
Sci. Agric. (Piracicaba, Braz.), v.68, n.5, p.582-591, September/October 2011

582

Scaling to generalize a single solution of  Richards' equation for 

soil water redistribution

Morteza Sadeghi1*, Bijan Ghahraman1, Kamran Davary1, Seyed Majid Hasheminia1, Klaus 
Reichardt2

1Ferdowsi University of Mashhad/College of Agriculture – Dept. of Water Engineering – 91779-4897 – Mashhad, Iran. 
2USP/CENA – Lab. de Física do Solo, C.P. 96 – 13418-900 – Piracicaba, SP – Brasil.
*Corresponding author <m.sadeghi.um@gmail.com>
Edited by: Jussara Borges Regitano

ABSTRACT: Using scaling methods, a single solution of Richards' equation (RE) will suffice for numerous specific 

cases of water flow in unsaturated soils. In this study, a new method is developed to scale RE for the soil water 

redistribution process. Two similarity conditions are required: similarity in the shape of the soil water content profiles 

as well as of the water flux density curves. An advantage of this method is that it is not restricted to a specific soil 

hydraulic model – hence, all such models can be applied to RE. To evaluate the proposed method, various soil 

textures and initial conditions were considered. After the RE was solved numerically using the HYDRUS-1D model, 

the solutions were scaled. The scaled soil water content profiles were nearly invariant for medium- and fine-textured 

soils when the soil profile was not deeply wetted. The textural range of the soils in which the similarity conditions are 

held decreases as the initial conditions deal with a deeply wetted profile. Thus, the scaling performance was poor in 

such a condition. This limitation was more pronounced in the coarse-textured soils. Based on the scaling method, a 

procedure is suggested by which the solution of RE for a specific case can be used to approximate solutions for many 

other cases. Such a procedure reduces complicated numerical calculations and provides additional opportunities for 

solving the highly nonlinear RE as in the case of unsaturated water flow in soils. 
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Introduction

Scaling methods based on the "similar media" concept 

(Miller and Miller, 1956) were developed to cope with the spa-

tial variability of  soils (Warrick et al., 1977; Sharma et al., 1980; 

Ahuja and Williams, 1991; Kosugi and Hopmans, 1998; Tuli et 

al., 2001; Kozak and Ahuja, 2005; Roth, 2008; Sadeghi et al., 

2010). Vereecken et al. (2007) comprehensively reviewed the 

scaling methods developed during the past years. 

Scaling has proven its success also as a tool for numerical 

analyses. Using scaling methods, a single solution of  Richards' 

equation (RE) will suffice for numerous specific cases of  un-

saturated water flow. Hence, these methods considerably reduce 

the calculations required for heterogeneous soils (Warrick and 

Hussen, 1993). So far, various methods for scaling RE have 

been proposed (Reichardt et al., 1972; Warrick and Amoozegar-

Fard, 1979; Warrick et al., 1985; Vogel et al., 1991; Kutilek et al., 

1991; Warrick and Hussen, 1993; Neuweiler and Cirpka, 2005). 

Using specific scaling factors, these methods allow a linear 

transformation of  RE variables to achieve invariant solutions 

for a set of  similar soils. This similarity may be defined based 

on microscopic-scale geometry (Miller and Miller 1956), shape 

of  soil hydraulic functions (Simmons et al., 1979), or a linear 

variability concept (Vogel et al., 1991). 

Scaling methods can be divided into two classes (Kutilek and 

Nielsen, 1994). In the first class, the scaling factors are derived to 

unify the soil hydraulic functions into a single curve and therefore, 

are invariant quantities for each soil. Using these methods, scaled 

RE will be invariant for similar soils provided that the scaled 

boundary and initial conditions are the same. This provision 

limits the applicability of  such methods developed, for example, 

by Warrick et al. (1985), and Vogel et al. (1991). In the second 

class, the scaling factors are defined by considering the imposed 

boundary and/or initial conditions. A clear advantage of  these 

methods over the first class is that the scaled RE is invariant to 

the boundary and/or initial conditions. However, these methods 

are limited to specific hydrological processes and/or soil hydraulic 

models. For example, the method of  Warrick and Hussen (1993), 

developed for infiltration and redistribution, applies only for the 

Brooks-Corey hydraulic functions. 

The objective of  this study, following the second class, is 

to scale RE focused on the redistribution process. Scaling of  

RE solutions is proposed instead of  solving the scaled RE. By 

this procedure, this new method is not restricted to a specific 

hydraulic model – hence, all existing and future models can be 

used for the redistribution solutions.

Theory

Consider a one-dimensional Richards’ equation (RE) of  

the form:

                       (01)

where θ [L3 L–3] is the volumetric soil water content, K [L T–1] the 

unsaturated hydraulic conductivity, h [L] the soil water matric po-

tential head (i.e. absolute value of  the soil water pressure head), z 

the vertical position coordinate below soil surface, and t the time. 

Considering a soil water redistribution process without 

surface evaporation, the following conditions are imposed on 

the upper (z = 0) and lower boundary (z = L) of  the solution 
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domain dealing with zero water flux density and free drainage, 

respectively:

q(0,t)=0        (02)

q(L,t)=K(L,t)       (03)

where q
 
[L T–1] is the water flux density. The following initial 

conditions are considered:

θ(z, 0) = θ
fi
 (0 < z < z

fi
)     (04a)

θ(z, 0) = θ
i
 (z > z

fi
)      (04b)

where θ
fi
 and z

fi
 are the initial values of  the wetting front water 

content θ
f
(t) and depth z

f
(t), respectively; θι is the initial soil 

water content below the wetting front (WF). Figure 1 graphi-

cally describes the imposed boundary and initial conditions on 

the solution domain.

A θ-based solution of  Eq. (1), considering conditions (2) 

to (4), yields soil water content profiles (SWCP), θ(z), during 

redistribution. Considering the shape of  the SWCPs during 

redistribution, two general forms can be found: the SWCP 

(a) with the θ gradient everywhere positive and with the θ 
distribution almost uniform above a sharp WF, and (b) with a 

further wetting below advancing as a step-like profile while the 

soil desaturates near the surface (Youngs, 1990).

Scaling Method

Following relationships are proposed to scale θ and z:

                                                     
                                 (05)

       (06)

by which the scaled values of  θ
fi
 and z

fi
 will become unity and 

the scaled initial conditions will be invariant as follows:

θ* (z*, t = 0) = 1 (0 < z* < 1)    (07a)

θ* (z*, t = 0) = 0 (z* > 1)     (07b)
              

In Eqs. (5) to (7) θ* and z* are the scaled soil water content 

and depth, respectively. It is assumed that t can be scaled using 

a constant scaling factor τ (i.e. t*=τt, where t* is the scaled time) 

so that the scaled solutions of  RE, θ*(z*,t*), be invariant for a 

set of  cases (i.e. specific soils and initial conditions). To do so, a 

primary requirement is that the shape of  the SWCPs be similar 

for all the cases. Assume two cases A and B for which this con-

dition is held. Since the scaled initial conditions are invariant, the 

scaled solutions will be the same for these two cases only if  the 

scaled WF advance velocity (i.e. dz
f
*/dt*, where z

f
* is the scaled 

WF depth) is the same at each scaled time:

       (08) 

where subscripts A and B correspond to cases A and B. Eq. 

(8) gives:

         
(09)

here v
f
 [T–1] represents dz

f
*/dt, and v

fi 
 is the initial value of  v

f
. 

Based on Eq. (9), v
fi 
 will be the best choice for the time scaling 

factor, τ:

t* = v
fi 
t    (10)

To determine v
fi
, Darcy’s equation is considered in the form 

of:

        (11)

Integrating Eq. (11) from the soil surface to the WF depth at t 
= 0, we have:

        (12)

which yields:

       (13)

In Eqs. (12) and (13), h
i
 [L] is the matric potential head 

corresponding to θ
i
, h

fi
 [L] and K

fi
 [LT–1] are the matric 

potential head and hydraulic conductivity corresponding 
to θ

fi
, respectively, θ

fi
 is the initial value of  downward 

flux density at the WF, K
s
 [LT–1] is the saturated hydraulic 

Figure 1 – Graphical description of  the imposed boundary and 
initial conditions on the soil profi le during redistribution 
process.
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conductivity, and G [L] is WF matric head at t = 0 defined 
as:

       (14)

Mass conservation law gives:

   (15)

Combining (13) and (15) results in:

     (16)

Using Eq. (16), v
fi
 can be calculated from the initial con-

ditions (i.e. θ
fi
, θ

i
 and z

fi
). The soil hydraulic functions should 

be known to determine K
fi
 and h

fi
 from θ

fi
 as well as h

i
 from 

θ
i
 (h

fi
 and h

i
 are required to calculate G using Eq. (14)). 

Although there is no restriction on a specific form of  the 

soil hydraulic models, it should be noticed that the selected 

hydraulic models should be the same for solving RE and cal-

culating v
fi
 using Eq. (16). Based on the mass conservation 

law,  ∂θ / ∂t = –∂q / ∂z , Eqs. (5), (6), and (10) suggest the 

following relationship to scale the flux density:

             (17 )

where q* is the scaled flux density. To scale the redistribution 

process for a set of  soils and initial conditions, q*(z*) should be 

a unified curve. Eq. (17) implies in another condition necessary 

for the scaling, dealing with the shape similarity of  the flux den-

sity curves over the scaled soil profile, such that it can be scaled 

by a linear transformation. This kind of  similarity was previously 

adopted by Simmons et al. (1979) and, as stated by Sposito and 

Jury (1985), is referred to as "Nielsen-similarity".

Materials and Methods

Richards' Equation was solved using HYDRUS-1D, Version 

4 (Simunek et al., 2008) for various soils and initial conditions. To 

simulate the SWCPs during redistribution, zero water flux and free 

drainage were set as the upper and lower boundary conditions, 

respectively. Van Genuchten (1980) hydraulic functions based on 

Mualem's (1976) model were adopted:

                ( 1 8 )

 

   
       (19)

where θ
r
 and θ

s 
are soil residual and saturated water contents, 

respectively, and α, n, and m are empirical parameters with the 

assumption that m=1-1/n.

Soils of  twelve textural classes were considered by applying 

parameters of  Carsel and Parrish (1988) which are the default 

parameters of  HYDRUS for van Genuchten functions (Table 

1). Two sets of  initial conditions, presented in Table 2, were 

considered using various combinations of  z
fi
, h

fi
 and h

i
. Set A 

(A1 to A6) was considered to evaluate the effect of  the total 

water added to the soil profile, W, while Set B (B1 to B8) was 

considered to separately evaluate the effects of  z
fi
, h

fi
 and h

i
.  To 

prevent the divergence of  the solutions, the abrupt increase of  

the matric potential head at the WF was avoided. To do so, the 

matric potential head gradually increased from h
fi
 and h

i
 through 

four space steps at the WF. It should be noted that HYDRUS 

works with the pressure head (negative values) instead of  the 

absolute value of  the matric head.

SWCPs obtained by HYDRUS were scaled using Eqs. 

(5), (6), and (10). The value of  v
fi
 was determined from Eq. 

(16) with G being computed from Eq. (14). The integral 

of  Eq. (14) was approximated by the trapezoidal rule. For 

convenience of  application, it is worth to note that h
fi
=0 

and
 
h

i
   ∞, G approaches the effective capillary drive (H

cM
) 

defined by Morel-Seytoux and Khanji (1974):

       (20)

When van Genuchten hydraulic models with the assumption 

of  m=1-1/n are applied, H
cM

 can be approximated as follows 

(Morel-Seytoux et al., 1996):

Table 1 – Van Genuchten parameters of  12 soils (Carsel and Parrish, 

1988) used for the numerical studies.

Soil texture θ
r

θ
s

α n K
s

cm–1 cm per day

sand 0.045 0.43 0.145 2.68 712.8

loamy sand 0.057 0.41 0.124 2.28 350.2

sandy loam 0.065 0.41 0.075 1.89 106.1

loam 0.078 0.43 0.036 1.56    24.96

silt 0.034 0.46 0.016 1.37      6.00

silt loam 0.067 0.45 0.020 1.41    10.80

sandy clay loam 0.100 0.39 0.059 1.48    31.44

clay loam 0.095 0.41 0.019 1.31      6.24

silty clay loam 0.089 0.43 0.010 1.23      1.68

sandy clay 0.100 0.38 0.027 1.23      2.88

silty clay 0.070 0.36 0.005 1.09      0.48

clay 0.068 0.38 0.008 1.09      4.80
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where θ*
mi

 is the arithmetic mean of  all θ* values at each 0.1 in-

crement of  z*

 
at which  θ*

i
 is located, and N is the total number 

of  the evaluated points. Profile of  θ*
m
 shows a mean scaled SW-

CPs, and therefore, MAES and RMSES indicate the deviations 

of  the scaled SWCPs from the mean scaled SWCPs. When all 

the scaled SWCPs coalesce, these criteria will be equal to zero, 

suggesting an ideal performance of  the scaling method.

Results and Discussion

Figure 2 shows HYDRUS model outputs for the 12 soils 

of  Table 1 and initial conditions of  A1 which were scaled by 

Eqs. (5), (6), and (10). Except for the sand, loamy sand and 

sandy loam, the remaining nine soils were reasonably well 

scaled and manifest a nearly unique scaled SWCP. A reason for 

the undesirable deviations in the three sandy soils is that the 

SWCPs in these soils with the imposed initial conditions are not 

similar in shape to those of  the other soils. However, it seems 

that the main reason for the deviations is that, regarding the 

Nielsen-similarity condition, these soils are not similar to the 

other soils. To clarify this issue, the similarity condition should 

be evaluated. 

As mentioned earlier, the so-called Nielsen-similarity deals 

with the shape similarity of  the flux density curves during redis-

tribution. It is assumed that the flux curves are described by the 

following power model (Jury and Horton, 2003):

Table 2 – Two sets of  initial conditions (A and B) used for the numerical studies.

Code A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 B7 B8

z
fi
 (cm) 5 10 15 20 30 50 5 50 5 50 5 50 5 50

h
fi
 (cm) 10 8 6 4 2 0 10 10 0 0 10 10 0 0

h
i
 (× 104 cm) 500 100 50 10 5 1 500 500 500 500 1 1 1 1

    (21)

with minimal errors (< 2 %) over the range of  m from 0.05 to 

0.7. Eq. (21) was used to find a proper value for increments of  

h in the approximation of  G using the trapezoidal rule. With 

0.1 cm increments of  h, approximations of  the trapezoidal rule 

were close to those of  Eq. (21).

To quantitatively evaluate the performance of  the proposed 

scaling method, for each set of  the scaled SWCPs, two criteria 

– the mean absolute error of  scaling (MAES) and the root mean 

squared error of  scaling of  scaling (RMSES) – were defined as:

                  (22)

            (23)

Figure 2 – Scaled soil water content profi les for the 12 soils of  Carsel and Parrish (1988) (see Table 1) and initial conditions of  A1 (see Table 
2) at (a) t* = 1, (b) t* = 5, and (c) t* = 10.
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q=a(t+b)c        (24)

where a, b, and c are empirical fitting parameters. When time t 
in Eq. (24) is longer than a day or so, the model shows a linear 

behavior. Therefore, the equality in the slope of  the log-log plot 

of  q(t) verifies the similarity. 

We studied the similarity condition in three soils of  sand, 

loam, and clay textures under the conditions corresponding to 

Figure 2. For these soils, log-log transformed curves of  q(t) at 

z=z
fi
 (z*=1) are shown in Figure 3. The slope of  the sand is defi-

nitely greater than those of  the loam and clay which are nearly 

more equal (Figure 3). Therefore, we consider that the curves 

for the loam and clay are nearly similar but different from that 

of  the sand.

Figure 4 shows the scaled SWCPs for the 12 soils and 

initial conditions of  A6 which considers a deeply wetted 

initial profile. A comparison of  Figures 2 and 4 indicates that 

by increasing W (i.e. total water added to the soil profile) the 

scaling performance decreases. Since dz
f
*/dt at t=0 is used 

as the scaling factor of  time, the scaled SWCPs increasingly 

diverge as the time increases. The poor performance of  the 

scaling in Figure 4 can be similarly justified by invalidity of  

the two similarity conditions required for scaling. For the 

sand, loam, and clay of  Figure 4, log-log transformed curves 

of  q(t) at z=z
fi
 (z*=1) are shown in Figure 5. The figure shows 

that the slopes are significantly different indicating that the 

Nielsen-similarity condition is not held in Figure 4. It can be 

concluded that by increasing W, the flow properties become 

more sensitive to soil texture. In other words, the textural 

range of  the soils in which the similarity condition is held 

decreases as W increases.

The impact of  W on the scaling performance, studied in 

detail by varying the initial conditions from A1 to A6, is shown 

in Figure 6 for the sand, loam, and clay at t* = 5.

We conclude that the scaling is more sensitive to W for the 

very coarse- and very fine- textured soils. The scaled SWCPs 

for the loam are approximately invariant with respect to the 

initial conditions. For the sand, when W is relatively small (A1 

and A2), the scaled SWCPs show a delay, while the scaling is 

adequate for larger values of  W. On the other hand, the scaled 

SWCPs in the clay coalesced for all initial conditions except for 

A6 – the condition corresponding to the greatest value of  W.

To separately study the effects of  z
fi
, h

fi
 and h

i
 on the scal-

ing performance, RE was solved by applying set B of  the initial 

conditions in which, for z
fi
, h

fi
 and h

i
, extreme values of  set A 

are considered. The scaled solutions are presented in Figure 7 

for sand, loam and clay at t* = 5. The figure indicates that, in 

Figure 4 – Scaled soil water content profi les for the 12 soils of  Carsel and Parrish (1988) (see Table 1) and initial conditions of  A6 (see Table 
2) at (a) t* = 1, (b) t* = 5, and (c) t* = 10.

Figure 3 – Log-log transformed curves of  the water fl ux density 
at z = z

fi 
 (z* = 1) for three soils of  sand, loam, and clay 

of  Carsel and Parrish (1988) (see Table 1) under the 
conditions corresponding to Figure 2. S represents the 
slope of  the lines fi tted to the points.
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very coarse- or fine-textured soils, the scaling performance is 

more sensitive to z
fi
, h

fi
 and h

i
. The scaled SWCPs are approxi-

mately invariant for the loam while this is not the case for the 

sand and clay. 

Impacts of  z
fi
, h

fi
 and h

i
 are dependent to each other. 

Based on the results, h
fi
 seems to be the most effective param-

eter on the scaling performance especially for fine-textured 

soils. Variation of  this parameter significantly changes the flow 

rate and therefore, the shape of  the flux curves. Thus, cases 

with an extreme value of  h
fi
 will be far from the other cases 

regarding the Nielsen-similarity condition. Also, increasing z
fi
 

decreases the scaling performance (Figure 7). This is the case 

for the sand when h
fi
 is large, however, for the clay when h

fi
 

Figure 6 – Scaled soil water content profi les for (a) sand, (b) loam, and (c) clay of  Carsel and Parrish (1988) (see Table 1) and set A of  initial 
conditions (see Table 2) at t* = 5.

is small. The results confirm that the flow properties are not 

significantly affected by variation of  h
i
. In the sand, the impact 

of  h
i
 is significant only if  h

fi
 is large. This is the case for the 

clay if  simultaneously, h
fi
 is large and z

fi
 is small.

Generally, the above discussions suggest that the proposed 

scaling method can be successfully applied for medium- and 

fine-textured soils provided that the initial profile is not deeply 

wetted. Figure 8 shows the scaled SWCPs at three scaled times 

of  1, 5, and 10 for the nine medium- and fine-textured soils 

of  Table 1 (i.e. from loam to clay) having initial conditions 

A1 through A5. Even though the figure contains 45 various 

scenarios for the solution of  RE, the scaled SWCPs are nearly 

invariant with limited scattering around the mean scaled SW-

CPs (the white points in the figure). 

The 45 cases considered in Figure 8 are approximately 

Nielsen-similar. For these 45 cases, Figure 9a shows the log-log 

transformed curves of  q(t) at z=z
fi
 (z*=1). It is obvious that 

the slopes are approximately equal with an average of  -0.955 

(standard deviation=0.127). Therefore, the flux curves could 

be well scaled using Eq. (17), which are presented in Figure 

9b. Although the flux values fall in a wide range, Figure 9b 

indicates that the scaled fluxes coalesced into a unified curve 

and could be well described using a power model similar to Eq. 

(24), q*=0.71(t*+0.069)–1.03, with a determination coefficient of  

0.995. Recognizing that the two assumed similarity conditions 

are held for the range of  soils and selected initial conditions, 

we propose that the scaling method can be generalized to 

numerous other cases in this range leading to approximations 

of  the solutions of  RE.

Generalizing a Single Solution

The ability of  the scaling method to approximate numeri-

cal solutions of  RE using a single solution was evaluated. To 

Figure 5 – Log-log transformed curves of  the water fl ux density at 
z = z

fi 
 (z* = 1) for three soils of  sand, loam, and clay 

of  Carsel and Parrish (1988) (see Table 1) under the 
conditions corresponding to Figure 4. S represents the 
slope of  the lines fi tted to the points.
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do so, six medium- and fine-textured soils were selected from 

the literature: a Beit Netofa Clay (van Genuchten et al., 1980), 

a Pima Clay Loam (Elmaloglou and Malamos, 2003), and four 

other soils taken from UNSODA database (Leij et al., 1999) 

specified by codes 1300, 1370, 3360, and 4030. Some general 

information of  these soils, including texture, taxonomic class 

and geographical location, are presented in le 3. For each soil, 

randomly produced initial conditions in the range of  A1 to 

A5 were considered. To determine the van Genuchten param-

eters of  the four soils of  UNSODA, van Genuchten hydraulic 

models, Eqs. (18) and (19), were simultaneously fitted to the 

measured data using the RETC software (van Genuchten et al., 

1991). Table 4 presents the van Genuchten parameters of  the 

soils as well as the initial conditions.

 It was assumed that, for these six soils, the scaled solutions 

of  RE are invariant and identical to the mean scaled SWCPs 

Figure 7 – Scaled soil water content profi les for (a) sand, (b) loam, and (c) clay of  Carsel and Parrish (1988) (see Table 1) and set B of  initial 

conditions (see Table 2) at t* = 5.

Figure 8 – Scaled soil water content profi les for medium- and fi ne-textured soils of  Table 1 (from loam to clay) and set A of  initial conditions 
except A6 (see Table 2) at (a) t* = 1, (b) t* = 5, and (c) t* = 10. White points show the mean scaled SWCPs.
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of  Figure 6. Subsequently, the mean scaled SWCPs were de-

scaled (i.e. converted to the real scale) for the six soils using 

the Eqs. (5), (6) and (10). Hence, for each soil, SWCPs were 

approximated during redistribution. To evaluate the accuracy 

of  the approximations, the SWCPs for the same soils and initial 

conditions were individually simulated using HYDRUS. The 

simulated and approximated SWCPs were compared using the 

mean relative error criterion, MRE (i.e. the mean of  the absolute 

errors between the simulated and approximated values relative 

to the simulated values).

Figure 10 shows the simulated and approximated SWCPs for 

the six soils of  Table 3 at two times corresponding to t*=1 and 

t*=10. With the MRE values never exceeding 5%, the scaling 

method satisfactorily approximated the numerical solutions of  

RE for the selected soils and initial conditions. 

Figure 9 – (a) Unscaled and (b) scaled water fl ux density curves at z = z
fi 
 (z* = 1) for 45 cases of  Figure 8. S represents the slope of  the lines 

fi tted to the points. 

Table 3 – General information of  the six selected soils: Beit Netofa Clay (van Genuchten, 1980), Pima Clay Loam (Elmaloglou and Malamos, 
2003), and four other soils taken from UNSODA database (Leij et al., 1999).

Soil name Texture Taxonomic class Geographical location

Beit Netofa Clay clay Rhodustalfs
Beit Netofa valley, Lower Galilee, Israel (32º 44’ N, 35º 

26’ E)

Pima Clay Loam clay laom Cumulic Haplustoll Marana, Arizona, USA (32º 24’ N, 111º 10’ W)

1300 sandy clay loam Thermic Typic Torrifluvents
Las Cruces, New Mexico, USA (USA - 32º 19’ N, 106º 45’ 

W)

1370 loam Gley-Pseudogley Muenchehagen (Loccum), Germany (52º26’ N, 9º11’ E)

3360 silt loam Mesic Typic Hapludalf Goettingen-Weende, Germany (51º 33’ N, 9º55’ E)

4030 silt loam Typic Hapludalf Helecine (Leuven), Belgium(50º 44’ N, 4º 41’ E)

Table 4 –Van Genuchten parameters of  the six selected soils: Beit Netofa Clay (Van Genuchten et al., 1980), Pima Clay Loam (Elmaloglou 
and Malamos, 2003), and four other soils taken from UNSODA database (Leij et al., 1999), as well as the randomly produced initial 
conditions.

Soil name θ
r

θ
s

α n K
s

z
fi

h
fi

h
i

cm–1 cm per day ------------- cm ------------- × 106 cm

Beit Netofa Clay 0.000 0.446 0.0015 1.17 0.08 22 8 2.49

Pima Clay Loam 0.200 0.550 0.0321 1.28 9.91 9 6 1.64

1300 0.000 0.371 0.0225 1.26 9.59 20 7 1.31

1370 0.190 0.608 0.0089 1.32 15.89 14 2 0.68

3360 0.064 0.362 0.0062 1.39 2.08 18 6 1.31

4030 0.000 0.415 0.0432 1.41 1.16 14 3 1.51

Conclusion

Scaled soil water content profiles were found to be nearly 

invariant during scaled redistribution times for medium- to 

fine-textured soils when the initial profile was not deeply wet-

ted. An advantage of  this method is that it is not restricted 

to a specific soil hydraulic model. A disadvantage is that the 

method does not adequately scale water content redistribu-

tion profiles of  sands and other coarse-textured soils wetted 

partially, or those of  fine-textured soils wetted deeply. Textural 

range of  the soils in which the similarity conditions are held 

decreases as the initial conditions deals with a deeply wetted 

profile. In such a condition, a classification of  soils and initial 

conditions and then separately scaling of  each class may allevi-

ate the problem. The method is promising to reduce compli-
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cated numerical calculations and opens a new window to easily 

obtain approximate solutions of  highly nonlinear equation of  

Richards for water flow in unsaturated soils, within prescribed 

levels of  error. 
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