ R "‘, P 3 ;«;\‘ §: model to predict future viewing demands for proactive svi
§1°°°’; e 8 ,5' ‘ Y ‘E\,}‘_k,,g" “,i [ﬂs{\ | deployment. Aiming at operational cost minimization with
ool H 'y '»—,i;‘ 4 :'a’[ o] service delay guarante_es,. we formulate an optlma! content
11' H] ] migration and request distribution problem, with long-¢iand
. ‘ ‘ ‘ one-shot flavors, respectively. Efficient methods are mego
0 6 Timel(zhour) 18 24 to solve the one-shot optimization, and a naét)-step look-
ahead mechanism is designed with guarantees to adjust the
Fig. 7. Operational cost comparison with the offline optimum. one-shot optimum to the offline optimum, which is based on

solid theoretical analysis. Our large-scale evaluationsan

increase of the svstem scale. Since our alaorithms onl denlﬂulated distributed cloud over the Amazon EC2 platform un-
y ) 9 y r realistic settings confirm the excellent performanceusf

Wlftlh the agljcgtrheggte ”“”."ber of Eser frequests p;ahr re?|on_,th fiine algorithm in pursuing the ultimate optimal replicat
n l%lence 0 _elllniredas\;\r/lgtﬂumfer 0 lIJserhs onth €a gcr::t. Md request dispatching solutions, using limited inforamat
performance is limited. We therefore only show the simokati | .. <o Iook-ahead windows.
results when the number of videos increases in the system,
while fixing the total number of users at000,000. Fig. 9
plots the excessive cost percentages of all four algorithms APPENDIXA
against the offline optimum. The excessive cost percentage PROOF OFLEMMA 1
of an aIgonthm.(.e., the Logkahead AIgonthm, the One-shot Proof: For the relaxed linear program of subproblem (A),
Optimum Algorithm, the Simple CDN Algorithm, the Smart . . .

. . .the optimal solution(s) can only be the vertex (verticeshhef
CDN Algorithm) is computed as follows, where the cost |sOI hedron formed by the constraints:
the overall cost incurred by an algorithm in the entire (s)amg y y '

simulation span: c
pf S » _ Y rer () < ~LVee C(t)
cost of the algorithm — offline optimum cqst y}c)(t) <1,Vee C(t),Vf € F @)

offline optimum cost _y;c)(t) <0,¥e e C(t),Vf € F
We can see that the excessive cost percentages of all four ’ ) )
algorithms are relatively stable as the number of videowgyo L&t M denote the constraint matrix:
and the cost incurred by the lookahead algorithm is aIways'VI =

closest to that of the offline optimum. AMownxomixm. .
Moo x| plyxdew)xIen. | »

Ms(jo() x| Fl)x (10 () x| F)

_ where M, =

£ : : ; ; i

gZSO -o- Smart CDN Algorithm =10 _1 0 _1 0

2 200 —— Simple CDN Algorithm : : :

£ —— One-shot Optimum Algorithml -l A IR )

g ‘-~ Lookahead Algorithm 1 1 1 1

R T T ey | | |

3 100 v? M Y TRV M, = E, andM; = —E, whereE is the unit matrix. Let) =

g (-1,-1,...,-1,1,1,...,1,0,0,...,0), which is a|C(t)|+

s |C(t)| x |F| +|C(t)| x |F|-dimension vector.

g o 5 i - % If M is totally unimodular then every vertex of the polyhe-
< Time (hour) dron formed byMy < b is integral. So we can prove Lemma

i ] 1 if we can show thaf\/ is totally unimodular
Fig. 8. Average response delay comparison.



For any1-by-1 sub matrix of M, we know the determinant strategiesy¥(¢) with content replication strategig&t) given.
can only be -1, +1 or 0, since the entry &f is in {+1, - Therefore, if we take the derivation of the optimal request
1, 0}. By inductive hypothesis, we assume that the possihiéspatching strategy*(¢) based on the one-shot optimization
determinant of any square sub matrix/af with a dimension problem in (2) with given replication decisiogi*(¢) as one
of no greater tharV x N is in {-1, +1, G}. We will prove that atomic operationi(e. solving (8) as one atomic operation),
the determinant of any sub matriZ)xfT(’J\,H)X(N+1> can only the computation complexity to calculate élpt(t, %(t))'s in a
be +1, -1 or 0. time slott is at mostO((max, <1, 77 |P(7)])?), i.e. the number

For sub matrixM{y 1), (41, there are two cases: of Opt(t,y(t))'s to compute is at moshax e[ 7] |P(7)| and

() There is a rowr in ]\/[(,N+1)><(N+1) which is (part of) €achOpt(t,#(t)) is computed by looping through at most

a row in Ms. We can easily see that, the correspondiax-c(1,r]|P(7)| possible choices ofj(t — 1). Given the
ing row in M(/N+1)><(N+1) has at most one non-zerototal nur_nbgr of time slots ig’, the overall computational
entry,i.e, —1. DenoteM as the corresponding row in COMPIexity is:

M(IN+1)><(N+1)' Therefore, O(T( gl[{f‘);] |P(T)|)2) _ O(T((2|F|)maxf€[1¢T1 |C(7—)|)2)

B 2| F|xmax,c (1,7 |C(7)]|
det(M{y 1) (N+1)) -om o :

0, if M. =0 [ ]
{+1, -1} x det(M}y . n) = {+1,—1,0}, otherwise

APPENDIXC
(ii) ‘]\/[(/N+1)><(N+1) consists only of rows from PROOF OFLEMMA 2

Proof: We prove Lemma 2 by contradiction. L@t de-
note the offline optimal solution and assum*é“) (t) =0. We
create another feasible solutigi* of the offline optimization

The above (|C(¢)] + |COIIF]) x ([CWOIF)- in (1) by changingy;(c)(t) from 0 to 1, i.e, the one-shot
dimensional matrix |$Ota”y UnimOdUIaraCCOfding to Optimum derived by So|ving one-shot optimization (Z)tat
the Ghouila-Houri's characterization[43], since each \yhile keeping all other caching decision variables to be the
column has exactly on¢ and —1. Then based on the sgme values as those .
definition of total unimodularity [34], we know that \we compare the overall operational cost over infinite time
the determinant of every square submatrix of the aboyghen 7 and * are applied as the caching strategies over
matrix (consisting ofM; and M>) is in {-1, +1, Oi. time, respectively. Let7** and &* be the corresponding
Therefore, sinceMl{y ), (1) IS @ square submatrix request distribution decisions, derived by solving the-shet
of the above matrix, its determinant is {R1, +1, 0f.  optimization at each time with given caching strategigsand
Therefore, we have proven that the determinant of any sgib, respectively. Let notatiofi'(y(t + 1), @(t + 1))|y<_c>(t):x
matrix of M is in {+1, -1, 0}, and thus)/ is totally unimodular denote the operational cost incurred fin- 1 in thé entire
and the lemma is proven. system, givery}c)(t) = 2, wherez = 1 or 0 denotes videa:
B s cached or not in regioff in the previous time slot. The
overall cost difference is:

(MlﬁtCﬁt)J)X(LC(t)JXJF) ,,,,,, )
Mz (c(t)|x|FI) < (1C(0) | F])

APPENDIX B o .
PROOF OFTHEOREM 1 H(y 104**) — H(g",a") o
Proof: In each time slot, , the number of replication - E%( **(zfl)(t“z(gf(f))ﬁt),a ()
strategies for each content (&) + (1) + (1) ...+ (}ﬂ) Y O Y49 (=1
and the number of replication strategies for all contents in “F(g (t+1),a"(t + 1))|y;c>(t),0
is = F(T)(t)a ar(t)) — F(g(t),a~(t))
_((1EN L (IFN , (IF] F[\) —y7 7 (t+ 1) x oy
P®I= <( o)1) )T g < F(F (1), @ (1) — B (1), & (1) < 0.
= (2IFhleml, In the above, the first equality holds because the operationa

cost when applying the two different strategies only d#fat
time slott andt¢+ 1. The reason is that decisions made in the
past (before time) can not be altered. The second equality is

In any given time slot, the number of allOpt(t,4(t))’s to
compute is|P(t)], each at a givenj(t) € P(¢t). To compute
each Opt(t,y(t)) at a giveng(t) using (6), we can loop : . S
iroug (1) posslechces 1) £ P11 and e85 e cperatonlcot afrnceat s i
at each fixedj(t—1), we solve a linear minimization problem D _ _ f ’
as follows, but not ify ' (¢) = 1. The last inequality holds becauge'(t)
and the corresponding**(¢) constitute the one-shot optimal

o min o F(y(t), a(t)), (8) solution for time slott.

a(:(0)-(f) in (1) The result shows thag** leads to smaller overall cost,
to derive d(t) where g(t) is given. (8) is the one-shot opti- which contradicts our assumption thit is offline optimum.
mization problem in (2) to compute the request dispatching [ ]



APPENDIXD
PROOF OFLEMMA 3
Proof: We only need to show thazp}’:)(t) = 1 is the
one-shot optimum at when ygf)(t —1) = 1. We prove it by
contradiction by assuming that the one-shot optinyéh‘\(t) =
0 when y((fc)(t -1 =1

Supposey (t)
yf(”)(t) — 0. We create another feasible solutigh(t) by

changingygf) (t) from 0 to 1, while keeping all other caching

decision variables to be the same values as thoggih Then
we compare the one-shot operational cost athen ¢ (t)

and (t) are applied as the caching strategies, respective

y}(c)(t + A(t)), (ii) the cost incurred after the adjustment is
smaller,i.e., G(i7*[t, A(t)], 7°[t, A(t)]) < 0, as well as

that (iii) the adjustment does not affect vides replication
decisions in regions other thafi during [¢, A(¢)]. In this
case, since the two caching decision sequences become the
same again front + A(t) onwards and no other replication

of ¢ is affected by the adjustment, the difference of overall

is the one-shot optimal solution includingCost over infinite time after and before the adjustment, is

exactly G(i7(O[t, A(t)], 7*[t, A(t)]). Therefore, the above
three conditions guarantee that Algorithm 1 only adjusts th
one-shot optimumy}c)(t) =0 to y](f)(t) = 1 when the
aggregate operational cost over long run of the system will
ecrease, which is a better solution approximating theneffli
timum.

Let @ (t) and@ (t) be the corresponding request distribution
decisions, derived by solving the one-shot optimizationh (2
with given caching strategieg (¢) andy/ (t), respectively. Let

notationIF(gj(t),o?(t))|y;c>(t_1):w denote the operational cost

incurred int in the entire system, i@](f)(t — 1) = z, where [1]
x =1 or 0 denotes vide@ is cached or not in regioffi in the
previous time slot — 1.
_J! N o _/ -/ 2
= F(7" (1), & ()]0 11z — U5 (1) X 05 a
_F(?j (t)) a (t))‘y;c)(t =1 [5]
=T (t),d" (ED]y0 —1)=0 i (t) x oy o
“F@ (0,8 O]y 11120
<F (0,8 ()]0 1120~ FF (0,8 )],
<0 (7]

In the above, the first equality holds because a migratioh COFs]
may be occurred in if yff)(t —1) =0, i.e, video c is not
stored inf in the prior time slot. The second equality is derived
based on the fact that, if the one-shot optimal replicatiorib]
decision at is not to store a videe in f, ¢'s storage status in
f in the prior time slott — 1 has no effect on the operational[10]
cost att. The last inequality is due to our assumption that
y'9(¢) = 1 is the one-shot optimal solution @Iﬁf) (t—=1)=0. 11
The result shows that (t) leads to smaller operational cost
in ¢ given ygf) (t—1) =1, which contradicts our assumption;]
that i/ (¢) is the one-shot optimum inwhen y}(f) (t—1)=1.

B (g

APPENDIXE [14]
PROOF OFTHEOREM 2

[15]

Proof: According to Lemma 2, if to cache video in
region{ at ¢t is the one-shot optimal replication decision,
ie., y}c (t) = 1, foranyc € C(t),f € F, it is already
offline optimal, i.e., y;(c)(t) = 1. Thus adjustment will only [16]
be attempted if it is one-shot optimal not to cache vidan
fint, ie, ygf) (t) = 0, as done by Algorithm 1.

Algorithm 1 only adjusts ay}c) (t) from 0 to 1, if (i) the
two sequences oﬂ‘}(c)[t,A(t)] and gj}(c)[t,A(t)] merge at [18]

someA(t) < Winresn Steps after, i.e, y?(c)(t +A(t) =

(17]

REFERENCES

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagih, M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, Eh-
merich, and F. Galan, “The RESERVOIR Model and Architectwe f
Open Federated Cloud ComputindBM Journal of Research and
Developmentvol. 53, no. 4, July 2009.

Open Data Center Alliangehttp://www.opendatacenteralliance.org.
Open Cloud Computing Interfachttp://forge.ogf.org/sf/go/projects.occi-

wg.
Globus Project by the University of Chicago
http://www.cca08.org/papers/Paper20- Sotomayor.pdf.

OGSA Basic Execution Services WG

https://forge.gridforum.org/sf/projects/ogsa-bes-wg.

M. Armbrust, A. Fox, R. Grifth, A. D. Joseph, R. Katz, A. Kemski,
G. Lee, D. P. A. Rabkin, |. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud ComputingTechnical report, EECS,
University of California, Berkeley2009.

L. M. Vaguero, L. Rodero-Merino, J. Caceres, and M. LiadriA Break
in the Clouds: Towards a Cloud DefinitiorACM SIGCOMM Computer
Communication Revigwol. 39, no. 1, pp. 50 — 55, 2009.

M. Hajjat, X. Sun, Y.-W. E. Sung, D. A. Maltz, S. Rao, K. Sri
panidkulchai, and M. Tawarmalani, “Cloudward Bound: Plagnfor
Beneficial Migration of Enterprise Applications to the Céjlin Proc. of
ACM SIGCOMM August 2010.

U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-atiEsticity
Provisioning System for the Cloud,” iAroc. of IEEE ICDCSJune 2011.
H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxéiaelligent
Workload Factoring for a Hybrid Cloud Computing Model,” Broc. of
the International Workshop on Cloud Services (IWCS 200@)e 2009.
Y. Wu, C. Wu, B. Li, X. Qiu, and F. C. Lau, “CloudMedia: Whe&Zioud
on Demand Meets Video on Demand,” Rroc. of IEEE ICDCSJune
2011.

H. Li, L. Zhong, J. Liu, B. Li, and K. Xu, “Cost-effectivePartial
Migration of VoD Services to Content Clouds,” Rroc. of IEEE Clougd
June 2011.

J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. LaouigrP. Chhabra,
and P. Rodriguez, “The Little Engine(s) That Could: Scali@gline
Social Networks,” inProc. of ACM SIGCOMMAugust 2010.

X. Cheng and J. Liu, “Load-Balanced Migration of SocMkedia to
Content Clouds,” inProc. of ACM NOSSDAWune 2011.

R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloudility-oriented
federation of cloud computing environments for scaling of l@ggion
services,” in Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing (I82P 2010
Springer, pp. 21-23.

R. Zhou, S. Khemmarat, and L. Gao, “The Impact of YouTubedrec
mendation System on Video Views,” irroc. of ACM IMG November
2010.

Z. Wang, L. Sun, C. Wu, and S. Yang, “Guiding Internea®cVideo
Service Deployment Using Microblog-based Prediction,”Aroc. of
IEEE INFOCOM mini conference2012.

K. Lai and D. Wang, “Towards Understanding the Exterfinks of
Video Sharing sites: Measurement and Analysis,”Hroc. of ACM
NOSSDAY June 2010.



[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]
[31]
[32]

(33]

[34]
[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcrtftack globally
and deliver locally: Improving content delivery networks bycking
geographic social cascades,”\MWW Mar 28 Apr 1 2011.

S. Borst, V. Gupta, and A. Walid, “Distributed CachindgArithms for
Content Distribution Networks,” iProc. of IEEE INFOCOM 2010.

J. Liu and B. Li, “A QoS-based Caching and Schedulingakithm for
Multimedia Objects,”Journal of World Wide Webvol. 7, no. 3, pp.
281-296, September 2004.

F. Chen, K. Guo, J. Lin, and T. L. Porta, “Intra-cloudHiging: Building
cdns in the cloud,” ifProc. of IEEE INFOCOM 2012.

Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. Lau, “Scaling
social media applications into geo-distributed clouds,Pimoc. of IEEE
INFOCOM, 2012.

A. Borodin and R. El-Yaniv,Online Computation and Competitive
Analysis Cambridge University Press, 1998.

Y. Bartal, A. Fiat, and Y. Rabani, “Competitive algoritis for distributed
data management,” im Proceedings of the 24th Annual ACM Sympo-
sium on Theory of Computingp. 39-50.

D. L. Black and D. D. Sleator, “Compebitive algorithms f@plication
and migration problems,” 1989.

“Intel Cloud Builders Guide: Cloud Design and Deployrhem Intel
Platforms,”White Paper2011.

Cloud Computing Definitions http://csrc.nist.gov/groups/SNS/cloud-
computing.

Amazon Elastic Compute Clouldttp://aws.amazon.com/ec2/.

Amazon Simple Storage Servitetp://aws.amazon.com/s3/.

R. AndersonPopulation Dynamics of Infectious Diseases: Theory and
Applications Chapman and Hall, 1982.

S. Asur, B. A. Huberman, G. Szabo, and C. Wang, “Trendsanié&
Media : Persistence and Decay,” Rroc. of CORR2011.

S. Boyd, “Primal and Dual Decomposition,” Lecture
Notes, EE364b Convex Optimization, Stanford University,
http://www.stanford.edu/class/ee364b/lectures.html.

C. H. Papadimitriou and K. SteiglitzZCombinatorial Optimization:
Algorithms and Complexity Dover Publications, 1998.

D. C. Montgomery, E. A. Peck, and G. G. Viningtroduction to Linear
Regression Analysis, Third EditionJohn Wiley and Sons, Inc., 2001.
Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang
“Challenges, Design and Analysis of a Large-Scale P2P-Viggie®n,”

in Proc. of ACM SIGCOMMAugust 2008.

C. Wu, B. Li, and S. Zhao, “Multi-channel Live P2P Streagni
Refocusing on Servers,” iRroc. of IEEE INFOCOM 2008.

R. Kuschnig, I. Kofler, and H. Hellwagner, “Improving &rhet
Video Streaming Performance by Parallel TCP-based ReqesgieRse
Streams,” inProc. of CCNG January 2010.

B. Ribeiro, W. Gauvin, B. Liu, and D. Towsley, “On MySmadéccount
Spans and Double Pareto-Like Distribution of FriendsPmc. of IEEE
INFOCOM, March 2010.

H. Li, H. Wang, and J. Liu, “Video sharing in online socizetworks:
Measurement and analysis,” Rroceedings of ACM NOSSDAR012.

Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. &an
“Propagation-based social-aware replication for socideé®@ contents,”
in Proceedings of the 20th ACM international conference ontivheldiag
ser. MM '12.  New York, NY, USA: ACM, 2012, pp. 29-38. [Online]
Available: http://doi.acm.org/10.1145/2393347.2393359

G. Box, G. M. Jenkins, and G. Reins@ime Series Analysis: Forecast-
ing & Control (3rd Edition) 3rd ed. Prentice Hall, Feb. 1994.

A. Ghouila-Houri, “Charactrisations des Matrices dleiment Unimod-
ulaires,”Comptes Rendus de I' Acadmie des Scienges1192 — 1193,
1962.



