Prog Artif Intell (2012) 1:71-87
DOI 10.1007/s13748-011-0004-4

REVIEW

Scaling up data mining algorithms: review and taxonomy

Nicolas Garcia-Pedrajas - Aida de Haro-Garcia

Received: 4 June 2011 / Accepted: 26 September 2011 / Published online: 13 January 2012

© Springer-Verlag 2011

Abstract The overwhelming amount of data that are now
available in any field of research poses new problems for
data mining and knowledge discovery methods. Due to this
huge amount of data, most of the current data mining algo-
rithms are inapplicable to many real-world problems. Data
mining algorithms become ineffective when the problem size
becomes very large. In many cases, the demands of the algo-
rithm in terms of the running time are very large, and mining
methods cannot be applied when the problem grows. This
aspect is closely related to the time complexity of the method.
A second problem is linked with performance; although the
method might be applicable, the size of the search space
prevents an efficient execution, and the resulting solutions
are unsatisfactory. Two approaches have been used to deal
with this problem: scaling up data mining algorithms and
data reduction. However, because data reduction is a data
mining task itself, this technique also suffers from scala-
bility problems. Thus, for many problems, especially when
dealing with very large datasets, the only way to deal with
the aforementioned problems is to scale up the data mining
algorithm. Many efforts have been made to obtain methods
that can be used to scale up existing data mining algorithms.
In this paper, we review the methods that have been used to
address the problem of scalability. We focus on general ideas,
rather than specific implementations, that can be used to pro-
vide a general view of the current approaches for scaling up
data mining methods. A taxonomy of the algorithms is pro-
posed, and many examples of different tasks are presented.

N. Garcia-Pedrajas (<) - A. de Haro-Garcia

Computational Intelligence and Bioinformatics Research Group,
University of Cérdoba, Cérdoba, Spain

e-mail: npedrajas@uco.es

A. de Haro-Garcia
e-mail: adeharo@uco.es

Among the different techniques used for data mining, we
will pay special attention to evolutionary methods, because
these methods have been used very successfully in many data
mining tasks.

Keywords Data mining - Scaling-up - Parallel algorithms -
Very large datasets

1 Introduction

The question of how to solve large problems is ubiquitous in
almost any machine learning task [30]. We have classifica-
tion problems, where the number of instances and features is
very large in many areas of research, such as in bioinformatics
[12,137], text mining [85,129] and security [18,86]; optimi-
zation problems, which often include large-scale problems
that are usually found in different areas such as scheduling
[89], inverse problems chemical kinetics [75] and gene struc-
ture prediction [16]; and other problems in almost any field
in which machine learning methods are applied.

Many of the widely used methods in data mining were
developed when the common dataset size was on the order
of hundreds or thousands of instances. Now, it is not uncom-
mon to have to deal with datasets with hundreds of thousands
or millions of instances and tens of thousands of features.
When facing these problems, data mining algorithms become
less effective unless they are efficiently scaled up. Very large
datasets present a challenge for both humans and machine
learning algorithms. As Leavitt notes [79]:

“The two most significant challenges driving changes in
data mining are scalability and performance. Organizations
want data mining to become more powerful so that they can
analyze and compare multiple datasets, not just individual
large datasets, as is traditionally the case.”

@ Springer

72

Prog Artif Intell (2012) 1:71-87

Along with the large amount of data available, there is
also a compelling need to produce results accurately and
quickly. Efficiency and scalability are, indeed, the key issues
when designing data mining systems for very large datasets
[27]. In data mining, most scalability issues are linked with
large datasets, with millions of instances and/or thousands of
features.

In this paper, we review attempts to scale up data mining
methods. We include ideas that have been used for differ-
ent data mining tasks, such as feature and instance selection,
classification or clustering. We are concerned with methods
that are generally applicable to different data mining algo-
rithms rather than specific methods for a certain algorithm.

Among the different techniques used for data mining, we
will pay special attention to evolutionary methods, because
these methods have been used very successfully in many
data mining tasks [29,102,136] and, at the same time, are
severely affected by scaling up problems. The evolutionary
approach has a major bottleneck in the evaluation of the fit-
ness function.

One of the potential straightforward solutions for scaling
up data mining algorithms is the application of data mining
algorithms to a sample of the available data. This brings up
the question of whether there is a real need to scale up mining
algorithms. The first reason for scaling up is that increasing
the size of the learning set often increases the accuracy of
learned models [107]. It is also obvious that valuable infor-
mation might be lost if any form of sampling is used, espe-
cially when a large portion of instances is disregarded.

Holte et al. [62] identified overfitting as the source of the
degradation in accuracy when learning from smaller samples
due to the need to allow the program to learn small disjuncts.
Small disjuncts are elements of a class description that relate
to a small number of data items. In some domains, small dis-
juncts make up a large portion of the class description. In such
domains, high accuracy depends on the ability to learn small
disjuncts to account for these special cases. The existence
of noise in the data, which is very common in many current
research areas where massive data production is coupled with
alower reliability of the data, further complicates the problem
because it is impossible to determine the difference between
a special case and a spurious data point in a small sample.

Furthermore, an important issue when facing scalability
problems is the quality of the obtained solutions. In many
problems, scalability issues appear in the training stage,
which is usually performed off-line. Thus, although the learn-
ing process may take a long time, it is only performed once.
In such a case, we should be concerned with keeping the
quality of the solutions when dealing with huge datasets and
not only with making the algorithm faster. Many times, this
important issue is overlooked.

Thus, scalability is not only a matter of time but also a
matter of the quality of the solutions. Most data mining algo-

@ Springer

rithms suffer from the “curse of dimensionality” [9], which
means that their performance on any task deteriorates, some-
times very quickly, as the dimensionality of the problem
increases [127]. Thus, scaling up a data mining algorithm
not only involves improving its speed but also maintaining
the quality of its solution.

When scaling up learning algorithms, the issue is not as
much one of speeding up an algorithm as one of turning an
impracticable algorithm into a practicable one [107]. The cru-
cial issue is seldom “how fast” we can run a certain problem
but instead “how large” a problem we can deal with.

Our first natural question is, what we do mean by a “large
problem”? We must consider that due to the fast develop-
ment of hardware and programming tools, this is a difficult
question to answer. In fact, what it is today considered to
be “large”, will soon not be considered to be large. The size
of the datasets that we consider to be huge is growing rap-
idly. As an example the pattern analysis, statistical modeling
and computational learning (PASCAL) challenge' includes
a number of datasets that are large dataset challenges. These
challenges include datasets with up to 50,000,000 instances,
15,000 features and 325,056 categories. In general, we con-
sider that a large or very large problem is one that cannot
be handled in an efficient way for a standard data mining
algorithm.

Scalability is inherently pragmatic [107]. Although the-
oretical studies provide us with a better understanding of
scalability issues, many relevant aspects are purely practical,
such as memory thrashing when large amounts of memory
are used, latency for storage access, etc. From a statistical
point of view, issues involving file systems, virtual memory
managers and task schedulers are very difficult to include in
a formal theory. Of course, this does not mean that a par-
ticular theory is useless, but rather that in many cases, the
programmer who is scaling up a data mining algorithm is at
least as important as the theory.

In the context of inductive algorithms, Provost and Kolluri
[107] identified three fundamental approaches for scaling up
learning methods: (i) designing fast algorithms, (ii) partition-
ing the data, and (iii) using a relational representation. These
three approaches are independent and can thus be combined
into any data mining algorithm. We propose a new taxonomy
with some common points with that of Provost and Kollu-
ri. The approach based on the relational representation of the
information is not applicable, in general, to most data mining
methods and is not considered in this paper.

Our taxonomy proposal divides the scaling up methods
into three groups. We first identify two main approaches:
modifying the data mining algorithm, with the aim of mak-
ing it faster, and modifying the data mining task, with the aim
of making it simpler. The first group, which is similar to the

! http://pascallin2.ecs.soton.ac.uk/Challenges/.

http://pascallin2.ecs.soton.ac.uk/Challenges/

Prog Artif Intell (2012) 1:71-87

73

Scaling up methods
for data mining algorithms

?Y \%
Moditying the algorithm Parallelization

A

A

Modifying the problem

[Sampling/data partitioningj

Using powerful
search heuristics
Model restriction/

125-126, 128, 133]

[6, 10,24, 25, 34, 35, 40, 42-44, 47,
57,66, 71-73, 75, 80, 82, 84, 89-90,
94,95, 101-103, 111-112, 114, 123,

Y

Cooperative coevolution

reducing search space

A
Algorithm/programming
[37-39, 68] optimization

[3,7,11, 14,23, 41, 46, 52,
61, 64,117,119, 131, 135]

[5, 34,94, 105, 122,132]

4
Stratification

[20, 36, 48] [4,15-16, 18, 26, 28-30,
56,49, 60, 113, 127]

[12, 45, 51-54, 70, 83,
93,99, 107-108, 130, 124]

Fig. 1 Taxonomy of the different methods for addressing the scalability problem of data mining algorithms with some examples of the different

paradigms

fast algorithm approach of Provost and Kolluri, includes a
wide variety of algorithm design techniques for reducing the
asymptotic complexity, for optimizing the search and rep-
resentation, or for finding approximate solutions instead of
exact solutions.

The second group of methods, consisting on modifying
the problem, is based on the general principle of divide-and-
conquer. The idea is to perform some kind of data parti-
tioning or problem decomposition. In data mining problems,
the most common situation is data partitioning, breaking the
dataset up into subsets, learning from one or more of these
subsets, and possibly combining the results.

Finally, we consider parallelization to be the third par-
adigm, separated from the other two approaches. We con-
sider this separation because parallelization can benefit either
from a fast algorithm approach, in the sense that the most
costly parts are performed concurrently, or from the data
partitioning approach, in the sense that the same algorithm
is applied concurrently to different views of the data. In this
way, parallelization would be between the other two groups.
Furthermore, with parallelization there is the possibility of
addressing the scaling up of the mining methods without
either simplifying the algorithm or the task.

Thus, from a general point of view, we distinguish three
broad approaches: modifying the algorithms, trying to make
the algorithms more efficient; modifying the problems, try-
ing to simplify them somehow; and parallelization. This
taxonomy of algorithms is shown in Fig. 1, along with

relevant examples of each method. We will be concerned
with methods that can be applied to different data mining
tasks rather than methods specifically designed for a certain
algorithm.

The ideal objective of any scaling effort is to obtain lin-
ear time complexity methods. However, that objective is not
achievable in most cases. Regarding the number of learning
samples, Huber [66] postulated that the maximum tolerable
time complexity is O (n%/?). However, time complexity stud-
ies for many of the most sophisticated and useful data mining
methods are still limited to a small subset of problems and
configurations. In many cases, theory is only applicable to
“toy problems”. The difficulty of the theoretical representa-
tion of all the richness of the most powerful methods and
meta-heuristics, together with their stochastic nature, makes
the theoretical study a formidable task [95,98].

The remainder of the paper is organized as follows: Sect. 2
reviews the methods based on modifications of the algorithms
to achieve scalability; Sect. 3 discusses the attempts based on
parallelization; Sect. 4 reviews the methods based on modi-
fications of the problems; and finally, Sect. 5 discusses con-
clusions of the paper.

2 Modifying the algorithm
This approach consists of modifying different aspects of the

algorithm, aiming at a faster execution. The relevant differ-
ence with the other approaches is that the objective is to

@ Springer

74

Prog Artif Intell (2012) 1:71-87

Table 1 Summary of the
methods based on modifying the

Methodology

Method

Application

algorithm for scaling up data
mining procedures

Model restriction and reducing the
search space

Using powerful heuristics

Algorithm/programming
optimization

Using preprocessing to simplify
the problem removing some
solutions

ARIMA models [48], feature
selection [34,115,117],
classification [13]

Limiting the available architectures Neural network automatic design

Limiting the parameters to be
optimized

Reducing the number of possible
solutions

Deriving minimum number of
instances in function of desired
performance

Improving the efficiency of the
search algorithm
Bookkeeping

Use of k-d trees

[54,131]

Neural network automatic design
(22]

Feature selection [63], flow-shop
problems [135]

Clustering [39], EM algorithm
[40], mining massive data
streams [41], mining complex
models [67]

Minimum spanning trees [94]
Decision trees [5]

Nearest neighbor search [103,132],

feature selection [120], clustering
[90], classification [134]

solve the original problem using all of the available data,
which is not simplified or modified in any way. Basically,
we try to improve the performance of the algorithm. Provost
and Kolluri [107] identified four different methods in this
approach: (i) restricted model space search; (ii) using power-
ful search heuristics; (iii) algorithm/programming optimiza-
tions; and (iv) parallelization. As stated, we have considered
parallelization to be in its own group. Table 1 summarizes
the methods reviewed in this section.

2.1 Model restriction and reducing the search space

Restricting the model space has an immediate advantage in
that the search space is also reduced. Furthermore, simple
solutions are usually faster to obtain and evaluate and, in
many cases, are competitive with more complex solutions.
The major problem is when the intrinsic complexity of the
problem cannot be met by a simple solution. Examples of this
strategy are many, including linear models, perceptrons, and
decision stumps. The combination of simple methods, such
as in ADABOOST [114], can also produce powerful models
that are faster than searching for a complex one. However, it
is not an established fact that a simple model means a simple
search. In some cases, the learning process might be longer.

The same philosophy can be applied by means of reducing
the search space to a manageable size. This method can be
generalized to almost any field of application. This can be
done in many ways. Representation can be designed to dis-
allow certain solutions to be explored, and search operators
can be designed to avoid certain search regions. The applica-
tion of this method is highly problem-dependent because the

@ Springer

reduction of the search space depends on the problem being
addressed and the search engine being used.

Preprocessing can also be used to reduce the search space.
Flores et al. [48] used a preprocessing step for the design and
training of ARIMA models. The preprocessing consisted of
conducting a preliminary statistical analysis of the inputs
involved in the model design and their impact on the quality
of the results; as an output of the statistical analysis, inputs
that were irrelevant for the prediction task were eliminated
before using the learning method. The risk with these kinds
of approaches is that the preprocessing step can remove use-
ful information for the data mining algorithm that it is not
judged as such by the fast preprocessing method.

Sebban and Nock [117] used a similar approach for fea-
ture selection [61]. Filter methods are usually less efficient
than wrapper approaches [76] for feature selection. However,
wrapper approaches are far more computationally expensive,
with unfeasible running times when we have large datasets or
thousands of features. Sebban and Nock [117] used first a fil-
ter approach to reduce the number of features to a manageable
subset and then applied a wrapper method. Another interest-
ing hybrid filter-wrapper approach was introduced by Ruiz
[115] who combined a univariately preordered feature rank-
ing filter method with an incrementally augmenting wrapper
method.

Boullé [13] proposed a method for large-scale learning
based on three steps: data preprocessing using discretiza-
tion or value grouping, variable selection, and model aver-
aging. The preprocessing step has a time complexity of
O(KNlogN) for N instances and K variables. Imposing
certain constraints, the variable selection step is of time

Prog Artif Intell (2012) 1:71-87

75

complexity O (K N (log K +log N)). The final stage of model
averaging has no additional complexity as it uses results from
the previous step. The storage complexity of the method is
O (K N). The space complexity means that the method might
not be able to deal with huge datasets that will not fit in the
memory. The authors developed a chunking strategy for such
cases. The data are loaded from disk sequentially to avoid
thrashing the memory.

De Haro et al. [34] proposed a conceptual structure for
the feature selection problem called a “feasibility pyramid”.
Very large feature sets cannot be approached with powerful
feature selection methods for computational reasons. There-
fore, they recommend a cascade feature selection whereby
simple methods are used to “jump” from larger to smaller fea-
ture subsets (up the levels of the pyramid). At the bottom of
the pyramid (corresponding to the largest feature sets), only
univariate and pseudo-multivariate methods are feasible. A
systematic search traversing the candidate feature subsets
would be extremely slow.

The next highest level of the feasibility pyramid includes
methods suitable for simple searches among the candidate
subsets, such as pairwise methods and genetic algorithms.
The criteria for the evaluation of the subsets can be more
sophisticated in these methods. At the second level of the
pyramid, because the feature subsets that are going to be
evaluated are very small, training and testing a classifier will
not require prohibitive time, and thus wrapper methods can
be used. This level can reveal more intricate feature depen-
dencies compared with the base level but will not allow a
small powerful and stable feature subset to be pinpointed.

On the next highest level, sequential forward and back-
ward selection become feasible, in addition to various
random-guided searches, including tabu search techniques,
variants of genetic algorithms, simulated annealing, and oth-
ers. Finally, when the data set has only few dimensions but
the classes have a complicated structure, an exhaustive search
can be applied over all possible subsets.

In evolutionary computation, the search space can be
reduced by limiting the available architectures [54,131] or
the parameters that are optimized by the algorithm [22]. The
search space can also be reduced by means of representa-
tions that do not allow certain solutions [60, 135] or by using
a heuristic approach that removes some unreasonable solu-
tions [3]. Many other examples can be found in the literature
[7,11,43].

Hong and Cho [63] used a genetic algorithm for very large-
scale feature selection for microarray data. In the worst case,
the problem involved finding a subset of features among
more than 16,000 variables. To scale up the genetic algo-
rithm, they set a limit of 25 features as the maximum number
of features that could be selected. Of course, such a dras-
tic reduction in the possible number of solutions is likely
to harm the performance of the algorithm, as the search

space is highly constrained. Furthermore, that method is con-
strained to problems that share the characteristics of micro-
array data (i.e., many features but few instances). If we also
had many instances, the approach would still have scalability
problems.

2.2 Using powerful search heuristics

Using a more efficient search heuristic avoids artificially
constraining the possible models and tries to make the search
process faster. An interesting, and generalizable, proposal is
presented by Domingos and Hulten [39—41] whose approach
to scaling up learning algorithms is based on Hoeffding
bounds [64]. The method can be applied either to choose
among a set of discrete models or to estimate a continuous
parameter. The method consists of three steps: first, it must
derive an upper bound on the relative loss between using a
subset of the available data and the whole dataset in each
step of the learning algorithm. Then, it must derive an upper
bound of the time complexity of the learning algorithm as a
function of the number of samples used in each step. Finally,
it must minimize the time bound, via the number of samples
used in each step, subject to the target limits on the loss of
performance of using a subset of the dataset.

Although this method can produce interesting results, the
need to derive these bounds makes its application trouble-
some for many algorithms. Moreover, the complexity of the
method is independent of the process of generating candidate
solutions, but only if the method does not need to access the
data during this process. In that way, it is applicable to ran-
domized search processes. Finally, the experiments reported
by the authors [40] showed that the dataset size must be sev-
eral million instances for the method to be worthwhile.

The general framework proposed has been used for scal-
ing up decision trees, Bayesian network learning, k-means
clustering, and the EM algorithm for mixtures of Gaussians.
In a subsequent study [67], Domingos and Hulten developed
amethod for inductive algorithms based on discrete searches.

In evolutionary computation, we can focus on improving
the efficiency of the operators or improving the efficiency of
the search algorithm. The former tries to obtain better indi-
viduals when mutation and mating is performed. The latter
tries to perform a more efficient search, avoiding local min-
ima, stagnate populations or meaningless searches in large
plateaus or unpromising regions of the search space. The
selection of the fitness function, the evolutionary operators,
and the mechanism of evolution may have a large impact
on the time complexity of the resulting algorithm. Neumann
et al. [94] showed that the complexity of a genetic algorithm
for obtaining minimum spanning trees can be reduced from
exponential to O (n?) if the problem is modeled as a multi-
objective optimization task.

@ Springer

76

Prog Artif Intell (2012) 1:71-87

There are several different aspects of evolutionary meth-
ods that can be modified with the objective of improving their
search efficiency. The representation of the individuals, the
genetic operators, or the method of evolution can be modified
to address the scalability problem.

A useful approach is to design efficient operators that are
able to accomplish a more efficient search. This way, the
algorithm can be scaled to larger problems without compro-
mising its performance. The major drawback of this approach
is that these operators are useful for a certain problem and
typically cannot be generalized. Furthermore, improvements
over standard operators are usually obtained, but a dramatic
reduction in the execution time can hardly be expected.

2.3 Algorithm/programming optimization

Algorithm/programming optimization consists of using all
of the resources given by the operating system or the pro-
gramming language to perform an efficient implementation.
This approach differs from the use of powerful heuristics in
that it consists of efficiently implementing the data mining
task, avoiding redundant or unnecessary steps, but without
modifying the method itself. However, the differences are
subtle, and some methods can be indistinctly classified in
both groups. As programming is sometimes an art [74], it is
difficult to show general methods in this approach.

The most generalizable method for improving the scala-
bility using algorithm or programming optimization may be
bookkeeping. The idea under bookkeeping is that, frequently
in data mining tasks, matching the hypotheses against the
whole dataset is not necessary. In most cases, it is enough to
use statistics that are inferred from the dataset. If the gener-
ation of these sufficient statistics is performed as a separate
step, then, throughout the mining task there is no need to
access the whole dataset. We can achieve large improvements
in both run time and memory requirements.

Using this technique, Aronis and Provost [5] achieved tre-
mendous run-time efficiencies for the induction of decision
trees when attributes had large value sets. Other examples are
k-dimensional (kd)-trees. A kd-tree is a binary tree in which
every node is a k-dimensional point. Every non-leaf node can
be thought of as implicitly generating a splitting hyperplane
that divides the space into two parts. Kd-trees can be used to
perform, among other tasks, fast and efficient nearest neigh-
bor searches [103,132]. Therefore, they can be used in any
task using a nearest neighbor search as part of the mining
process, such as relief algorithms for feature selection [120],
clustering [90], or classification [134].

3 Parallelization

It is very likely that the development of high-performance
scalable data mining tools must necessarily rely on paral-

@ Springer

Table 2 Summary of methods based on parallelization for scaling up
data mining procedures

Methodology Application

Task parallelization Decision trees [2,124,133], clustering

[6,37,42,72,80,100,123,125]

Support vector machines [23,44,59,88,87],
boosting classifiers [45,78],
clustering [73]

Data parallelization

Parallel evolutionary
algorithms

Database searching [31], image classification
[84], vector quantization [68], feature
selection [92], rule extraction [112],
bioinformatics [110], image processing [46]
and computational chemistry [36]

lel computing techniques. Two main architectures are used
for parallel implementations of data mining algorithms: dis-
tributed-memory and shared-memory parallel machines. In
distributed-memory machines, each processor has a private
memory and local disks and communicates with other proces-
sors only via passing messages. Parallel distributed-memory
machines are essential for scalable massive parallelism. On
the other hand, shared-memory multiprocessor systems are
capable of delivering high performance for a low to medium
degree of parallelism. Individual nodes of parallel distrib-
uted-memory machines are also increasingly being designed
to be shared-memory nodes. A shared-memory system offers
a single memory address space that all processors can
access. Processors communicate through shared variables in
memory and are capable of accessing any memory location.
Synchronization is used to coordinate processes. Any pro-
cessor can also access any disk attached to the system. The
advantage of distributed-memory parallel machines is that
they can be built using clusters of inexpensive machines,
whereas shared-memory machines are more expensive. Mas-
sive parallelism can only be achieved by means of distributed-
memory machines for economic reasons. Parallelization is a
powerful tool for scaling up data mining algorithms, both
in shared-memory [70] and distributed-memory processors.
Table 2 summarizes the methods reviewed in this section.
Parallelization can be applied to almost any problem,
although the simplicity of the parallel version and its effi-
ciency depend on the particular task. Parallel data mining
can exploit data parallelization and task parallelization. One
major issue with parallelization is that no general method for
a parallel implementation of a data mining algorithm exists.
In some cases, a natural parallel version of a method is easily
found, and usually such implementation has a good perfor-
mance and is consistent across different problems and plat-
forms. However, in many cases, there is no obvious ideal
parallelization of the data mining method, and there are prob-
lems with the performance, the consistency of results across
problems, or both [25] in the devised implementations.

Prog Artif Intell (2012) 1:71-87

71

In task parallelization, the task is decomposed such that
different processors perform different subtask in parallel.
Load balancing and interprocess communication add addi-
tional complexity and overhead. In general, this type of
parallelization does not address the problem of very large
datasets because each processor will have to deal with all of
the data. Another alternative, closely related to data parti-
tioning, is to divide the dataset into smaller subsets that are
processed concurrently by different processing elements.

In the field of classification, parallelization has been exten-
sively used [49, 121]. Parallelization has been used for learn-
ing many classification methods, such as in rule learning
and decision trees [133]. The cost of evaluating a node in a
decision tree is very high, but is also highly decomposable
[2,124]. Nodes in the search space are hypothesized and each
is matched against many examples to gather statistics. In the
parallel matching approach, the intensive matching process
is performed by distributing the dataset and matching rou-
tines to a parallel machine, while the main learning algorithm
may run on a sequential front end.

Support vector machines (SVMs) are among the best per-
forming algorithms for classification. However, SVMs are
usually affected by large datasets, requiring a very long time
to learn and large amounts of memory when the number of
instances is in the tens of thousands. Thus, parallelization
has been used extensively to improve the ability of SVMs to
deal with large or very large datasets. Instead of analyzing
the whole training set in one optimization step, Graf et al.
[59] split the data into subsets and optimized separately with
multiple SVMs. The partial results are combined and filtered
again in a ‘Cascade’ of SVMs until the global optimum is
reached. The Cascade SVM can be spread over multiple pro-
cessors with minimal communication overhead and requires
far less memory because the kernel matrices are much smaller
than those for a regular SVM. Convergence to the global opti-
mum is guaranteed with multiple passes through the Cascade,
but already a single pass provides good generalization.

Eitrich and Lang [44] relied on a decomposition scheme,
which in turn used a special variable projection method, for
solving the quadratic program associated with SVM learning.
By using hybrid parallel programming, this approach can be
combined with the parallelism of a distributed cross-valida-
tion routine and parallel parameter optimization methods.

Chang et al. [23] improved the scalability of SVMs using a
parallel SVM algorithm (PSVM), which reduces memory use
by performing a row-based, approximate matrix factorization
that loads only essential data to each machine to perform
parallel computation. PSVM reduces the memory require-
ment from O(n?) to O(n p/m) and improves the computation
time to O(np?/m), where n denote the number of training
instances, p the reduced matrix dimension after factoriza-
tion (p is significantly smaller than n), and m the number of
machines.

Lu et al. [88] proposed a distributed parallel support vec-
tor machine (DPSVM) training mechanism in a configurable
network environment for distributed data mining. The basic
idea presented in this study is to exchange support vectors
among a strongly connected network so that multiple servers
may work concurrently on distributed data set with a limited
communication cost and a fast training speed. A subsequent
study [87] extended the philosophy to a parallel randomized
support vector machine (PRSVM) and a parallel randomized
support vector regression (PRSVR) algorithm based on aran-
domized sampling technique. The authors claimed that the
proposed algorithms achieved an average convergence rate
that is so far the fastest bounded convergence rate among all
SVM decomposition training algorithms. The fast average
convergence bound is achieved by a unique priority-based
sampling mechanism.

The Boosting [52] method is one of the most common and
successful methods used for classification. Boosting [8,113,
116] is based on combining many weak learners into a pow-
erful learner. The learners are trained in a stepwise fashion
in which each new learner receives a different distribution of
instances biased toward the instances that were found to be
most difficult by previous classifiers. One of the problems
for a parallel implementation of boosting is that boosting
is inherently sequential. To train a classifier at step ¢, the
output of all the previous t — 1 classifiers for every training
instance must be known. However, there are parallel versions
of boosting that soften this constraint.

Fan et al. [45] developed boosting for scalable and distrib-
uted learning, where each classifier was trained using only
a small fraction of the training set. In this distributed ver-
sion, the classifiers were trained either from random sam-
ples (r-sampling) or from disjoint partitions of the data set
(d-sampling). Inr-sampling, a fixed number of instances were
randomly picked from the weighted training set (without
replacement), where all instances had an equal chance of
being selected. In d-sampling, the weighted training set was
partitioned into a number of disjoint subsets, where the data
from each site was taken as a d-sample. At each round, a dif-
ferent d-sample was given to the weak learner. Both methods
can be used for learning over very large datasets, but d-sam-
pling is more appropriate for distributed learning, where data
at multiple sites cannot be pulled together to a single site.

Lazarevic and Obradovic [78] proposed parallel and dis-
tributed versions of boosting. The first boosting modification
represents a “parallelized” version of the boosting algorithm
for a tightly coupled shared-memory system with a small
number of processors. This method is applicable when all of
the data can fit into the main memory, with the major goal
being to speed up the boosting process.

In the second boosting adaptation, at each boosting step,
the classifiers are first learned on disjoint datasets and then
exchanged among the sites. The exchanged classifiers are

@ Springer

78

Prog Artif Intell (2012) 1:71-87

then combined, and their weighted voting ensemble is con-
structed on each disjoint data set. The final ensemble repre-
sents an ensemble of ensembles built on all local distributed
sites. The performance of ensembles is used to update the
probabilities of drawing data samples in succeeding boost-
ing iterations.

Clustering is also a data mining technique where parall-
elization has been widely and successfully applied. Many
different methods have been developed [99]. Both, hierar-
chical and partitional clustering techniques are very time
consuming [93]. The computational bottleneck of minimum
spanning tree-based clustering algorithms is in the step of
construction of a minimum spanning tree (MST). Despite
the sequential essence of MST construction, a number of
algorithms have been developed to parallelize calculations
[93]. All parallel algorithms present parallelization of cal-
culations with heavy Message Passing Interface (MPI). The
parallelization of MSTs dates as back as far as 1980 [10].
Olson [100] achieved a time complexity of O(V log(V)))
with V/log(V) processors, with V being the number of
vertices of the graph, and Johnson and Metaxas [71] of
0 (log*? V) with V + E processors.

In [109], the authors implemented a parallel version of
the SLINK algorithm [119] using single instruction, multiple
data (SIMD) array processors. The parallel version of hierar-
chical clustering is presented in [80] on a n-node hypercube
and a n-node butterfly. Another implementation of a paral-
lel approach is reported in [42] with calculations distributed
between processors and with the use of MPI. Using different
types of parallel random access memory (PRAM) model,
Dementiev et al. found [37] a good solution for minimiz-
ing the time of communication using external memory when
constructing an MST, while in [6], authors dealt with the
construction of a spanning tree using Symmetric Multipro-
cessors, though there is no guarantee that it will find an MST.

For partitional clustering, there are also parallel imple-
mentations. Stoffel and Belkoniene [125] implemented a par-
allel version of k-means, where the nearest center of each
instance is computed concurrently. Although the complexity
of k-means is not high, O (Iknm), for I iterations, K clus-
ters, n instances, and m features, this implementation may
require a long time if the number of iterations for conver-
gence is large. Othman et al. [101] developed a similar solu-
tion for clustering DNA data. There are many other parallel
versions of k-means based on the principle of data distri-
bution [73]. Judd et al. [72] developed a parallel clustering
method for large-scale datasets using a master/slave architec-
ture. The method is essentially a k-means algorithm where
the assignment of the instances to the clusters is performed
by the slaves.

In the same way, the bisecting k-means algorithm [123]
has also been implemented in parallel with the parallel bisect-
ing k-means with prediction (PBKP) algorithm [83] for

@ Springer

message-passing multiprocessor systems. Bisecting k-means
tends to produce clusters of similar sizes and smaller entropy
(i.e., purer clusters) than k-means does. The PBKP algorithm
fully exploits the data-parallelism of the bisecting k-means
algorithm and adopts a prediction step to balance the work-
loads of multiple processors to speed up the processing of
this algorithm.

3.1 Parallelization in evolutionary computation

Evolutionary computation is a field that has used paralleliza-
tion at large. The parallelization of a genetic algorithm aims
to improve its scalability without compromising its virtues.
The most costly step in any evolutionary algorithm is the
evaluation of the fitness function. Thus, when the objective
of a parallel implementation is to speed up the algorithm, the
parallelization focuses on the fitness function. However, there
are other approaches that aim not only to speed up the search
but also to improve its ability to find good solutions. In the lit-
erature of parallel implementations, scalability is described
as the relationship between the size of the number of process-
ing units and the speed-up achieved by the algorithm [108].
Synchronizing the tasks and communication often decrease
the ability to speed up the parallel algorithms.

Parallel implementations of evolutionary algorithms also
have the advantage of scaling up the methods to large, and
even very large, problems. Furthermore, improved perfor-
mance results have also been reported [31,84,118]. Three
basic architectures can be considered for parallel genetic
algorithms [20,82]. These architectures differ in the num-
ber of populations, the application of the genetic operators
and the type of hardware architecture that they are most suit-
able for. The basic idea is based on a divide-and-conquer
approach. The task is divided into chunks and each chunk is
solved concurrently in a different processor or node. These
three basic architectures are

— Global single population master/slave parallel genetic
algorithms. In this architecture, there is only a single pop-
ulation that evolves using a standard method. Only the
evaluation of the fitness of the individuals is distributed.
Selection and crossover consider the whole populations.
This is usually referred to as a global parallel genetic
algorithm. This architecture it only aimed at scaling up
the genetic algorithm, and the results are the same as a
sequential algorithm. The parallelization of the evaluation
of the fitness function can be synchronous or asynchro-
nous. In the first case, the evolution is exactly the same
as a standard genetic algorithm. If the evaluation is asyn-
chronous, the faster processors do not wait for the slower
ones, and there are differences in the evolution between
the sequential and the parallel genetic algorithms.

Prog Artif Intell (2012) 1:71-87

79

The synchronous evaluation of the fitness functions has
the advantage of producing more predictable results and
a better understanding of the evolution. However, if the
algorithm uses heterogeneous resources, slower proces-
sors may hinder the efficiency of the whole system, as
faster ones will need to wait for them to finish [82]. This
architecture can be implemented in both shared-memory
and distributed-memory computers.

— Single population, fine-grained, or cellular parallel gene-
tic algorithms. In this architecture, there is a single popu-
lation that is spatially structured. It is designed to be run in
parallel in a massively parallel processing system. Selec-
tion and matting are restricted to small neighborhoods
that may overlap. In the ideal situation, each individual
is evolved in a different processing element.

— Multi-population, multi-deme, or island parallel genetic
algorithms. This algorithm consists of several popula-
tions that evolve independently and exchange individuals.
This exchanging of individuals is called migration and it
is tightly controlled by several parameters that are usu-
ally implemented in a distributed cluster of machines.
The computation to communication ratio is high, so
these algorithms are also called coarse-grained genetic
algorithms.

Figure 2 shows the three paradigms [82]. There is a
fourth alternative that combines a multi-population genetic
algorithm with master-slave or fine-grained methods.
This alternative is usually called a hierarchical parallel
genetic algorithm [82] because we have a multi-population
genetic algorithm at the higher level and a single-population
genetic algorithm at the lower level.

Many architectures, based on these three basic archi-
tectures, have been developed to solve different problems,
such as vector quantization [68], job shop scheduling [65],
OneMax problem [128], feature selection [92], rule extrac-
tion [112], and aerodynamic airfoil design [82], as well
as in different application fields, such as bioinformatics
[110], image processing [46], and computational chemis-
try [36].

Rodriguez et al. [112] proposed a distributed genetic
algorithm for rule extraction in data mining to tackle large
datasets. The absence of a master process to guide the
search provided a better scalability of the method. This
absence avoids the idle time required due to synchroniza-
tion and network bottlenecks that are typically associated
with master-slave architectures. Lately, several models have
used the flexibility of the MapReduce framework [32] to
develop parallel applications of genetic algorithms for many
problems.

The reader interested in parallel genetic algorithms can
refer to the many reviews that have been conducted on this
topic [1,21,77,96].

Master

Slave 1 Slave 2 Slave n

(a) Single population master-slave genetic algorithm

[] [] o ® [] [] Neighborhood in which
""" ———» evolutionary operations

are restricted
[[[J [J [J [

(b) Cellular parallel genetic algorithm

‘ 6

(c) Island parallel genetic algorithm

Fig. 2 Basic models for parallel genetic algorithms

The parallel execution of evolutionary algorithms is one
of the most promising ways for the efficient scaling-up of
these algorithms. However, there is also a price to pay for this
efficiency. First, the complexity of the algorithm is greatly
increased. As one of the most interesting features of evolu-
tionary programming is in their simplicity, this aspect is a
negative side effect of the parallelization of the algorithm.
Furthermore, in many applications, the major bottleneck is
the evaluation of the fitness function, and several times the
evaluation itself must be executed in an individual task. This
case is particularly common in distributed-memory systems,
which are usually more common due to their reduced price
with respect to shared-memory systems.

@ Springer

80

Prog Artif Intell (2012) 1:71-87

Table 3 Summary of methods

based on modifying the dataset Methodology

Method Application

for scaling up data mining

4 Data partitioning/sampling
procedures

Problem decomposition

Feature selection [17],
classification [15,24,27,28,
58,111,126]

Data partitioning/sampling

Stratification Instance selection [19,38],
prototype selection [50]
Democratization Instance selection [51,33]

Cooperative coevolution Neural network automatic design
[54,55,69,91,97,106],
ensembles of classifiers [55],

instance selection [53]

4 Modifying the problem/dataset

The approaches based on transforming the algorithm have
some major drawbacks. First, the data mining method must
be modified to be adapted to a specific situation where scala-
bility issues have arisen. In many cases, this adaptation will
be troublesome or very difficult. In the worst case, no such
modification may be possible. Furthermore, the scalable data
mining algorithms obtained are not usually easy to general-
ize. In that way, only parallelization can be considered to be a
general purpose method for scaling up data mining methods.
However, for parallelization, we need both a parallelizable
algorithm and access to a parallel computer.

On the other hand, we can approach the issue of scaling
up a data mining algorithm from the side of the problem. The
algorithm is basically the same, and we try to simplify the
problem. There are two major advantages on this approach.
First, the scalability methods obtained in this way are easy to
generalize to similar domains. Second, the speedups obtained
are usually much more significant than those obtained with
the modification of the method. However, these two advan-
tages usually have the problem of more significant damage
on the performance. Depending on the data mining task, we
will have two basic approaches: data partitioning and prob-
lem decomposition.

One advantage of data partitioning is that this method
avoids thrashing by memory management systems when
algorithms try to load huge datasets into the main mem-
ory. In addition, if a learning algorithms time complexity
is worse than linear in the number of examples, processing
small, fixed-size data subsets sequentially can make it linear,
with the constant term dependent on the size of the subsets. In
either case, it may be possible to use a system of distributed
processors to mine the subsets concurrently, coupling data
partitioning and parallelization. Data partitioning can take
the form of using subsets of instances or subsets of features.

Most of the methods for scaling up data mining algo-
rithms in this paradigm are based on some form of sampling.
The mining method is applied to a sample of the original
data, or a partition of the data is performed and the algo-

@ Springer

rithm is applied to different subsets. Table 3 summarizes the
approaches reviewed in this section.

4.1 Sampling and data partitioning

One of the most simple methods to scale up a mining algo-
rithm when dealing with large datasets is to sample the data,
using only a, possibly small, subset of the whole dataset. The
remaining datais not considered in the data mining algorithm.
Of course, this method has a high cost; the possible relevant
information that is stored in the disregarded data is lost. Fur-
thermore, noise is usually linked to learning using a small
portion of the data. However, several techniques that address
these problems have been proposed and have produced some
of the most useful algorithms for scaling up evolutionary
computation. Sharing the same philosophy, we can conduct
a partition of the data into small subsets and can process each
subset separately. We must expect some performance degra-
dation as the mining method applied to each subset has only
a partial view of the whole problem.

A very efficient approach is the stratification strategy [19].
The stratification strategy splits the training data into disjoint
strata with equal class distribution.? The training data, T, are
divided into ¢ disjoint datasets, D, of approximately equal
size:

t
T =] D €]
j=1

Then, the data mining algorithm is applied to each sub-
set separately and the results of all of the subsets are
combined for the final solution. If we have an algorithm of
quadratic complexity, O (N 2), for a number of instances, N,
and we employ M strata, we will have a time complexity
O(N/M)?. Because we have to apply the method to the M
strata, the resulting complexity is O(N?/M), which is M
times faster than the original algorithm. If we are able to

2 When dealing with class-imbalance problems the distribution of clas-
ses in each strata may be modified with respect to the whole training
set to obtain a less skewed distribution.

Prog Artif Intell (2012) 1:71-87

81

run the algorithm in parallel in all the strata, our complex-
ity will be O(N?/M?) with a speedup of M?. Of course,
the drawback of this approach is the likely decrease in the
performance of the algorithm. Derrac et al. [38] used strat-
ification to scale up a steady-state memetic algorithm for
instance selection. Similar principles can be applied to other
data mining methods and problems [50]. One of the problems
with stratification is determining the optimum the size of the
strata [38].

Clustering has also been proposed as a method for reduc-
ing large datasets. Andrews and Fox [4] considered the prob-
lem of reducing a potentially very large dataset to a subset
of representative prototypes. Rather than searching over the
entire space of prototypes, they first roughly divided the data
into balanced clusters using bisecting k-means and spectral
cuts and then found the prototypes for each cluster by affin-
ity propagation. Their “divide and conquer” approach actu-
ally performed more accurately on datasets that were well
bisected, as the greedy decisions of affinity propagation are
confined to classes of already similar items. The problem
with this kind of approach is that the clustering process is
itself a data mining task that can also suffer from scaling up
problems.

Brill et al. [17] used sampling to speed up feature selec-
tion. Each individual was evaluated using its nearest neighbor
error, an operation which is of O (N?M) time complexity, for
N instances and M features. To avoid this complexity, a small
random sample of instances was chosen to evaluate the indi-
viduals of each generation. They found that the results were
competitive with the use of the whole dataset when tested on
an artificial problem of 30 variables.

Similar ideas were used by De Haro-Garcia and Garcia-
Pedrajas [35] for instance selection. The problem with the
above methods is that the performance is degraded for some
problems. For the case of instance selection using a genetic
algorithm, the authors found that the evolutionary algorithm
was too conservative when applied to subsets of the data-
sets. Thus, many useless instances where retained [35]. This
problem was addressed with a recursive application of the
stratified approach discussed above. After a first application
of the stratification and the evolutionary algorithm to the dif-
ferent strata, a new round of stratification was applied with
the selected values. This recursive approach was applied until
a certain criterion was met. Although this method was very
successful for instance selection, its generalization to other
mining algorithms is troublesome. This approach was further
developed in the democratization paradigm that is explained
below.

In the field of classification, this philosophy has also been
used. The divide-and-combine strategy [111] decomposes an
input space into possibly overlapping regions, assigns a local
predictor to each region, and combines the local predictors
to derive a global solution to the prediction problem. The

Bayesian committee machine [126] partitions a large data
set into smaller ones, and the SVMs trained on the reduced
sets jointly define the posteriori probabilities of the classes
into which the test objects are categorized. The method pro-
posed by Collobert et al. [28] divides a set of input samples
into smaller subsets, assigns each subset to a local expert, and
forms a loop to re-assign samples to local experts according
to how well the experts perform. The cascade SVM method
[58] also splits a large data set into smaller sets and extracts
support vectors (SVs) from each of them. The resulting SVs
are combined and filtered in a cascade of SVMs. A few
passes through the cascade ensures that the optimal solution
is found.

In the same way, Chang et al. [24] proposed a method
that decomposes a large data set into a number of smaller
datasets and trains SVMs on each of them. If each smaller
problem deals with s samples, then the complexity of solv-
ing all the problems is on the order of (n/s) x s> = ns,
which is much smaller than n? if n is significantly higher
than s. Decomposing a large problem into smaller problems
has the added benefit of reducing the number of SVs in each
of the resultant SVMs. Because a test sample is classified by
only one of these SVMs, the decomposition strategy reduces
the time required for the testing process in which the num-
ber of SVs dominates the complexity of the computation.
One additional benefit of the decomposition approach is the
ease of using multi-core/parallel/distributed computing for
further increasing the speed of the process because the SVM
problems associated with the decomposed regions can be
parallelized idealistically.

Data parallelization is closely related to data partitioning
methods. Dividing the dataset into small subsets is a way of
scaling up a data mining algorithm. The next step would be
to parallelize the application of the data mining algorithm to
the small subsets.

Breiman [15] proposed pasting votes to build many clas-
sifiers from small training sets or “bites” of data. He pre-
sented two strategies of pasting votes: Ivote and Rvote. In
Ivote, the small training set (bite) of each subsequent classi-
fier relies on the combined hypothesis of the previous classi-
fiers, and the sampling is done with replacement. Ivote is very
similar to boosting, but the “bites” are much smaller in size
than the original data set. Thus, Ivote sequentially generates
training sets (and thus classifiers) by importance sampling.
Rvote creates many random bites and is a fast and simple
approach.

Breiman found that Rvote was not competitive in terms of
accuracy to Ivote or ADABOOST. Moreover, sampling from
the pool of training data can entail multiple random disk
accesses, which could swamp the CPU times. Thus, Breiman
proposed an alternate scheme: a sequential pass through the
data set. In this scheme, an instance is read and checked to
see if it will make the training set for the next classifier in the

@ Springer

82

Prog Artif Intell (2012) 1:71-87

aggregate. However, the sequential pass through the data set
approach led to a degradation in accuracy for the majority
of the datasets. Breiman also mentioned that this approach
of sequentially reading instances from the disk will not work
for highly skewed datasets.

To deal with these problems, Chawla et al. [27] distrib-
uted Breiman’s algorithms, dividing the original data set into
T disjoint subsets and assigning each disjoint subset to a
different processor. On each of the randomly sampled dis-
joint partitions, they followed Breiman’s approach of pasting
small votes. Chawla et al. combined the predictions of all the
classifiers by majority vote. Again, using the above frame-
work of memory requirement, if we break the data set up into
T disjoint subsets, the memory requirement will decrease by
afactor of 1/T, which is substantial. Thus, DIvote can be more
scalable than Ivote in terms of memory. One can essentially
divide a data set into subsets that can be easily managed by
the computer’s main memory.

Pasting DRvotes follows a procedure similar to that for
Dlvotes. The only difference is that each bite is a bootstrap
replicate of size N. Each instance through all iterations has
the same probability of being selected. However, DRvote also
provides lower accuracies than DIvote. This finding agrees
with Breiman’s observations on Rvote and Ivote.

In this context of classification, a very interesting issue was
raised by Brain and Webb [14]. Most approaches based on
sampling or parallelization implicitly assume that the algo-
rithms that have been designed in the context of small to
medium datasets are still suitable for large datasets. In this
way, their only problem would be computational efficiency.
Brain and Webb hypothesized that for small datasets, the
variance part of the error tends to be the most relevant part.
Thus, algorithms designed to deal with small datasets are usu-
ally aimed at reducing variance. However, as the size of the
problems increases, the variance term of the error decreases.
Thus, for large datasets, algorithms with a lower bias would
be preferable to algorithms with a lower variance. The major
problem with this approach is that producing algorithms with
a low bias seems to be a difficult task.

Undersampling was developed for class-imbalance prob-
lems [26], where a class, the minority class, is highly under-
represented with respect to the other class, the majority
class. Random undersampling consists of randomly remov-
ing instances from the majority class until a certain criterion
is reached. In most studies, instances are removed until both
classes have the same number of instances. However, un-
dersampling can also be considered as a way to scale up
classification methods. In many case of interest [57], the
majority class is the only cause of the large amount of data,
as the minority class comprises a few hundreds or thousands
of instances. Undersampling the majority class works in the
same way as random sampling, with the particularity that the
less represented instances are kept.

@ Springer

One step forward in sampling techniques was developed
for instance and feature selection by Garcia-Osorio et al.
[33,51]. This method combines the divide-and-conquer
approach of sampling with the combination principle of the
ensembles of classifiers. The method is composed of three
basic steps: (i) divide the problem data into small disjoint
subsets, (ii) apply the learning algorithm of interest to every
subset separately, and (iii) combine the results of the dif-
ferent applications. The first two steps are repeated several
times. As the learning method is always applied to small
datasets, the speed of the methodology is impressive. As the
method combines results of the application of the same learn-
ing method with different subsets of the available dataset, it
is called democratization of algorithms.

Democratization scaling method for each step i divides
the dataset S into several small disjoint datasets S; ;. A data
mining algorithm is applied with no modifications to each of
these subsets, and a result C; ; is produced from each subset
of the data. After all of the n rounds are applied (which can
be done in parallel, as all rounds are independent from each
other), the combination method constructs the final result C
as the output of the data mining process.

The key difference introduced by the democratization
approach is in modifying the view of data partitioning. In
previous methods, the application of the learning algorithm
to a subset was considered to be a valid result and a concept
is learned from the subset. However, the data we are deal-
ing with basically provide local learning from just a subset
of the original dataset and suffer from locality, making the
algorithm more vulnerable to noise. Consequently, democra-
tization considers that new concepts can only be learned from
the combination of the application of the learning algorithm
to partitioning the whole dataset into many subsets. This dif-
ference, although subtle, is the cornerstone of the success
achieved by this method. It also differs from other approaches
in that the data partitioning step is repeated many times, using
the basis of the ensembles of classifiers, which combine sev-
eral weak classifiers to produce an efficient result. This rep-
etition assures that we have gathered enough information to
produce relevant knowledge.

4.2 Cooperative approach in evolutionary computation

In the area of evolutionary computation, the same philos-
ophy of sampling is shared by the method of cooperative
co-evolution. Cooperative co-evolution is another approach
that is used to tackle large problems using a divide-and-con-
quer strategy [106]. As we have stated, we find scalability
problems in different situations in the field of evolutionary
computation. All of these problems can be considered to be
some form of the “curse of dimensionality”, which implies
that the performance deteriorates rapidly when the search
space grows [91,127]. Potter [105] stated in the first steps

Prog Artif Intell (2012) 1:71-87

83

of cooperative coevolution: “As evolutionary algorithms are
applied to the solution of increasingly complex systems,
explicit notions of modularity must be introduced to pro-
vide reasonable opportunities for solutions to evolve in the
form of interacting coadapted subcomponents”.

In cooperative coevolution, a number of species evolve
together. Cooperation among individuals is encouraged by
rewarding the individuals for their joint effort in solving a
target problem. The work in this paradigm has shown that
cooperative coevolutionary models present many interest-
ing features, such as specialization through genetic isola-
tion, testing, and efficiency [106]. Cooperative coevolution
approaches the design of modular systems in a natural way, as
the modularity is part of the model. Other models need some
a priori knowledge to decompose the problem by hand. In
many cases, either this knowledge is not available or it is
not clear how to decompose the problem. The cooperative
coevolutionary model offers a very natural way of modeling
the evolution of cooperative parts.

In general, the species are evolved independently with the
only interaction possibly happening during fitness evalua-
tion. The method works in three basic steps:

1. Decompose the problem into smaller problems that can
be efficiently solved by evolutionary algorithms. This
step is critical as two conflicting requirements must be
met. The decomposition must be made in such a way that
the subproblems are meaningful. At the same time, those
subproblems must be small enough to avoid the scaling
problem. The procedure used to perform the decompo-
sition is problem dependent.

2. Subcomponent optimization. Each subproblem is solved
separately.

3. Subcomponent co-adaptation. This step tries to capture
the interdependencies among the subproblems.

The major problem with this approach is the lack of
explicit considerations of the interdependencies of the dif-
ferent subproblems. Ways of explicitly considering the inter-
actions are usually damaging when scaling up the algorithm.
Forinstance, Garcia-Pedrajas et al. [54,55] developed a coop-
erative method for evolving neural networks and ensem-
bles of classifiers, where a population of subcomponents
was used to combine the best individuals. Although this
method achieved better results, the scalability of the approach
decreased. Yang et al. [130] developed a method to account
for these dependencies for the case of real variable function
optimization. They proposed a group-based framework to
split an objective vector into subcomponents of lower dimen-
sionality. For coadaptation, these authors proposed an adap-
tive weighting strategy, which applied a weight to each of
the evolved subcomponents after a cycle. The weight vector
was also obtained by evolution. The algorithm is repeated

for a number of cycles, with different random groups of the
inputs. Li and Yao [81] extended the same concepts to particle
swarm optimization. They found good results with functions
consisting of up to 1,000 dimensions.

Garcia-Pedrajas et al. [54] modified the standard method
using two populations that evolved together. With a popula-
tion over the populations that evolved the subproblems, they
try to account for the dependencies among the subcompo-
nents. They applied that method to the evolution of neural
networks [54], ensembles of classifiers [55], and instance
selection [53]. In the coevolution of instance selection, they
found that the method scaled better to large problems than
monolithic evolutionary algorithms.

The constrictive approach shares some basic components
of cooperative approaches, where the solution is built con-
structively [56,69,97]. In a constructive approach, solutions
are created from simple models first, and complexity is
added in a stepwise manner [56]. This way, the complex-
ity of the solutions can be arranged according to the avail-
able resources. Furthermore, when complexity is added to
the model, the search space is not the same as looking for a
complex model from the beginning. The partial solution that
has been obtained so far limits the possible solutions and
effectively reduces the search space.

The constructive approach has additional advantages,
apart from its possibilities for scaling up the evolutionary
algorithm [104]:

— Flexibility for exploring the search space.

— Potential for matching the intrinsic complexity of the
learning task. Constructive algorithms search for simple
solution first and thus offer the potential for discovering
near optimal solutions of low complexity.

— Trade-offs among performance measures. Different con-
structive learning methods allow tradeoffs in certain per-
formance measures, such as tradeoffs between learning
time and accuracy [122].

— Incorporation of prior knowledge. These methods pro-
vide a framework to introduce problem-specific knowl-
edge into initial problem solutions [47].

The major problem with this approach is that not all
problems are suitable for a constructive approach. For this
approach, we need simple solutions that can be constructed
and evaluated in a consistent way. Furthermore, we need sim-
ple solutions to be developed; more complex solutions could
be constructed from these solutions and could be evaluated
without redoing the evaluations of the previous evolution.

5 Conclusions and future work

With the growing size of almost any problem faced by data
mining methods, the need for algorithms that are able to

@ Springer

84

Prog Artif Intell (2012) 1:71-87

deal with large and very large problems is becoming more
critical. Data mining methods are powerful tools in many
research areas for obtaining actual knowledge from raw data,
but the success of these methods will be threatened unless the
scalability issues are solved. In this paper, we have presented
the most successful ways of scaling up data mining algo-
rithms.

A new taxonomy based on three different approaches have
been introduced: methods based on modifying the data min-
ing algorithm to make it require fewer resources, methods
based on a parallel implementation of the algorithm, and
methods based on sampling or data partitioning. The methods
that modify the algorithm to adapt it to large-scale problems
are usually less efficient and more difficult to develop. Also,
the achieved reduction in terms of running time is usually
less dramatic. However, these methods tend to produce bet-
ter performances than the methods that focus on modifying
the problem. On the other hand, the methods based on the
simplification of the problem, by means of sampling, data
partitioning or in general a divide-and-conquer strategy, are
more efficient in scaling up the algorithms. However, there is
areduction in the performance of the algorithm in most cases.

Parallelization is an alternative to these two methods. Its
major advantage is the potential to scale up any algorithm
to huge datasets. However, there are also problems with
this approach. Parallel implementations are more complex
than the corresponding sequential algorithms. Furthermore,
in many cases, parallel versions of the algorithms are very
difficult to develop and their benefits can be hampered by bot-
tlenecks in the execution flow or the exchange of information
among the tasks.

As a general approach that can be applied to many dif-
ferent algorithms, the two choices that are usually at the
disposal of the researcher are a sampling strategy to apply
the, basically, unmodified algorithm to subsets of the whole
large dataset, and, when a parallel computer or a cluster of
computers is available, to modify the algorithm to allow a
parallel/distributed implementation. These two methods are
applicable to most data mining methods.

On the other hand, specific solutions can be devised for a
given data mining method using the different strategies that
have been discussed in this paper. The efficiency of these
solutions for scaling up mining methods varies. In this paper,
we have shown several examples of these solutions.

We must also bear in mind that the benefits obtained from
increasing the size of the dataset are less relevant as the data-
set grows. Thus, strategies such as random sampling or strati-
fication can be used as a first resource, due to their simplicity.
In many cases, such simple approaches are as good as more
complex approaches.

Acknowledgments This work was supported in part by the Grant
TIN2008-03151 of the Spanish “Comisién Interministerial de Ciencia

@ Springer

y Tecnologia” and the Grant PO9-TIC-4623 of the Regional Government
of Andalucia.

References

1. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous computing and
parallel genetic algorithms. J. Parallel Distrib. Comput. 62, 1362—
1385 (2002)

2. Aldinucci, M., Ruggieri, S., Torquati, M.: Porting decision tree
algorithms to multicore using fastflow. In: Balcazar, J.L.. Bon-
chi, F., Gionis, A., Sebag, M. (eds.) Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in
Databases ECML PKDD, Lecture Notes in Computer Science,
vol. 6321, pp. 7-23 (2010)

3. Anderson, P.G., Arney, J.S., Inverso, S.A., Kunkle, D.R., Lebo,
T., Merrigan, C.: Good halftone masks via genetic algorithms.
In: Proceedings of the 2003 Western New York Image Processing
Workshop (2003)

4. Andrews, N.O., Fox, E.A.: Clustering for data reduction: A divide
and conquer approach. Technical Report, Virginia Tech (2007)

5. Aronis, J., Provost, F.: Increasing the efficiency of data mining
algorithms with breadth-first marker propagation. In: Proceedings
of the Third International Conference on Knowledge Discovery
and Data Mining, pp. 119-122. AAAI Press, Menlo Park (1997)

6. Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). J. Parallel Distrib. Comput.
65(9), 994-1006 (2005)

7. Barolli, L., Ikeda, M., de Marco, G., Durresi, A., Koyama, A.,
Iwashige, J.: A search space reduction algorithm for improving
the performance of a ga-based qos routing method in ad-hoc net-
works. Int. J. Distrib. Sens. Netw. 3, 41-57 (2007)

8. Bauer, E., Kohavi, R.: An empirical comparison of voting clas-
sification algorithms: Bagging, boosting, and variants. Mach.
Learn. 36(1/2), 105-142 (1999)

9. Bengtsson, T., Bickel, P., Li, B.: Curse-of-dimensionality revis-
ited: Collapse of the particle filter in very large scale systems. In:
Probability and Statistics: Essays in Honor of David A. Freedman,
IMS Collections, vol. 2, pp. 316-334. Institute of Mathematical
Statistics (2008)

10. Bentley, J.L.: Parallel algorithm for constructing minimum span-
ning trees. J. Algorithms 1, 51-59 (1980)

11. Berger, J., Barkaoui, M.: A new hybrid genetic algorithm for the
capacitated vehicle routing problem. J. Oper. Res. Soc. 54, 1254—
1262 (2003)

12. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T.N., Weissig, H., Shindyalov, 1., Bourne, P.E.: The protein data
bank. Nucleic Acids Res. 28, 235-242 (2000)

13. Boullé, M.: A parameter-free classification method for large scale
learning. J. Mach. Learn. Res. 10, 1367—-1385 (2009)

14. Brain, D., Webb, G.1.: The need for low bias algorithms in classi-
fication learning from large data sets. In: Proceedings of the 16th
European Conference Principles of Data Mining and Knowledge
Discovery (PKDD’2002), Lecture Notes in Artificial Intelligence,
vol. 2431, pp. 62-73. Springer Verlag, New York (2002)

15. Breiman, L.: Pasting small votes for classification in large dat-
abases and on-line. Mach. Learn. 36(1-2), 85-103 (1999)

16. Brent, M.R., Guigd, R.: Recent advances in gene structure pre-
diction. Curr. Opin. Struct. Biol. 14, 264-272 (2004)

17. Brill, EZ., Brown, D.E., Martin, W.N.: Fast genetic selection
of features for neural networks classifiers. IEEE Trans. Neural
Netw. 3(2), 324-334 (1992)

18. Brugger, S.T., Kelley, M., Sumikawa, K., Wakumoto, S.: Data
mining for security information: A survey. In: Proceedings of the

Prog Artif Intell (2012) 1:71-87

85

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

8th Association for Computing Machinery Conference on Com-
puter and Communications Security (2001)

Cano, J.R., Herrera, F., Lozano, M.: Stratification for scal-
ing up evolutionary prototype selection. Pattern Recognit.
Lett. 26(7), 953-963 (2005)

Canti-Paz, E.: A survey of parallel genetic algorithms. Calc.
Paralleles 10, 141-171 (1997)

Canti-Paz, E.: Efficient and Accurate Parallel Genetic Algo-
rithms. Kluwer Academic Publisher, Dordrecht (2001)
Canti-Paz, E., Kamath, C.: Evolving neural networks to identify
bent-double galaxies in the first survey. Neural Netw. 16, 507-
517 (2003)

Chang, E.Y., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z.: Psvm:
Parallelizing support vector machines on distributed computers.
In: Advances in Neural Information Processing Systems vol. 20,
pp- 329-340 (2007)

Chang, F.,, Guo, C.Y., Lin, X.R., Lu, C.J.: Tree decomposition
for large-scale SVM problems. J. Mach. Learn. Res. 11, 2855—
2892 (2010)

Chattratichat, J., Darlington, J., Ghanem, M., Guo, Y., Hiining,
H., Kohler, M., Sutiwaraphun, J., To, H.W., Yang, D.: Large scale
data mining: challenges and responses. In: Proceedings of the
3rd International Conference on Knowledge Discovery and Data
Mining, pp. 143-146 (1997)

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
SMOTE: Synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321-357 (2002)

Chawla, N.W., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.:
Learning ensembles from bites: A scalable and accurate
approach. J. Mach. Learn. Res. 5, 421-451 (2004)

Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of
SVMs for very large scale problems. Neural Comput. 14, 1105-
1114 (2002)

Cordén, O., Herrera-Viedma, E., Lépez-Pujalte, C., Luque, M.,
Zarco, C.: A review on the application of evolutionary compu-
tation to information retrieval. Int. J. Approx. Reason. 34, 241-
264 (2003)

Craven, M., DiPasquoa, D., Freitagb, D., McCalluma, A., Mitch-
ella, T., Nigama, K., Slatterya, S.: Learning to construct knowl-
edge bases from the world wide web. Artif. Intell. 118(1-2),
69-113 (2000)

Cui, J., Fogarty, T.C., Gammack, J.G.: Searching databases
using parallel genetic algorithms on a transputer computing sur-
face. Future Gener. Comput. Syst. 9(1), 33—40 (1993)

Dean, J., Ghemawat, S.: Mapreduce: A flexible data processing
tool. Commun. ACM 53(1), 72-77 (2010)

de Haro-Garcia, A., Garcia-Pedrajas, N.: Scaling up feature selec-
tion by means of pseudoensembles of feature selectors. IEEE
Trans. Pattern Anal. Mach. Intell. (2011) (submitted)

de Haro-Garcia, A., Kuncheva, L., Garcia-Pedrajas, N.: Random
splitting for cascade feature selection. Technical Report, Univer-
sity or Cérdoba (2011)

de Haro-Garcia, A., Pedrajas, N.G.: A divide-and-conquer recur-
sive approach for scaling up instance selection algorithms. Data
Min. Knowl. Discov. 18(3), 392-418 (2009)

del Carpio, C.A.: A parallel genetic algorithm for poly-
peptide three dimensional structure prediction. a transputer
implementation. J. Chem. Inf. Comput. Sci. 36(2), 258-269
(1996)

Dementiev, R., Sanders, P., Schultes, D.: Engineering an eternal
memory minimum spanning tree algorithm. In: Proceedings of
the Third IFIP International Conference on Theoretical Computer
Science (TCS’04), pp. 195-208 (2004)

Derrac, J., Garcia, S., Herrera, F.: Stratified prototype selection
based on a steady-state memetic algorithm: a study of scalability.
Memet. Comput. 2, 183-189 (2010)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Domingos, P., Hulten, G.: A general method for scaling up
machine learning algorithms and its application to cluster-
ing. In: Proceedings of the Eighteenth International Confer-
ence on Machine Learning, pp. 106—-113. Morgan Kaufmann
(2001)

Domingos, P., Hulten, G.: Learning from infinite data in finite
time. In: Proceedings of Advances in Neural Information Sys-
tems, vol. 14, pp. 673—-680. Vancouver, Canada (2001)
Domingos, P., Hulten, G.: A general framework for mining mas-
sive data streams. J. Comput. Graph. Stat. 12(4), 945-949 (2003)
Du, Z., Lin, E.: A novel approach for hierarchical clustering. Par-
allel Comput. 31, 523-527 (2005)

Eggermont, J., Kok, J.N., Kosters, W.A.: Genetic programming
for data classification: Refining the search space. In: Proceedings
of the 2004 ACM symposium on Applied computing. ACM Press,
New York (2004)

Eitrich, T., Lang, B.: Data mining with parallel support vector
machines for classification. In: Yakhno, T., Neuhold, E. (eds.)
Proceedings of the Fourth Biennial International Conference on
Advances in Information Systems, Lectures Notes in Computer
Science, vol. 4243, pp. 197-206 (2006)

Fan, W., Stolfo, S., Zhang, J.: The application of Adaboost for dis-
tributed, scalable and on-line learning. In: Proceedings of the Fifth
ACD SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 362-366. San Diego, CA, USA (1999)
Fan, Y., Jiang, T., Evans, D.J.: Volumetric segmentation of brain
images using parallel genetic algorithms. IEEE Trans. Med. Imag-
ing 21(8), 904-909 (2002)

Fletcher, J., Obradovic, Z.: Combining prior symbolic knowledge
and constructive neural networks. Connect. Sci. 5(3, 4), 365—
375 (1993)

Flores, J.J., Rodriguez, H., Graff, M.: Reducing the search space
in evolutive design of arima and ann models for time series predic-
tion. In: Proceedings of the 9th Mexican International Conference
on Artificial Intelligence, Lecture Notes in Computer Science,
vol. 6438, pp. 325-336 (2010)

Freitas, A.A.: A Survey of Parallel Data Mining. In: Arner, H.E.,
Mackin, N. (eds.) Proceedings of the 2nd International Confer-
ence on the Practical Applications of Knowledge Discovery and
Data Mining, pp. 287-300. The Practical Application Company
(1998)

Garcia, S., Cano, J.R., Herrera, F.: A memetic algorithm for
evolutionary prototype selection: A scaling up approach. Pattern
Recognit. 41, 2693-2709 (2008)

Garcia-Osorio, C., de Haro-Garcia, A., Garcia-Pedrajas, N.: Dem-
ocratic instance selection: a linear complexity instance selec-
tion algorithm based on classifier ensemble concepts. Artif.
Intell. 174, 410-441 (2010)

Garcia-Pedrajas, N.: Supervised projection approach for boosting
classifiers. Pattern Recognit. 42, 1741-1760 (2009)
Garcia-Pedrajas, N., del Castillo, J.A.R., Ortiz-Boyer, D.: A
cooperative coevolutionary algorithm for instance selection for
instance-based learning. Mach. Learn. 78, 381-420 (2010)
Garcia-Pedrajas, N., Hervds-Martinez, C., Mufoz-Pérez, J.:
COVNET: A cooperative coevolutionary model for evolving arti-
ficial neural networks. IEEE Trans. Neural Netw. 14(3), 575—
596 (2003)

Garcia-Pedrajas, N., Hervas-Martinez, C., Ortiz-Boyer, D.: Coop-
erative coevolution of artificial neural network ensembles for pat-
tern classification. IEEE Trans. Evol. Comput. 9(3), 271-302
(2005)

Garcia-Pedrajas, N., Ortiz-Boyer, D.: A cooperative construc-
tive method for neural networks for pattern recognition. Pattern
Recognit. 40(1), 80-99 (2007)

Garcia-Pedrajas, N., Pérez-Rodriguez, J., Garcia-Pedrajas, M.D.,
Ortiz-Boyer, D., Fyfe, C.: Class imbalance methods for transla-

@ Springer

86

Prog Artif Intell (2012) 1:71-87

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

tion initiation site recognition in dna sequences. Knowl. Based
Syst. 25, 22-34 (2012)

Graf, H.P., Cosatto, E., Bottou, L., Dourdanovic, 1., Vapnik, V.:
Parallel support vector machines: the cascade svm. In: Saul, L.K.,
Weiss, Y., Bottou, L. (eds.) Neural Information Processing Sys-
tems, vol. 17, pp. 521-528 (2004)

Graf, H.P., Cosatto, E., Bottou, L., Durdanovic, I., Vapnik, V.: Par-
allel support vector machines: The cascade SVM. In: Advances in
Neural Information Processing Systems, pp. 521-528. MIT Press,
Cambridge (2005)

Griffin, J.D.: Methods for reducing search and evaluating fitness
functions in genetic algorithms for the snake-in-the-box problem.
Ph.D. thesis, The University of Georgia (2009)

Guyon, I, Elisseeff, A.: An introduction to variable and feature
selection. J. Mach. Learn. Res. 3, 1157-1182 (2003)

Holte, R., Acker, L., Porterm, B.: Concept learning and the prob-
lem of small disjuncts. In: Proceedings of the Eleventh Interna-
tional Joint Conference on Atrtificial Intelligence, pp. 813-818.
Morgan Kaufmann (2002)

Hong, J.H., Cho, S.B.: Efficient huge-scale feature selection with
speciated genetic algorithm. Pattern Recognit. Lett. 27, 143—
150 (2006)

Howftding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58, 13-30 (1963)

Huang, D.W., Lin, J.: Scaling populations of a genetic algorithm
for job shop scheduling problems using mapreduce. In: Proceed-
ings of the 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pp. 780-785 (2010)
Huber, P.: From large to huge: A statistician’s reaction to kdd
and dm. In: Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, pp. 304-308. AAAI
Press (1997)

Hulten, G., Domingos, P.: Mining complex models from arbi-
trarily large databases in constant time. In: Proceedings of the
International Conference on Knowledge Discovery and Data Min-
ing, pp. 525-531. Edmonton, Canada (2002)

Hwang, W.J., Ou, C.M., Hung, P.C., Yang, C.Y., Yu, T.H.: An effi-
cient distributed genetic algorithm architecture for vector quan-
tizer design. Open Artif. Intell. J. 4, 20-29 (2010)

Islam, M.M., Yao, X., Murase, K.: A constructive algorithm
for training cooperative neural network ensembles. IEEE Trans.
Neural Netw. 14(4), 820-834 (2003)

Jin, R., Yang, G., Agrawal, G.: Shared memory parallelization
of data mining algorithms: Techniques, programming interface,
and performance. IEEE Trans. Knowl. Data Eng. 17(1), 71-89
(2005)

Johnson, D.B., Metaxas, P.: A parallel algorithm for comput-
ing minimum spanning trees. In: Proceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’92), pp. 363-372 (1992)

Judd, D., McKinley, P.K., Jain, A.K.: Large-scale parallel data
clustering. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 871—
876 (1998)

Kerdprasop, K., Kerdprasop, N.: A lightweight method to par-
allel k-means clustering. Int. J. Math. Comput. Simul. 4, 144—
153 (2010)

Knuth, D.E.: The Art of Computer Programming. Addison-
Wesley, Reading (1997)

Kononova, A.V., Ingham, D.B., Pourkashanian, M.: Simple
scheduled memetic algorithm for inverse problems in higher
dimensions: application to chemical kinetics. In: Proceedings
of the IEEE world congress on computational intelligence
CEC’2008, pp. 3906-3913. IEEE Press (2008)

Kumari, B., Swarnkar, T.: Filter versus wrapper feature subset
selection in large dimensionality micro array: A review. Int. J.
Comput. Sci. Inf. Technol. 2, 1048-1053 (2011)

@ Springer

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, 1., Dizdar-
evic, S.: Genetic algorithms for the traveling salesman prob-
lem: A review of representations and operators. Artif. Intell.
Rev. 13(2), 129-170 (1999)

Lazarevic, A., Obradovic, Z.: Boosting algorithms for parallel
and distributed learning. Distrib. Parallel Databases 11, 203—
229 (2002)

Leavitt, N.: Data mining for the corporate masses? Computer
35, 22-24 (2002)

Li, X., Fang, Z.: Parallel clustering algorithms. Parallel Comput.
11, 275-290 (1989)

Li, X., Yao, X.: Tackling high dimensional nonseparable optimi-
zation problems by cooperatively coevolving particle swarms. In:
Proceedings of the IEEE Congress on Eevolutionary Computation
CEC’2009, pp. 1546-1556 (2009)

Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B., Lee, B.S.: Efficient hier-
archical parallel genetic algorithms using grid computing. Future
Gener. Comput. Syst. 23, 658-670 (2007)

Lin, Y., Chung, S.M.: Parallel bisecting k-means with prediction
clustering algorithm. J. Supercomput. 39, 19-37 (2007)

Liu, Z., Liu, A., Wang, C., Niu, Z.: Evolving neural networks
using real coded genetic algorithm (ga) for multispectral image
classification. Future Gener. Comput. Syst. 20(7), 1119-1129
(2004)

Lodhi, H., Saunders, C., Shawe-Taylor, J., Christiani, N.,
Watkins, C.: Text classification using string kernels. J. Mach.
Learn. Res. 2, 419—444 (2002)

Lu, C.T., Boedihardjo, A.P., Manalwar, P.: Exploiting efficient
data mining techniques to enhance intrusion detection systems.
In: Proceedings of the 2005 IEEE International Conference on
Information Reuse and Integration (IEEE IRI-2005 Knowledge
Acquisition and Management), pp. 512-517 (2005)

Lu, Y., Roychowdhury, V.: Parallel randomized sampling for
support vector machine (SVM) and support vector regression
(SVR). Knowl. Inf. Syst. 14(2), 233-247 (2008)

Lu, Y., Roychowdhury, V., Vandenberghe, L.: Distributed paral-
lel support vector machines in strongly connected networks. IEEE
Trans. Neural Netw. 19(7), 1167-1178 (2008)

Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large
scale set covering problems with application to airline crew sched-
uling, pp. 367-381. Lecture Notes in Computer Science. Springer,
Berlin (2000)

Moore, A.: Very fast em-based mixture model clustering using
multiresolution kd-trees. In: Kearns, M., Cohn, D. (eds.) Advances
in Neural Information Processing Systems, pp. 543-549. Morgan
Kaufman (1999)

Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learn-
ing through symbiotic evolution. Mach. Learn. 22, 11-32 (1996)
Moser, A., Murty, M.N.: On the scalability of genetic algorithms
to very large-scale feature selection. In: Proceedings of Evo-
Workshops 2000, Lecture Notes in Computer Science, vol. 1603,
pp. 77-86. Springer-Verlag, New York (2000)

Murtagh, F.: Clustering in massive data sets. In: Handbook of
Massive Data Sets, pp. 501-543. Kluwer Academic Publishers,
Dordrecht (2002)

Neumann, F., Wegener, I.: Minimum spanning trees made easier.
Nat. Comput. 5(3), 305-319 (2006)

Nopiah, Z.M., Khairir, M.I., Abdullah, S., Baharin, M.N., Airfin,
A.: Time complexity analysis of the genetic algorithm clustering
method. In: Proceedings of the 9th WSEAS international confer-
ence on Signal processing, robotics and automation, pp. 171-176
(2010)

Nowostawski, M., Poli, R.: Parallel genetic algorithm taxon-
omy. In: Proceedings of the Third International Conference on
Knowledge-Based Intelligent Information Engineering Systems,
pp- 88-92 (1999)

Prog Artif Intell (2012) 1:71-87

87

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Obradovic, Z., Rangarajan, S.: Constructive neural networks
design using genetic optimization, pp. 133-146. No. 15 in Math-
ematics and Informatics. University of Nis (2000)

Oliveto, P.S., He, J., Yao, X.: Time complexity of evolution-
ary algorithms for combinatorial optimization: A decade of
results. Int. J. Autom. Comput. 4(1), 100-106 (2007)

Olman, V., Mao, F., Wu, H., Xu, Y.: Parallel clustering algorithm
for large data sets with applications in bioinformatics. [IEEE/ACM
Trans. Comput. Biol. Bioinforma. 6(2), 344-352 (2009)

Olson, C.F.: Parallel algorithms for hierarchical clustering. Paral-
lel Comput. V 21, 1313-1325 (1995)

Othman, F., Abdullah, R., Rashid, N.A., Salam, R.A.: Parallel k-
means clustering algorithm on dna dataset. In: Proceedings of the
5th International Conference on Parallel and Distributed Comput-
ing: Applications and Technologies, (PDCAT’04), Lecture Notes
in Computer Science, vol. 3320, pp. 248-251 (2004)

Pal, S.K., Bandyopadhyay, S.: Evolutionary computation in bio-
informatics: A review. IEEE Trans. Syst. Man Cybern. Part B
Cybern. 36, 601-615 (2006)

Panigrahy, R.: An improved algorithm finding nearest neighbor
using kd-trees. In: Proceedings of the 8th Latin American Sym-
posium, Lectures Notes in Computer Science, vol. 4957, pp. 387—
398. Springer, Berlin (2008)

Parekh, R., Yang, J., Honavar, V.: Constructive neural-network
learning algorithms for pattern classification. IEEE Trans. Neural
Netw. 11(2), 436—450 (2000)

Potter, M. A.: The design and analysis of a computational model of
cooperative coevolution. Ph.D. thesis, George Mason University,
Fairfax, Virginia (1997)

Potter, M.A., De Jong, K.A.: Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents. Evol. Comput.
8(1), 1-29 (2000)

Provost, FJ., Kolluri, V.: A survey of methods for scaling up
inductive learning algorithms. Data Min. Knowl. Discov. 2, 131-
169 (1999)

Quinn, M.J.: Parallel Computing: Theory and Practice. McGraw-
Hill, New York (1994)

Rasmussen, E.M., Willet, P.: Efficiency of hierarchical agglom-
erative clustering using ICL distributed array processors.
J. Doc. 45(1), 1-24 (1989)

Rausch, T., Thomas, A., Camp, N.J., Cannon-Albrigth, L.A.,
Facelli, J.C.: A parallel genetic algorithm to discover patterns
in genetic markers that indicate predisposition to multifactorial
disease. Comput. Biol. Med. 38, 826-836 (2008)

Rida, A., Labbi, A., Pellegrini, C.: Local experts combina-
tion through density decomposition. In: Proceedings of the 7th
International Workshop on Artificial Intelligence and Statistics,
pp- 692-699 (1999)

Rodriguez, M., Escalante, D.M., Peregrin, A.: Efficient distributed
genetic algorithm for rule extraction. Appl. Soft Comput. 11, 733—
743 (2011)

Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to
a maximum margin classifier. J. Mach. Learn. Res. 5, 941-973
(2004)

Rudin, C., Daubechies, 1., Schapire, R.E.: The dynamics of ada-
boost: Cyclic behavior and convergence of margins. J. Mach.
Learn. Res. 5, 1557-1595 (2004)

Ruiz, R.: Incremental wrapper-based gene selection from micro-
array data for cancer classification. Pattern Recognit. 39, 2383—
2392 (2006)

Schapire, R.E., Freund, Y., Bartlett, P.L., Lee, W.S.: Boosting the
margin: A new explanation for the effectiveness of voting meth-
ods. Ann. Stat. 26(5), 1651-1686 (1998)

Sebban, M., Nock, R.: A hybrid filter/wrapper approach of feature
selection using information theory. Pattern Recognit. 35, 835—
846 (2002)

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

Sena, G.S., Megherbi, D., Iserm, G.: Implementation of a parallel
genetic algorithm on a cluster of workstations: Travelling sales-
man problem, a case study. Future Gener. Comput. Syst. 17(4),
477-488 (2001)

Sibson, R.: Slink: An optimally efficient algorithm for the single
link cluster method. Comput. J. 16, 30-34 (1973)

Sikonja, M.R.: Speeding up relief algorithm with k-d trees. In:
Proceedings of Electrotechnical and Computer Science Confer-
ence (ERK’98), pp. 137-140. Portoroz, Slovenia (1998)
Skillicorn, D.: Strategies for parallel data mining. IEEE Con-
curr. 7(4), 26-35 (1999)

Smieja, F.: Neural-network constructive algorithms: Trading gen-
eralization for learning efficiency? Circuits Syst. Signal Process.
12(2), 331-374 (1993)

Steinbach, M., Karypis, G., Kumar, V.: A comparison of docu-
ment clustering techniques. In: Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (2000)

Steinhaeuser, K., Chawla, N.V., Kogge, P.M.: Exploiting thread-
level parallelism to build decision trees. In: Proceedings of
the ECML/PKDD Workshop on Parallel Data Mining (PDM).
Berlin, Germany (2006)

Stoffel, K., Belkoniene, A.: Parallel k//h-means clustering for
large data sets. In: Proceedings of the 5th International Parallel
Processing Conference (Euro-Par’99), Lecture Notes in Computer
Science, vol. 1685, pp. 1451-1454 (1999)

Tresp, V.. A bayesian committee machine. Neural Comput.
12, 2719-2741 (2000)

van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to
particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225—
239 (2004)

Verma, A., Llora, X., Goldberg, D.E., Campbell, R.H.: Scaling
genetic algorithms using mapreduce. In: Proceedings of the 2009
Ninth International Conference on Intelligent Systems Design and
Applications, pp. 13—17 (2009)

Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.: Text Min-
ing: Predictive Methods for Analyzing Unstructured Information.
Springer, Berlin, Germany (2010)

Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization
using cooperative coevolution. Inf. Sci. 178, 2985-2999 (2008)
Yao, X.: Evolving artificial neural networks. Proc. IEEE
9(87), 14231447 (1999)

Yen, S.H., Shih, C.Y., Li, T.K., Chang, H.-W.: Applying multiple
kd-trees in high dimensional nearest neighbor searching. Int. J.
Circuits Syst. Signal Process. 4, 153-160 (2010)

Yildiz, O.T., Dikmen, O.: Parallel univariate decision trees.
Neural Process. Lett. 28, 825-832 (2007)

Yin, D., An, C., Baird, H.S.: Imbalance and concentration in k-nn
classification. In: Proceedings of 20th International Conference
on Pattern Recognition (ICPR’2010), pp. 2170-2173. IEEE Press
(2010)

Yong, Z., Sannomiya, N.: A method for solving large-scale flow-
shop problems by reducing search space of genetic algorithms.
In: 2000 IEEE International Conference on Systems, Man, and
Cybernetics, vol. 3, pp. 1776-1781. IEEE Press (2000)

Yu, T., Davis, L., Baydar, C., Roy, R. (eds.): Evolutionary
Computation in Practice, Studies in Computational Intelligence,
vol. 88. Springer, Berlin (2008)

Zien, A., Ritsch, G., Mika, S., Scholkopf, B., Lengauer, T.,
Miiller, K.R.: Engineering support vector machines kernels that
recognize translation initiation sites. Bioinformatics 16(9), 799—
807 (2000)

@ Springer

	Scaling up data mining algorithms: review and taxonomy
	Abstract
	1 Introduction
	2 Modifying the algorithm
	2.1 Model restriction and reducing the search space
	2.2 Using powerful search heuristics
	2.3 Algorithm/programming optimization

	3 Parallelization
	3.1 Parallelization in evolutionary computation

	4 Modifying the problem/dataset
	4.1 Sampling and data partitioning
	4.2 Cooperative approach in evolutionary computation

	5 Conclusions and future work
	Acknowledgments
	References

