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Scaling Theory of Conduction through a Normal-Superconductor Microbridge
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The length dependence of the resistance of a disordered normal-metal wire attached to a su-
perconductor is computed The scalmg of the transmission eigenvalue distribution with length is
obtained exactly in the metallic limit by a transformation onto the isobanc flow of a two-dimensional
ideal fluid The resistance has a rmmmum for lengths near l/T, with l the mean free path and Γ
the transmittance of the superconductor mterface

PACS numbers 74 80 Fp, 72 15 Rn, 73 40 Gk, 74 50 +r

The resistance of a disordered wire increases with its
length In the metallic regime (length L much less than
the locahzation length) the increase is linear, up to rel-
atively small quantum corrections The linear scalmg
seems obviously true regardless of the nature of the con-
tacts to the wire, which would just contribute an additive,
I/-mdependent contact resistance accordmg to Ohm's
law This is correct if the contacts are in the normal
state The purpose of this paper is to demonstrate and
explam the complete breakdown of the linear scalmg if
one of the contacts is m the superconductmg state The
resistance Rfjs(L) of a disordered normal-metal (./V) wire
(with mean free path l) connected to a superconductor
(5) by a tunnel barner (with transmission probabihty Γ)
has a rmmmum when L ~ l/F

The existence of a resistance rmmmum, and its destruc-
tion by a voltage or magnetic field, was first proposed by
van Wees et al [1], to explam the sharp dip m the dif-
ferential resistance discovered by Kastalsky et al [2] A
similar anomaly has smce been observed in a variety of
semiconductor-superconductor junctions [3], and also m
Computer simulations [4,5] A nonmonotonous L depen-
dence of RNS is implicit m the work of Volkov, Zaitsev,
and Klapwijk [6], while Hekkmg and Nazarov [7] obtained
a monotonous RNS (L) for a high tunnel barner Very re-
cently, Nazarov [8], usmg a Green's function techmque,
has confirmed the results of Ref [6], m a highly mterest-
mg paper which has some overlap with the present work

Our analysis builds on two theoretical results The
first result we use is a Landauer-type formula [9] for the
conductance GNS =

N

n=l
9 — TΔ J-n

(i)

The numbers Tn € [0,1] are the eigenvalues of the ma-
tnx product ttf, with t the N χ N transmission matrix
of the disordered normal wire plus tunnel barrier (N be-
mg the number of transverse modes at the Fermi energy
Ep) Equation (1) holds in the zero-temperature, zero-
voltage, and zero-magnetic-field limit Terms of order
(Δ/Ερ)2 are neglected (with Δ the superconductmg en-
ergy gap), äs well äs contributions from disorder m the

superconductor (Disorder m the superconductor will in-
crease the effective length L of the disordered region by
an amount of the order of the superconductmg coherence
length )

The second result we use is a scalmg equation [10],

χ In |λ - λ' , (2)

where s = L/l We have made the conventional change
of variables from Tn to A„ = (l - T„)/T„, with Xn e
[0, oo) The density p of the Ä's is defined by p(X, L) —
(Σηδ(λ — Χη))ί with ( ) the ensemble average Equa-
tion (2) describes the scalmg of the eigenvalue density
with the length L of the disordered normal region In
this formulation the tunnel barrier at the NS mterface
appears äs an initial condition,

= 7ν,5(λ-(1-Γ)/Γ), (3)

where Γ is the transmission probabihty of the barrier
(For simplicity we assume a mode-mdependent transmis-
sion probabihty, i e , all Tn's equal to Γ when L = 0 )
Once p is known, one can compute the ensemble aver-
aged conductance (GNS) from Eq (1),

4e2

(4)

The nonlinear diffusion equation (2) was derived by
Mello and Pichard [10] from a Fokker-Planck equation
[11,12] for the jomt distribution function of all N eigen-
values, by integrating out N — l eigenvalues and taking
the large-iV limit This limit restricts its validity to the
metallic regime (TV 3> L/ΐ), and is sufficient to determme
the leadmg order contribution to the average conduc-
tance, which is O(N) The weak-localization correction,
which is 0(1), is neglected [13] These 0(1) corrections
depend on the magnetic field B, whereas the O (N) con-
tributions to p described by Eq (2) are msensitive to B
However, the relationship (4) between GNS and p holds
only for B — 0 (For 5^0, GNS depends not only on
the eigenvalues of ttf, but also on the eigenvectors [9] ) A
pnon, Eq (2) holds only for a wire geometry (length L
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much greater than width W), because the Fokker-Planck
equation from which it is derived [12] requires L 3> W.
Numerical simulations [14] indicate that the geometry
dependence only appears in the O(l) corrections, and
that the O (N) contributions are essentially the same for
a wire, square, or cube.

Our method of solution is a Variation on Carleman's
method [15]. We introduce an auxiliary function,

F(z,s) = Γ
Jo

dX'
z-λ' (5)

which is analytic in the complex z plane cut by the pos-
itive real axis. Purthermore,

lim F(z, s) = N/z. (6)

The function F has a discontinuity for z = X ± ie (with
λ > 0 and e a positive infinitesimal). The limiting values
F±(X, s) = F(X ± ie, s) are

Q I-OO

F± = ±-p(X,s) + -— d X ' p ( X ' , 8 ) l i i \ X - X ' \ . (7)
ι όλ J0

Combination of Eqs. (2) and (7) gives

9s d\ + - >

which implies that the function

F(z, s) = N-j-aF(z, s) + JU(1 + z)F2(z, s) (9)

is analytic in the whole complex plane, including the real
axis. Moreover, 0 for z\ — » oo, in view of Eq. (6).
We conclude that T = 0, since the only analytic function
which vanishes at infinity is identically zero.

It is convenient to make the mapping z = sinh2 ζ of the
z plane onto the strip S in the ζ plane between the lines
y = 0 and y = — π/2, where ζ — χ + iy. The mapping
is conformal if we cut the z plane by the two half lines
λ > 0 and λ < — l on the real axis. On S we defme the
auxiliary function U = UX + iUy by

F_dz_

άζ

sinh 2C

fJo

The equation

IN ./n ~" sinh2

= 0 now takes the form

-λ'

(n)

which we recognize äs Euler's equation of hydrodynam-
ics: (Ux, Uy) is the velocity field in the ( x , y ) plane of a
two-dimensional ideal fluid at constant pressure.

Euler's equation is easily solved. For initial condition
C/(C,0) = Z70(C) the solution to Eq. (11) is

(12)

To restrict the flow to S we demand that both ζ and

FIG. 1. Eigenvalue density p ( x , s ) äs a function of χ (in
units of s = L/Γ) for Γ = 0.1. Curves a,b,c,d,e are for
s = 2,4,9,30,100, respectively. The solid curves are from
Eq. (12), the dashed curves from Eq. (16). The resistance
minimum is associated with the collision of the density pro-
file with the boundary at χ = 0, for s = sc = (l - Γ)/Γ.

ζ — sU((, s) lie in S. From U we obtain the eigenvalue
density, first in the χ variables

p(x, s) = (2N/ir)Uy(x - ie, s),

and then in the λ variables (λ = sinh2 x)

p(X,s) = p(x,s)\dx/dX\ — p(x, s)|sinh2x|~1.

(13)

(14)

Equations (12)-(14) represent the exact solution of the
nonlinear diffusion equation (2), for arbitrary initial con-
ditions.

The initial condition (3) corresponds to

£/b(0 = ^sinh2C(cosh2C-r-1)-1. (15)

The solution of the implicit equation (12) is plotted in
Fig. l (solid curves), for Γ = 0.1 and several values of
s = L/l. For s ^> l and χ -C s it simplifies to

χ = iarccoshr - ^Fs(r2 - l)1/2

σ = TrsN~1p(x,s), τ Ξ CT

cosa, (16a)

(16b)

shown dashed in Fig. 1. Equation (16) has been obtained
independently by Nazarov [8]. For s = 0 (no disorder),
p is a delta function at XQ, where Γ = l/cosh2a;o· On
adding disorder the eigenvalue density rapidly spreads
along the χ axis (curve o), such that p < N/s for s > 0.
The sharp edges of the density profile, so uncharacteristic
for a diffusion profile, reveal the hydrodynamic nature of
the scaling equation (2). The upper edge is at

£max — s + - ln(s/F) + 0(1). (17)

Since L/x has the physical significance of a localization
length [12], this upper edge corresponds to a minimum
localization length £min = L/xmax of order /. The lower
edge at xmin propagates from XQ to 0 in a "time" sc =
(l - Γ)/Γ. For l < s < sc one has

xmin = iarccosh(sc/s) - i[l - (18)

It follows that the maximum localization length £max =
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FIG. 2. Comparison between theory and Simulation of the
integrated eigenvalue density v(x,s) = N~l J* dx' p(x',s),
for Γ = 0.18. The labels a,b,c indicate, respectively,
s = 0,0.7,11.7. Solid curves are from Eq. (12); data points
are the xn's from the Simulation plotted in ascending order
versus n/N = v (filled data points are for a square geometry,
open points for an aspect ratio L/W = 3.8). The theoretical
curve for s = 0 is a step function at XQ = 1.5 (not shown).
The inset shows the füll ränge of x; the main plot shows only
the small-x region, to demonstrate the disorder-induced open-
ing of channels for tunneling through a barrier. (Note that,
since T = l/ cosh2 χ, χ near zero corresponds to near-unit
transmission.)

L/xmin increases if disorder is added to a tunnel junction.
This paradoxical result, that disorder enhances transmis-
sion, becomes intuitively obvious from the hydrodynamic
correspondence, which implies that p(x, s) spreads both
to larger and smaller χ äs the fictitious time s progresses.
When s = sc the diffusion profile hits the boundary at
χ = 0 (curve c), so that xm;n = 0. This implies that for
s > sc there exist scattering states (eigenfunctions of ttf)
which tunnel through the barrier with near-unit trans-
mission probability, even if Γ <C 1. The number -/Vopen

of transmission eigenvalues close to l (so-called "open
channels" [16]) is of the order of the number of xn's in
the ränge 0 to l (since Tn = l/cosh2xn vanishes expo-
nentially if xn > 1). For s » sc (curve e) we estimate

^ p(0, S) = (19)

where we have used Eq. (16).
To test these analytical results we have carried out nu-

merical simulations similar to those reported in Ref. [5].
The disordered normal region was modeled by a tight-
binding Hamiltonian on a square lattice (lattice constant
a), with a random impurity potential at each site (uni-
formly distributed between ±|ί/ο). The tunnel barrier
was introduced by assigning a nonrandom potential en-
ergy ÜB = 2.3 Ep to a single row of sites at one end of the
lattice, corresponding to a mode-averaged transmission
probability Γ = 0.18. The Fermi energy was chosen at
Ep = l.Suo from the band bottorn (with UQ = ß2/2ma2).
We chose U D between 0 and 1.5u0, corresponding to s
between 0 and 11.7 [17]. Two geometries were consid-
ered: L = W = 285α (corresponding to N = 119),
and L = 285α, W = 75α (corresponding to N = 31).

T=l

TL/1

FIG. 3. Dependence of the resistance RNS on the length L
of the disordered normal region (shaded in the inset), for dif-
ferent values of the transmittance Γ of the N S interface. Solid
curves are computed from Eq. (20), for Γ = 1,0.8, 0.6,0.4, 0.1
from bottom to top. For Γ ^C l the dashed curve is ap-
proached, in agreement with Ref. [6].

In Fig. 2 we compare the integrated eigenvalue density
v(x,s) = N~^ f* dx' p(x',s), which is the quantity fol-
lowing directly from the Simulation. The points are raw
data from a single sample. (Sample-to-sample fiuctua-
tions are small, because the xn's are self-averaging quan-
tities [12].) The Simulation unambiguously demonstrates
the appearance of open channels (a;n's near 0) on adding
disorder to a tunnel barrier, and is in good agreement
with our analytical result (12), without any adjustable
Parameters. No significant geometry dependence was
found, äs anticipated.

The average resistance of the NS junction is obtained
directly from the complex velocity field U on the imagi-
nary axis. From Eqs. (4) and (10) we find

RNS =

where φ e (Ο, π/2) is determined by

φ[1 - ir(l - sin φ)} = Ts cos φ.

(20a)

(20b)

(20c)

For Γ «: l (or s » 1) Eq. (20c) simplifies to φ = Γ s cos φ,
hence Q = Fsin^, in precise agreement with Ref. [6].
The scaling of the resistance with length is plotted in
Fig. 3. For Γ = l the resistance increases monotonically
with L. The ballistic limit L —> 0 equals h/^Ne2, half the
Sharvin resistance of a normal junction because of An-
dreev reflection [18]. For Γ < 0.5 a resistance minimum
develops, somewhat below L = l/T. The resistance mini-
mum is associated with the crossover from a quadratic to
a linear dependence of RNS on 1/Γ. The two asymptotic
dependences are (for Γ -C l and s » 1)

RNS = (h/2Ne2)s-lr-2, if Ts «C l,

RNS = (h/2Ne2)(s + Γ"1), if Ts » l,

(21a)

(21b)
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to be contrasted with the classical series resistance [5],

R^js = (h/2Ne2)(s + 2Γ-2), (22)

which holds if phase coherence is destroyed by a volt-
age or magnetic field Equation (22) would follow from
a naive application of Ohm's law to the NS junc-
tion, with the tunnel barrier contributing an additive,
disorder-mdependent amount to the total resistance The
quadratic dependence on 1/Γ m Eqs. (21a) and (22) is
äs expected for tunneling into a superconductor, being a
two-particle process [7]. The linear dependence on 1/Γ
in Eq. (21b) was first noted in numerical simulations [5],
äs a manifestation of "reflectionless tunneling": It is äs
if one of the two quasiparticles can tunnel into the su-
perconductor without reflection. Comparison of Figs. l
and 3 provides the explanation. The resistance mini-
mum occurs when the lower edge of the density profile
reaches χ = 0 (curve c in Fig. 1), and Signals the appear-
ance of scattermg states which can tunnel through the
barrier with probability close to 1. For Γ s » l (curve
e), RNS is dommated by the Nopen transmission eigen-
values close to 1. From Eqs. (1) and (19) we estimate
RNS ~ h/e2Nopen = (h/Ne2)(s + Γ"1), up to a numeri-
cal prefactor, consistent with the asymptotic result (21b).

It is essential for the occurrence of a resistance min-
imum that l /RNS depends nonhnearly on the trans-
mission eigenvalues. Indeed, if we compute the normal-
state resistance I/RN = (2e2//i) ΣηΤη from the eigen-
value density (12), we find the linear scaling RN =
(h/2Ne2)(s + Γ-1) for all Γ and s. The crossover to a
quadratic dependence on 1/Γ cannot occur in this case,
because of the linear relation between I/RN and Tn in
the normal state.

In summary, we have presented a scahng theory for the
resistance of a normal-superconductor microbridge. The
scaling of the density p of transmission eigenvalues with
length L is governed by Euler's equation for the isobaric
flow of a two-dimensional ideal fluid: L corresponds to
time and p to the y component of the velocity field on
the χ axis, with L/x corresponding to the locahzation
length This hydrodynamic correspondence provides an
explanation for the resistance minimum which is both
exact and intuitive
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