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Abstract

Current evaluation functions for heuristic planning are expensive to compute. In numerous
planning problems these functions provide good guidance to the solution, so they are worth the
expense. However, when evaluation functions are misguiding or when planning problems are large
enough, lots of node evaluations must be computed, which severely limits the scalability of heuris-
tic planners. In this paper, we present a novel solution for reducing node evaluations in heuristic
planning based on machine learning. Particularly, we define the task of learning search control for
heuristic planning as a relational classification task, and we use an off-the-shelf relational classifica-
tion tool to address this learning task. Our relational classification task captures the preferred action
to select in the different planning contexts of a specific planning domain. These planning contexts
are defined by the set of helpful actions of the current state, the goals remaining to be achieved, and
the static predicates of the planning task. This paper shows two methods for guiding the search of
a heuristic planner with the learned classifiers. The first one consists of using the resulting classi-
fier as an action policy. The second one consists of applying the classifier to generate lookahead
states within a Best First Search algorithm. Experiments over a variety of domains reveal that our
heuristic planner using the learned classifiers solves larger problems than state-of-the-art planners.

1. Introduction

During the last few years, state-space heuristic search planning has achieved significant results and
has become one of the most popular paradigms for automated planning. However, heuristic search
planners suffer from strong scalability limitations. Even well-studied domains like Blocksworld
become challenging for these planners when the number of blocks is relatively large. Usually, state-
space heuristic search planners are based on action grounding, which makes the state-space to be
explored very large when the number of objects and/or action parameters is large enough. Moreover,
domain-independent heuristics are expensive to compute. In domains where these heuristics are
more misleading, heuristic planners spend most of their planning time computing useless node
evaluations. Even with the best current domain-independent heuristic functions in the literature,
forward chaining heuristic planners currently have to visit too many nodes, which takes considerable
time, especially due to the time required to compute those heuristic functions.

These problems entail strong limitations on the application of heuristic planners to real prob-
lems. For instance, logistics applications need to handle hundreds of objects together with hundreds
of vehicles and locations (Flórez, Garcı́a, Torralba, Linares, Garcı́a-Olaya, & Borrajo, 2010). Cur-
rent heuristic search planners exhaust the computational resources before solving a problem in a
real logistics application.
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A classic approach for dealing with planning scalability issues is assisting the search engines
of planners with Domain-specific Control Knowledge (DCK). Examples of planning systems that
benefit from this knowledge are TLPLAN (Bacchus & Kabanza, 2000), TALPLANNER (Doherty
& Kvarnström, 2001) and SHOP2 (Nau, Au, Ilghami, Kuter, Murdock, Wu, & Yaman, 2003).
Nevertheless, hand-coding DCK is a complex task because it implies expertise in both, the plan-
ning domain and the search algorithm of the planning system. In recent years there has been a
renewed interest in using Machine Learning (ML) to automatically extract DCK. Zimmerman and
Kambhampati (2003) made a comprehensive survey of ML for defining DCK. As shown in the first
learning for planning competition held in 2008 (Learning Track), this renewed interest is specially
targeted at heuristic planners.

This paper presents an approach for learning DCK for planning by building domain-dependent
relational decision trees from examples of good quality solutions of a forward-chaining heuristic
planner. These decision trees are built with an off-the-shelf relational classification tool and cap-
ture which is the best action to take for each possible decision of the planner in a given domain.
The resulting decision trees can be used either as a policy to solve planning problems directly or
to generate lookahead states within a Best First Search (BFS) algorithm. Both techniques allow
the planner to avoid state evaluations, which helps in the objective of improving scalability. The
approach has been implemented in a system we have called ROLLER. This work is an improvement
of a previous one (De la Rosa, Jiménez, & Borrajo, 2008). Alternatively, a ROLLER version for
repairing relaxed plans (De la Rosa, Jiménez, Garcı́a-Durán, Fernández, Garcı́a-Olaya, & Borrajo,
2009) competed in the Learning Track of the 6th International Planning Competition (IPC) held in
2008. ROLLER improvements presented in this article are mainly a result of lessons learned from
the competition, which will be discussed later.

The paper is organized as follows. Section 2 introduces the issues that need to be considered
when designing a learning system for heuristic planning. They will help us to clarify which de-
cisions we made in the development of our approach. Section 3 describes the ROLLER system in
detail. Section 4 presents the experimental results obtained in a variety of benchmarks. Section 5
discusses the improvements of the ROLLER system compared to the previous version of the system.
Section 6 revises the related work on learning DCK for heuristic planning. Finally, the last section
discusses some conclusions and future work.

2. Common Issues in Learning Domain-specific Control Knowledge

When designing an ML process for the automatic acquisition of DCK, one must consider some
common issues, among others:

1. The representation of the learned knowledge. Predicate logic is a common language to
represent planning DCK because planning tasks are usually defined in this language. How-
ever, other representation languages have been used aiming to make the learning of DCK
more effective. For instance, languages for describing object classes such as the Concept
Language (Martin & Geffner, 2000) or Taxonomic Syntax (Mcallester & Givan, 1989) have
been shown to provide a useful learning bias for different domains.

Another representation issue is the selection of the feature space (i.e., the set of instance
features used for representing the learned knowledge and for training the system.). The feature
space should be able to capture the key knowledge of the domain. Traditionally, the feature

768



SCALING UP HEURISTIC PLANNING WITH RELATIONAL DECISION TREES

space consisted only of predicates for describing the current state and the goals of the planning
task. The feature space can be enriched with extra predicates, called metapredicates, which
capture extra useful information of the planning context such as the applicable operators or
the pending goals (Veloso, Carbonell, Pérez, Borrajo, Fink, & Blythe, 1995). Recently, works
on learning DCK for heuristic planners define metapredicates to capture information about
the planning context of a heuristic planner, including for example, predicates which capture
the actions in the relaxed plan of a given state (Yoon, Fern, & Givan, 2008).

2. The learning algorithms. Inductive Logic Programming (ILP) (Muggleton & De Raedt,
1994) deals with the development of inductive techniques which learn a given target concept
from examples described in predicate logic. Because planning tasks are normally represented
in predicate logic, ILP algorithms are quite suitable for DCK learning. Moreover, in recent
years, ILP has broadened its scope to cover the whole spectrum of ML tasks such as regres-
sion, clustering and association analysis, extending the classical propositional ML algorithms
to the relational framework. Consequently, ILP algorithms have been used by heuristic plan-
ners to capture DCK in different forms such as decision rules to select actions in the different
planning context or regression rules to obtain better node evaluations (Yoon et al., 2008).

3. The generation of training examples. The success of ML algorithms depends directly on
the quality of the training examples used. When learning planning DCK, these examples
are extracted from the experience collected from solving training problems, which should
be representative of different tasks across the domain. Therefore, the quality of the training
examples will depend on the variety of the problems used for training and the quality of the
solutions to these problems. Traditionally, these training problems are obtained by random
generators provided with some parameters to tune problems difficulty. In this way, one has
to find, for each domain, which kind of problems makes the learning algorithm generalize
useful DCK.

4. Use of the learned DCK. Decisions made for each of these three issues affect the quality of
the learned DCK. Some representation schemes may not be expressive enough to capture ef-
fective DCK for a given domain, the learning algorithm may not be able to acquire the useful
DCK within reasonable time and memory requirements, or the set of training problems may
lack significant examples of the key knowledge. In all these situations, a direct use of the
learned DCK will not improve the scalability of the planner, and could even decrease its per-
formance. An effective way of dealing with this problem in heuristic planners is integrating
the learned DCK within robust strategies such as a Best-First Search (Yoon et al., 2008) or
combining it with domain-independent heuristic functions (Röger & Helmert, 2010).

3. The ROLLER System

This section describes how the general scheme for learning DCK is instantiated in the ROLLER

system. First, it describes the DCK representation followed by ROLLER. Second, it explains the
learning algorithm used by ROLLER. Third, it depicts how ROLLER collects good quality training
examples and finally, it shows different approaches for scaling up heuristic planning algorithms with
the learned DCK.
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3.1 The Representation of the Learned Knowledge: Helpful Contexts in Heuristic Planning

We present our approach following the notation specified by the Planning Domain Definition Lan-
guage (PDDL) for typed STRIPS tasks. Accordingly, the definition of a planning domain D com-
prises the definition of:

• A hierarchy of types.

• A set of typed constants, CD, representing the objects present in all tasks for the domain. This
set can be empty.

• A set of predicate symbols, P , each one with its corresponding arity and the type of its
arguments.

• A set of operators O, whose arguments are typed variables.

Variables are declared directly when defining each operator argument, so they are local to the
operator definition. We will call Po the set of atomic formulas that can be generated using the
defined predicates P , the variables defined as arguments of the operator o ∈ O, and the general
constants CD. Then, each operator o ∈ O is defined by three sets: pre(o) ⊆ Po, the operator
preconditions; add(o) ⊆ Po, the positive effects; and del(o) ⊆ Po, the negative effects of the
operator.

A planning task Π for the domain D is a tuple < CΠ, s0, G > where CΠ is a set of typed
constants representing the objects which are particular to the task, s0 is the set of ground atomic
formulas describing the initial state and G is the set of ground atomic formulas describing the goals.
Given the total set of constants C = CΠ∪CD, the task Π defines a finite state space S and a finite set
A of instantiated operators overO. A state s ∈ S is a set of ground atomic formulas representing the
facts that are true in s. States are described following the closed world assumption. An instantiated
operator or action a ∈ A is an operator where each variable has been replaced by a constant in C of
the same type. Thus, A is the set of all actions a that can be generated using the set of constants C
and the set of operatorsO. Under this definition, solving a planning task Π implies finding a plan π
as the sequence of actions (a1, . . . , an), ai ∈ A that transforms the initial state into a state in which
the goals are achieved.

The planning contexts defined by ROLLER rely on the concepts of relaxed plan heuristic and
helpful actions, both introduced by the FF planner (Hoffmann & Nebel, 2001). The relaxed plan
heuristic returns an integer for each evaluated node, which is the number of actions in a solution to
the relaxed planning task Π+ from that node. Π+ is a simplification of the original task in which the
deletes of actions are ignored. The idea of delete-relaxation for computing heuristics in planning
was first introduced by McDermott (1996) and by Bonet, Loerincs and Geffner (1997).

The relaxed plan is extracted from a relaxed planning graph, which is a sequence of facts and
actions layers (F0, A0, . . . , At, Ft). The first fact layer contains all facts in the initial state. Then
each action layer contains the set of all applicable actions given the previous fact layer. Each fact
layer contains the set of all positive effects of all actions appearing in the previous layers. The
process finishes when all the goals are in a fact layer, or when two consecutive facts layers have the
same facts. In the last case, the relaxed problems have no solution and the relaxed plan heuristic
returns infinity.
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Once the relaxed planning graph is built, the solution is extracted in a backwards process. Each
goal appearing for the first time in fact layer i is assigned to the set of goals of that layer, Gi. Then,
from the last set of goals, Gt, to the second set of goals, G1, and for each goal in each goals set,
an action is selected which generates the goal and whose layer index is minimal. Afterwards, each
precondition of that action (i.e. a subgoal) is included in the goals set corresponding to the first
layer where this fact appears. When the process is finished, the set of selected actions comprises the
relaxed plan.

According to the extraction process, the FF planner marks as helpful actions the set of actions
in the first layer A0 of the relaxed planning graph which can achieve any of the subgoals of the next
fact layer, i.e. in the goals set G1. In other words, helpful actions are those applicable actions which
generate facts that are top-level goals of the problems or required by any action of the relaxed plan.
Formally, the set of helpful actions of a given state s is defined as:

helpful(s) = {a ∈ A0 | add(a) ∩G1 �= ∅}
The FF planner uses helpful actions in the search as a pruning technique, because they are con-

sidered as the only candidates for being selected during the search. Given that each state generates
its own particular set of helpful actions, we claim that the helpful actions, together with the remain-
ing goals and the static literals of the planning task, encode a helpful context related to each state.
The helpful actions and the remaining target goals relate actions that are more likely to be applied
with the goals that need to be achieved. These relations arise because helpful actions and target
goals often share some arguments (problem objects). Additionally, the static predicates express
facts that characterize objects of the planning task. Identifying these objects is also relevant since
they may be shared arguments for helpful actions and/or target goals.

Definition 1 The helpful context for a state s is defined as

H(s) = {helpful(s), target(s), static(s)}
where target(s) ⊆ G describes the set of goals not achieved in the state s, target(s) = G − s

and static(s) is the set of literals that always hold in the planning task. They are defined in the
initial state and are present at every state given that they can not be changed by any action. Thus,
static(s) = {p ∈ s | �a ∈ A : p ∈ add(a) ∨ p ∈ del(a)}.

The helpful context is an alternative representation to the tuple <state, goals, applied action>,
traditionally used when learning DCK for planning. Helpful contexts present some advantages for
improving the scalability of heuristic planners:

• In most domains, the set of helpful actions contains the actions most likely to be applied and
focusing reasoning on them has been shown to be a good strategy.

• The set of helpful actions is normally smaller than the set of non-static literals in the state
(i.e., s − static(s)). Thus, the process of matching learned DCK within the search obtains
the benefits of using a more compact representation.

• The number of helpful actions normally decreases when the search has fewer goals left.
Therefore, the matching process will become faster when the search is advancing towards
the goals.
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3.2 The Learning Algorithm: Learning Generalized Policies with Relational Decision Trees

ROLLER implements a two-step learning process for building DCK from a collection of examples
from different helpful contexts:

1. Learning the operator classifier. ROLLER builds a classifier to choose the best operator in the
different helpful contexts.

2. Learning the binding classifiers. For each operator in the domain, ROLLER builds a classifier
to choose the best binding (instantiation of the operator) in the different helpful contexts.

The learning process is split into these two steps to build DCK with off-the-shelf learning
tools. Each planning action may have different number of arguments and arguments of differ-
ent types (e.g. actions switch on(instrument,satellite) and turn to(satellite,
direction,direction) from the Satellite domain) which hinders the definition of the target
classes. This two-step decision process is also clearer from the decision-making point of view. It
helps users to understand the generated DCK better by focusing on either the decision of which op-
erator to apply or which bindings to use for a given selected operator. Both the learning algorithm
and the set of learning examples are the same for the two learning steps. Figure 1 shows an overview
of the learning process of the ROLLER system.

PDDL
Domain

Training
Problems

Roller Learner

language bias

Classification

Relational

Tool

...

1. operator classifier

2. binding classifiers

Example

Generator
bind. examples

op. examples

Figure 1: Overview of the ROLLER learning process.

3.2.1 LEARNING RELATIONAL DECISION TRESS

A classic approach to assist decision making consists of gathering a significant set of previous de-
cisions and building a decision tree that generalizes them. The leaves of the resulting tree contain
the classes (decisions to make), and the internal nodes contain the conditions that lead to those deci-
sions. The most common way to build these trees is following the Top-Down Induction of Decision
Trees (TDIDT) algorithm (Quinlan, 1986). This algorithm builds the tree by repeatedly splitting
the set of training examples according to the conditions that minimize the entropy in the exam-
ples. Traditionally, training examples are described in an attribute-value representation. Therefore,
conditions of the decision trees represent tests over the value of a given attribute of the examples.
Nevertheless, this attribute-value approach is not suitable for representing decisions if we want to
keep the predicate logic representation. A better approach is to represent decisions relationally, for
instance, a given action is chosen to reach certain goals in a given context if they share some argu-
ments. Recently, new algorithms for building relational decision trees from examples described as

772



SCALING UP HEURISTIC PLANNING WITH RELATIONAL DECISION TREES

predicate logic facts have been developed. These new relational learning algorithms are similar to
the propositional ones, except that (1) condition nodes in the tree do not refer to attribute values, but
to logic queries about relational facts holding in the training examples and (2), these logic queries
can share variables with condition nodes placed above in the decision tree. The learning algorithm
is a greedy search process. Since the space of potential relational decision trees is usually huge, this
search is normally biased according to a specification of syntactic restrictions called language bias.
This specification contains the target concept, the predicates that can appear in the condition nodes
of the trees and some learning-specific knowledge such as type information, or input and output
variables of predicates.

In this paper we use the tool TILDE (Blockeel & De Raedt, 1998) for learning the operator
and binding classifiers. This tool implements a relational version of the TDIDT algorithm, although
any other off-the-shelf tool for learning relational classifiers could have been used, such as PRO-
GOL (Muggleton, 1995) or RIBL (Emde & Wettschereck, 1996). Each of these different learning
algorithms would provide different results, since they explore the classifiers space differently. The
study of the pros and cons of the different algorithms is beyond the scope of the paper. For a
comprehensive explanation of current relational learning approaches please refer to the work by De
Raedt (2008).

3.2.2 LEARNING THE OPERATOR CLASSIFIER

The inputs to learning the operator classifier are:

• Training examples. Examples are represented in a Prolog-like syntax and consist of the
operator selected (the class) together with the helpful context (the background knowledge in
terms of relational learning) in which it was selected. In particular, an example contains:

– Class. We use the predicate of arity 3 selected to encode the operator chosen in the
context. This predicate is the target concept of this learning step. Its first argument holds
the example identifier that links the rest of the example predicates. The second argument
is the problem identifier, which links the static predicates shared by all examples coming
from the same planning problem. The third argument is the example class, i.e., the name
of the selected operator in the helpful context.

– Helpful predicates. They are predicates to express the helpful actions contained in the
helpful context. The predicate symbol of these predicates is helpful ai where ai

is the name of an instantiated action. The arguments are the example and problem
identifier together with the parameters of action ai. As it is an instantiated action, its
parameters are constants.

– Target goal predicates. They represent the predicates that appear in the goals and do
not hold in the current state. These predicates have the form target goal gi where
gi are the domain predicates. Each predicate also contains the example and problem
identifiers.

– Static predicates. They represent the static predicates of a given problem. These predi-
cates are shared by all the training examples that belong to the same planning problem.
They have the form static fact fi where fi are the domain predicates that do not
appear in the effects of any domain action. They have as arguments the problem identi-
fier and the corresponding arguments of each domain predicate.
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Figure 2 shows one learning example with id tr01 e1 consisting of a selection of the op-
erator switch-on and its associated helpful context. This example is used for building the
operator classifier for the Satellite domain.

% Example tr01 e1 from problem tr01
selected(tr01 e1,tr01,switch on).
helpful turn to(tr01 e1,tr01,satellite0,groundstation1,star0).
helpful turn to(tr01 e1,tr01,satellite0,phenomenon2,star0).
helpful turn to(tr01 e1,tr01,satellite0,phenomenon3,star0).
helpful turn to(tr01 e1,tr01,satellite0,phenomenon4,star0).
helpful switch on(tr01 e1,tr01,instrument0,satellite0).
target goal have image(tr01 e1,tr01,phenomenon3,infrared2).
target goal have image(tr01 e1,tr01,phenomenon4,infrared2).
target goal have image(tr01 e1,tr01,phenomenon2,spectrograph1).

% Static Predicates of problem
static fact calibration target(tr01,instrument0,groundstation1).
static fact supports(tr01,instrument0,spectrograph1).
static fact supports(tr01,instrument0,infrared2).
static fact on board(tr01,instrument0,satellite0).

Figure 2: Knowledge base corresponding to an example from the Satellite domain. The example
has the id tr01 e1, which links all example predicates. It was obtained solving the
training problem tr01 which links the rest of examples for the same problem. The
selected operator in this helpful context is switch on, which corresponds to one of the
helpful actions encoded in the helpful predicates of the example.

• Language bias: This bias specifies constraints over the arguments of the predicates in the
training examples. We do not assume any domain-specific constraint, given that our learning
technique is domain-independent. So, this bias only contains restrictions over argument types
and restrictions which ensure that identifier variables are not added as new variables in the
classifier generation. This bias is automatically extracted from the PDDL domain definitions
and consists of a declaration of the predicates used in the learning example and their argument
types. Figure 3 shows the language bias specified for learning the operator classifier for the
Satellite domain.

The resulting relational decision tree represents a set of disjoint rules for action selection that
can be used to provide advice to the planner: the internal nodes of the tree contain the set of condi-
tions related to the helpful context under which the advice can be provided. The leaf nodes contain
the corresponding advice; in this case, the operator to select and the number of examples covered
by the rule. The operator to select is the one which has been selected more often in the training
examples covered by the rule. The operator classifiers learned by ROLLER also advise on non-
helpful actions. Given a state, non-helpful actions are the subset of applicable actions in the state
that are not considered as helpful actions. Certainly, these actions are not part of the helpful con-
texts defined. However, the learned operator classifiers indicate the name of the operator to select
regardless of whether it was helpful or not. Figure 4 shows the operator tree learned for the Satellite
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% ---- The target concept ----
predict(selected(+IdExample,+IdProblem,-Operator)).
type(selected(idex,idprob,class)).
classes([turn to,switch on,switch off,calibrate,take image]).

% ---- The helpful context ----
% predicates for the helpful actions
rmode(helpful turn to(+IdExample,+IdProblem,+-S1,+-D1,+-D2)).
type(helpful turn to(idex,idprob,satellite,direction,direction)).

rmode(helpful switch on(+IdExample,+IdProblem,+-I1,+-S1)).
type(helpful switch on(idex,idprob,instrument,satellite)).

rmode(helpful switch off(+IdExample,+IdProblem,+-I1,+-S1)).
type(helpful switch off(idex,idprob,instrument,satellite)).

rmode(helpful calibrate(+IdExample,+IdProblem,+-S1,+-I1,+-D1)).
type(helpful calibrate(idex,idprob,satellite,instrument,direction)).

rmode(helpful take image(+IdExample,+IdProblem,+-S1,+-D1,+-I1,+-M1)).
type(helpful take image(idex,idprob,satellite,direction,instrument,mode)).

% predicates for the target goals
rmode(target goal pointing(+IdExample,+IdProblem,+-S1,+-D1)).
type(target goal pointing(idex,idprob,satellite,direction)).

rmode(target goal have image(+IdExample,+IdProblem,+-D1,+-M1)).
type(target goal have image(idex,idprob,direction,mode)).

% predicates for the static facts
rmode(static fact on board(+IdProblem,+-I1,+-S1)).
type(static fact on board(idprob,instrument,satellite)).

rmode(static fact supports(+IdProblem,+-I1,+-M1)).
type(static fact supports(idprob,instrument,mode)).

rmode(static fact calibration target(+IdProblem,+-I1,+-D1)).
type(static fact calibration target(idprob,instrument,direction)).

Figure 3: Language bias for learning the operator classifier of the Satellite domain. It is automat-
ically generated from the PDDL definition. rmode predicates indicate those which can
be used in the tree. type predicates indicate types for each particular rmode.

domain. In learned decision trees each branch is denoted by the symbols +--:<yes/no>, where
yes indicates the next node for positive answers to the current question and no indicates the next
node for negative answers. In the figure, the first branch states that when there is a calibrate
action in the set of helpful actions, the recommendation (in square brackets) is choosing that action
(i.e. calibrate). In addition, the branch indicates that the recommended action has occurred 44
times in the training examples. Moreover, each leaf node has information (in double square brack-
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ets) about the number of times each type of action has been selected in the training examples covered
by the rule in the current branch. Thus, in our case, the action calibrate has been selected 44
out of a total of 44 times, and other operators have never been selected. The second branch says
that if there is no calibrate helpful action, but there is a take image one, the planner selected
to take image 110 out of 110 times. If there are no helpful calibrate or take image ac-
tions but there is a helpful switch on action, switch on is the recommendation, that has been
selected 44 out of 59 times. Other tree branches are interpreted similarly.

selected(-A,-B,-C)
helpful calibrate(A,B,-D,-E,-F) ?
+--yes:[calibrate] 44.0 [[turn to:0.0,switch on:0.0,switch off:0.0,
| calibrate:44.0,take image:0.0]]
+--no: helpful take image(A,B,-G,-H,-I,-J) ?

+--yes:[take image] 110.0 [[turn to:0.0,switch on:0.0,switch off:0.0,
| calibrate:0.0,take image:110.0]]
+--no: helpful switch on(A,B,-K,-L) ?

+--yes:[switch on] 59.0 [[turn to:15.0,switch on:44.0,
| switch off:0.0,calibrate:0.0,
| take image:0.0]]
+--no: [turn to] 149.0 [[turn to:149.0,switch on:0.0,

switch off:0.0,calibrate:0.0,
take image:0.0]]

Figure 4: Relational decision tree learned for the operator selection in the Satellite domain. Internal
nodes (with ”?” ending) have queries to helpful contexts. Leaf nodes (in brackets) have
the class and the number of observed examples for each operator.

3.2.3 LEARNING THE BINDING CLASSIFIERS

At the second learning step, a relational decision tree is built for each domain operator o ∈ O. These
trees indicate the bindings to select for o in the different helpful contexts. The inputs for learning
the binding classifier of operator o are:

• Training examples. These consist exclusively of the helpful contexts where operator o was
selected, together with the applicable instantiations of o in these contexts. Note that for a
given helpful context, the applicable instantiations of o may include both helpful and non-
helpful actions. Helpful contexts are coded exactly as in the previous learning step. The
applicable instantiations of o are represented with the selected o predicate. This pred-
icate is the target concept of the second learning step and its arguments are the example
and problem identifiers, the instantiated arguments of the applicable action and the exam-
ple class (selected or rejected). The purpose of this predicate is to distinguish between
good and bad bindings for the operator. Figure 5 shows a piece of the knowledge base
for building the binding tree corresponding to the action switch on from the Satellite do-
main. This example, with id tr07 e63, resulted in the selection of the action instantiation
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switch on(instrument1,satellite0). The action switch on(instrument0,
satellite0) was also applicable but it was rejected by the planner.

• Language bias: The bias for learning binding trees is the same as the bias for learning the
operator tree, except that it includes the definition of the selected o predicate. As in the
previous learning step, the language bias for learning a binding tree is also automatically ex-
tracted from the PDDL domain definition. Figure 6 shows part of the language bias specified
for learning the binding tree for the action switch on from the Satellite domain.

% Example tr07 e63 from problem tr07
selected switch on(tr07 e63,tr07,instrument0,satellite0,rejected).
selected switch on(tr07 e63,tr07,instrument1,satellite0,selected).
helpful switch on(tr07 e63,tr07,instrument0,satellite0).
helpful switch on(tr07 e63,tr07,instrument1,satellite0).
helpful turn to(tr07 e63,tr07,satellite0,star1,star2).
helpful turn to(tr07 e63,tr07,satellite0,star5,star2).
helpful turn to(tr07 e63,tr07,satellite0,phenomenon7,star2).
helpful turn to(tr07 e63,tr07,satellite0,phenomenon8,star2).
target goal have image(tr07 e63,tr07,phenomenon8,spectrograph2).
target goal have image(tr07 e63,tr07,phenomenon7,spectrograph2).
target goal have image(tr07 e63,tr07,star5,image1).

% Static Predicates of problem
static fact calibration target(tr07,instrument0,star1).
static fact calibration target(tr07,instrument1,star1).
static fact supports(tr07,instrument0,image1).
static fact supports(tr07,instrument1,spectrograph2).
static fact supports(tr07,instrument1,image1).
static fact supports(tr07,instrument1,image4).
static fact on board(tr07,instrument0,satellite0).
static fact on board(tr07,instrument1,satellite0).

Figure 5: Knowledge base corresponding to the example tr07 e63 obtained by solving the train-
ing problem tr07 from the Satellite domain.

The result of this second learning step is a relational decision tree to for each uninstantiated
operator o ∈ O. to consists of the set of disjoint rules for the binding selection of o. Figure 7
shows an example of the binding tree tswitch on built for operator switch on from the Satellite
domain. According to this tree, the first branch states that when there is a helpful action which is
a switch on of instrument C in satellite D, these switch on bindings (C, D) were selected
by the planner 213 out of 249 times. Note that binding trees learned by ROLLER also advise on
non-helpful actions. Frequently, the selected o predicate matches with tree queries that refer to
helpful o predicates. In these cases, the no-branch of the query may cover bindings of non-helpful
actions for this operator.

For the other binding trees of the Satellite domain we refer the reader to the Online Appendix
of this article, where we include the learned DCK for the domains used in the experimental section.
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% ---- The target concept ----
predict(selected switch on(+IdExample,+IdProblem,+INST0,+SAT1,-Class)).
type(selected switch on(idex,idprob,instrument,satellite,class)).
classes([selected,rejected]).

% ---- The helpful context ----, the same as in the operator classification
...

Figure 6: Part of the language bias for learning the binding tree for the switch on action from
the Satellite domain.

selected switch on(-A,-B,-C,-D,-E)
helpful switch on(A,B,C,D) ?
+--yes: [selected] 249.0 [[selected:213.0,rejected:36.0]]
+--no: [rejected] 63.0 [[selected:2.0,rejected:61.0]]

Figure 7: Relational decision tree learned for the bindings selection of the switch on action from
the Satellite domain.

In many cases, decision trees are somewhat more complex that the one shown in Figure 7. For
instance, the turn to binding tree has 29 nodes and includes several queries about target goals (e.g.,
asking if there is a pending image at the new pointed direction) and others about static facts (e.g.,
asking if the new pointed direction is a calibration target).

3.3 Generation of Training Examples

ROLLER training examples are instances of decisions made when solving training problems. In order
to characterize a variety of good solutions, these decisions should consider different alternatives for
solving each individual problem. At a given search tree node (state), the alternatives come from the
possibility of choosing different operators or of having different bindings for a single operator, in
both cases assuming the alternative will lead to equally good solutions.

Regarding binding decisions, if actions from some alternative solutions are ignored, they are
tagged as rejected and consequently they introduce noise in the learning process. For instance,
consider the problem of Figure 8 from the Satellite domain in which a satellite, with a calibrated
instrument, must turn to directions D1,D2 and D3 in order to take images there. In this plan-
ning context, the three turn to actions are helpful actions and regarding only one solution makes
learning consider one action as selected and the other two actions as rejected. However, the learned
knowledge should always recommend a helpful turn to action towards a direction where the
satellite (with the corresponding calibrated instrument) has to take an image. To learn such kind of
knowledge, ROLLER should consider the three turn to actions as selected because the three ac-
tions correspond to selectable actions for learning the correct knowledge in this particular planning
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context. If most of these actions are marked as rejected the learner will consider selecting turn to
in the described context as a bad choice.

S0 S1’

S1"

S1

S3

S2

S3’

S4 S5 G

...

...

...

take−image D1

take−image D2

turn−to(D4,D1)

turn−to(D4,D3)

turn−to(D4,D2)

turn−to(D1,D2)

turn−to(D1,D3)

turn−to(D2,D3) take−image D3

Figure 8: Solution path alternatives in a simplified Satellite problem.

Regarding operator decisions, complete training with a full catalogue of different solutions can
confuse the learning process. For instance, consider the example problem of Figure 9 where the
goal is to take an image at direction D2. Before applying calibrate action in s2, it is necessary
to switch on the instrument T and to turn the satellite to D1 (the calibration target direction). These
two actions are helpful in so and generate two different solution paths. In fact, they are commutative.
Generalizing operator selection from these kinds of helpful contexts is difficult when the training
examples contain examples of both types (i.e. examples where the switch-on action is situated
before the turn-to action and vice versa). This is caused by the fact that for the same helpful
context there are different operators to choose from and all of them are equally good choices.

S0

S1

S1’

S2 S3 S4 G

turn−to(D3,D1)switch−on T

switch−on Tturn−to(D3,D1)

turn−to(D1,D2)calibrate T take−image D2

Figure 9: Solution path alternatives in a simplified Satellite problem.

ROLLER follows a commitment approach for the generation of training examples: (1) Gener-

ation of solutions. Given a training problem, ROLLER performs an exhaustive search to obtain
multiple best-cost solutions, taking into account the alternatives of different binding choices. (2)
Selection of solutions. ROLLER selects a subset of solutions from the set of best-cost solutions in
order to reproduce a particular preference for the operator alternatives. (3) Extraction of exam-

ples from solutions. ROLLER encodes the selected subset of solutions as examples for the required
learning, operator classification or binding classification. The following sections detail how ROLLER

proceeds at each of these three steps.
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3.3.1 GENERATION OF SOLUTIONS

ROLLER solves each training problem using a Best-First Branch and Bound (BFS-BnB) algorithm
that extracts multiple good-quality solutions. If the search space has not been explored exhaustively
within a time bound, the problem is discarded and no examples are generated from it. Therefore,
training problems need to be sufficiently small. In addition, training problems need to be represen-
tative enough to generalize the DCK which assists ROLLER when solving future problems in the
same domain.

The BFS-BnB search is completed without pruning repeated states. In practice, many repeated
states are generated by changing the order among actions of different solution paths. Thus, pruning
repeated states would involve tagging actions leading to these solutions as rejected bindings, which
is in fact not true. In addition, the BFS-BnB algorithm prunes according to the A∗ evaluation
function f(n) = g(n) + h(n), where g(n) is the node cost (in this work we use plan length as the
cost function) and h(n) is the FF heuristic. The safe way to prune the search space is by using an
admissible heuristic. However, existing admissible heuristics will not allow ROLLER to complete
an exhaustive search in problems of reasonable size. In practice, using the FF heuristic produces
few overestimations which introduces negligible noise into the learning process. At the end of the
search, the BFS-BnB algorithm returns the set of solutions with the best cost. These solutions are
used to tag the nodes in the search tree that belong to any of the solutions with the label on solution.

3.3.2 SELECTING SOLUTIONS

From the set of best-cost solutions found, ROLLER selects the subset of solutions that will be used
for generating training examples. Since it is difficult to develop domain-independent criteria for sys-
tematically selecting solutions that reproduce the same operator selection in a particular context, we
have defined an approach which, heuristically, prefers some actions over others. These preferences
are:

• Least-commitment preference: Prefer actions that generate more alternatives of different so-
lution paths.

• Difficulty preference: Prefer actions that reach the goals or sub-goals which are most difficult
to achieve. In the example of Figure 9 having instrument T switched on is only achievable by
one action. On the other hand, pointing to direction D1 is considered easier since it can be
achieved with actions turn to(D2,D1) and turn to(D3,D1).

Given π′ = a1, . . . , an, a best-cost plan for a planning task, we compute these preferences with
functions depending on each action.

ϕcommitment(ai) =| {a′ | a′ ∈ successors(ai) ∧ on solution(a′)} |
where the function successors(ai) returns all applicable actions in state si+1 and function on solution(a)

verifies whether an action is tagged as being part of a best-cost plan.

ϕdifficulty(ai) =
1

min
l∈add(ai)

| supporters(l) |

where the function supporters(l) = {a ∈ A | l ∈ add(a)} returns the set of actions that achieve the
literal l.
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Solutions are ranked according to these preferences. The ranking for each solution π′ =
a1, . . . , an is computed as the weighted sum of the action preferences, as follows:

ranking(π′, ϕ) =
∑

i=0,...,n−1

(n− i)
n

× ϕ(ai+1)

where n is the plan length and ϕ is one of ϕcommitment or ϕdifficulty. This sum is weighted to
give more importance to the preferences in the first actions of the plan. The first action preference
value is multiplied by 1, the second by (n − 1)/n, and so on. Otherwise, several alternatives (i.e.,
commutative actions in different positions within a plan) would lead to the same ranking value. We
compute the ranking for all best-cost solutions using ϕcommitment. Ties in this ranking are broken
with the ranking computed with ϕdifficulty. The subset of solutions with the best ranking values is
the subset of solutions selected for generating training examples.

3.3.3 EXTRACTING EXAMPLES FROM SOLUTIONS

ROLLER takes the subset of solutions selected at the previous step and generates training exam-
ples. When generating examples for the operator classification, ROLLER takes solution plans π′ =
{a1, a2, ..., an} which correspond to the sequence of state transitions {s0, s1, ..., sn} and generates
one learning example for each pair < si, ai+1 > consisting ofH(si) and the class (i.e., the operator
name of action ai+1). See learning example shown in Figure 2.

When generating examples for the binding classification of operator o, ROLLER only considers
pairs < si, ai+1 > where ai+1 matches operator o. A learning example generated from the pair
< si, ai+1 > for the binding selection of the operator o consists of H(si) and the classes of all
applicable actions in si that match o, including ai+1. Applicable actions with the on solution label
belong to the selected class and all other applicable actions to the rejected class. Moreover, actions
belonging to solutions not in the top ranking are still marked as selected even though they are not
nodes from which an example is generated. See learning example shown in Figure 5.

3.4 Use of the Learned Knowledge: Planning with Relational Decision Trees

This section details how to make heuristic planning benefit from our DCK, beginning with how
we build action orderings with the learned DCK. Then, it explains two different search strategies
to exploit these orderings: (1) the application of the DCK as a generalized action policy (Depth-
First H-Context Policy algorithm) and (2) the use of the DCK to generate lookahead states within a
Best-First Search (BFS) guided by the FF heuristic (H-Context Policy Lookahead-BFS algorithm).

3.4.1 ORDERING ACTIONS WITH RELATIONAL DECISION TREES

Given a state s, the expression app(s) denotes the set of actions applicable in s. The learned DCK
provides an ordering for app(s). The ordering is built by matching each action a ∈ app(s) first with
the operator classifier and then with the corresponding binding classifier. Figure 10 shows in detail
the algorithm for ordering applicable actions with relational decision trees.

The algorithm divides the set of applicable actions into two subsets: the helpful actions, and
the non-helpful actions. Then, it matches the helpful context of the state, i.e., H(s), with the tree
for the operator classification. This matching provides a leaf node that contains the list of operators
sorted by the number of examples covered by the leaf during the training phase (see the operator

781



DE LA ROSA, JIMENEZ, FUENTETAJA & BORRAJO

DT-Filter-Sort (A,H,T):sorted list of applicable actions

A: List of actions
H: Helpful Context
T: Decision Trees

selected-actions = ∅
HA = helpful-actions(A,H)
NON-HA = A \ HA
leaf-node = classify-operators-tree(T,H)
for each a in HA do

priority(a) = leaf-node-operator-value(leaf-node, a)
if priority(a) > 0 then

(selected(a),rejected(a)) = classify-bindings-tree(T,H, a)
selection ratio(a)= selected(a)

selected(a)+rejected(a)
priority(a) = priority(a) + selection ratio(a)
selected-actions = selected-actions ∪{a}

max-HA-priority = maxa∈selected-actions priority(a)
for each a in NON-HA do

priority(a) = leaf-node-operator-value(leaf-node,a)
if priority(a) > max-HA-priority then

(selected(a),rejected(a)) = classify-bindings-tree(T,H, a)
selection ratio(a)= selected(a)

selected(a)+rejected(a)
priority(a) = priority(a) + selection ratio(a)
selected-actions = selected-actions ∪{a}

return sort(selected-actions, priority)

Figure 10: Algorithm for ordering actions using relational decision trees.

classification tree in Figure 4). The number of examples covered gives an operator ordering that
can be used to prefer actions during the search. The algorithm uses this number to initialize the
priority value for each helpful action, taking the value of the corresponding operator. The algorithm
keeps only helpful actions that have at least one matching example. For each of these actions, the
algorithm matches the action with its corresponding binding classification tree. The resulting leaf
of the binding tree returns two values: the number of times the ground action was selected, and the
number of times it was rejected in the training phase. We define the selection ratio for the ground
action as:

selection ratio(a) =
selected(a)

selected(a) + rejected(a)

This ratio represents the proportion of good bindings covered by a particular leaf of the binding
tree. When the denominator is zero, the selection ratio is assumed to be zero. The priority of the
action is updated by adding this selection ratio. Thus, the final priority for an action is higher for
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actions with operators for which the operator classification tree provides higher values, i.e. they
have been selected more often in the training examples. Since the selection ratio remains between 0
and 1, adding up to this number can be considered as a method for breaking ties in the initial priority
value, using the information in the binding classification tree.

The priority for non-helpful actions is computed in a similar way except that, in this case, the
algorithm only considers actions whose initial priority (the value provided by the operator classifi-
cation tree), is higher than the maximum priority of the helpful actions. In this manner, we capture
useful non-helpful actions. FF follows a heuristic criterion to classify an action as helpful. Although
this heuristic has been shown to be very useful, the case may arise in which the most useful action at
a particular moment is not classified as helpful. Decision trees capture this information, given that
they can recommend choosing a non-helpful action. The described method takes advantage of this
fact and defines a way of using such information when applying the learned knowledge. An alter-
native approach would be to extend the planning context with a new meta-predicate for non-helpful
actions. However, it does not pay off in a variety of problems and domains because it means sig-
nificantly larger contexts, which causes more expensive matching. Finally, the selected actions are
sorted in order of decreasing priority values. The sorted list of actions is the output of the algorithm.

3.4.2 THE H-CONTEXT POLICY ALGORITHM

The helpful context-action policy algorithm moves forward, applying at each state the best action
according to the DCK. The pseudo-code of the algorithm is shown in Figure 11. The algorithm
maintains an ordered open-list. The open-list contains the states to be expanded which are extracted
in order. Once extracted, each state is evaluated using the FF heuristic. Thus, we evaluate upon
extraction and not when nodes are included in the open-list. The evaluation provides the heuristic
value for the state, h, and the set of helpful actions HA, which are needed to generate the helpful
context. The heuristic value is only used for: (1) continuing the search when the state is a recognized
dead-end (h = ∞), and (2) goal checking (h = 0). Then, the helpful context is generated. Subse-
quently, the algorithm obtains the set AA of actions applicable in the state and sorts them using the
decision trees (as shown above in the algorithm in Figure 10). The result is AA′ ⊆ AA, a sorted list
of applicable actions. The algorithm inserts the successors generated by actions in AA′ at the be-
ginning of the open-list preserving their ordering (function push-ordered-list-in-open).
Furthermore, to make the algorithm complete and more robust, successors generated by applicable
actions that are not in AA′ are included in a secondary list called delayed-list. The delayed list is
only used when the open-list is empty. In that case, only one node of the delayed-list is moved to
the open-list and then, the algorithm continues extracting nodes from the open-list.

In this algorithm, each node maintains a pointer to each parent in order to recover the solution
once it has been found. Also, each node maintains its g value, i.e. the length of the path from the
initial state up to the node. The function push-ordered-list-in-open only inserts in the
open list those candidates that: (1) are not repeated states, or (2) are repeated states with lower g
value than the previous one. Otherwise, repeated states are pruned. This type of pruning guarantees
that we maintain for each node the shortest solution found.

In other words, the proposed search algorithm is a depth-first search with delayed successors.
The benefit of this algorithm is that it exploits the best action selection when the policy is per-
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Depth-First H-Context Policy (I, G, T ): plan

I: Initial state
G: Goals
T : Decision Trees

open-list = {I};
delayed-list = ∅;
while open-list �= ∅ do

n = pop(open-list)
(h, HA) = evaluate(n, G) /*compute FF heuristic*/
if h =∞ then /*recognized dead-end*/

continue

if h = 0 then /*goal state*/
return path(I, n)

H = helpful-context(HA, G, n)
AA = applicable-actions(n)
AA’ = DT-Filter-Sort(AA,H, T )
candidates = generate-successors(n, AA’)
open-list = push-ordered-list-in-open(candidates,open-list)
delayed-candidates = generate-successors(n, AA \ AA’)
delayed-list = push-ordered-list(delayed-candidates, delayed-list)
while open-list = ∅ and delayed-list �= ∅ do

open-list = { pop(delayed-list) }
return fail

Figure 11: A depth-first algorithm with a sorting strategy given by the DCK.

fect1 and the action ordering when is not. Particularly, perfect DCK will be directly applied in a
backtrack-free search and inaccurate DCK will force the search algorithm to backtrack.

3.4.3 THE H-CONTEXT POLICY IN A LOOKAHEAD STRATEGY

In many domains the learned DCK may contain flaws: the helpful context may not be expressive
enough to capture good decisions, the learning algorithm may not be able to generalize well or
the training examples may not be representative enough. In these cases, a direct application of the
learned DCK (without backtracking) may not allow the planner to reach the goals of the problem.

Poor quality in the learned DCK can be balanced with a guide of a different nature such as
a domain-independent heuristic. A successful example is the ObtuseWedge system (Yoon et al.,
2008) that combined a learned generalized policy with the FF heuristic. ObtuseWedge exploited
the learned policy to synthesize lookahead states within a lookahead strategy. Lookahead states

1. With perfect policy we refer to a policy that leads directly to a goal state. Our policies are not guaranteed to be perfect
given that they are generated by inductive learning.
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were first applied in heuristic planning by the YAHSP planner (Vidal, 2004). They are intermediate
states that are frequently closer to a goal state than the direct descendants of the current state. These
intermediate states are added to the list of nodes to be expanded so that they can be used within
different search algorithms. When the learned policy contains flaws, lookahead states synthesized
with the policy may not provide good guidance for the search. However, if these lookahead states
are included in a complete search algorithm that also considers ordinary successors, the search
process becomes more robust. In general, the use of lookahead states in a forward state-space
search slightly increases the branching factor of the search process, but overall, as shown by the
YAHSP planner at IPC-2004 and in the experiments included in the YAHSP paper (Vidal, 2004), the
approach seems to improve the performance significantly.

Figure 12 shows a generic algorithm for using lookahead states generated from a policy during
the search. This algorithm is a weighted Best-First Search (BFS), with the only modification be-
ing that one or more lookahead states are inserted into the open list when expanding a node. As
in weighted BFS, nodes to be expanded are maintained in an open list ordered by the evaluation
function f(n) = ω × h(n) + g(n). Apart from the usual arguments of BFS, the algorithm receives
the policy (P ) and the horizon. The horizon represents the maximum number of policy steps that
are applied for generating the lookahead states. In the experiments, we will use this algorithm with
the FF heuristic as h(n).

H-Context Policy Lookahead BFS (I ,G,T ,horizon): plan

I: Initial state
G: Goals
T : Decision Trees (policy)
horizon: horizon

open-list = ∅
add-to-open(I)
while open-list �= ∅ do

n = pop(open-list)
if goal-state(n, G)

return path(I, n)
add-to-open-lookahead-successors(n, G, T, horizon)
add-to-open-standard-successors(n)

return fail

Figure 12: A Generic Lookahead BFS algorithm.

The heuristic evaluation, h(n), the g-value, g(n), and the set of helpful actions, are also saved
at each node when the node is evaluated. The function add-to-open(state) evaluates the
state and inserts it in the open-list, which is ordered in increasing values of the evaluation function,
f(n). This function also prunes repeated states, following the strategy described for the Depth-
First H-Context Policy algorithm: only repeated states with higher g(n) than the existent one are
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pruned. The function add-to-open-standard-successors(n) calls add-to-open for
each successor of the node n. The function add-to-open-lookahead-successors is ex-
plained below.

We have adapted the generic Lookahead BFS algorithm to our learned DCK. Our particular
instantiation of the function add-to-open-lookahead-successors is shown in Figure 13.
In our case, lookahead states are generated by iteratively applying the first action in the action order-
ing provided by the DCK. The inputs to the algorithm are the current state, the problem goals, the
decision trees and the horizon. First, our algorithm generates the helpful context and the applicable
actions. The helpful actions, n.HA, are recovered from the node. Then, the algorithm sorts the ap-
plicable actions using the decision trees (as previously shown in the algorithm in Figure 10). After
that, the successor generated by the first action is inserted in the open list, and there is a recursive
call with this successor and the horizon decremented by one. The function add-to-open returns
true when its argument has been added to the open list and false otherwise. In fact, it returns
false in only two cases: (1) the state is a repeated state with g-value higher than the g-value of
the existent state2 or (2) the state is a recognized dead-end. When the ordered list becomes empty,
the lookahead state can not be generated and the initial node is returned. The same occurs when
the horizon is zero. The described implementation is similar to the lookahead strategy approach
followed by ObtuseWedge, but instead we perform the lookahead generation using helpful contexts
and relational decision trees.

On the other hand, in the described H-Context Policy Lookahead BFS algorithm the search is
perfomed over the set of applicable actions of each node. However, in many domains the use of
helpful actions has shown to be a very good heuristic. One possible way of prioritizing helpful
actions over non-helpful actions is to include in the open list only those successors given by helpful
actions, and to include the remaining successors in a secondary list. We have implemented this idea
following the same strategy used in the Depth-first H-Context Policy algorithm: when the open list
becomes empty only one node is passed from the secondary list to the open list, and the search
continues. The algorithm is still complete given that we do not prune any successor. When helpful
actions are good enough, this strategy can save many heuristic evaluations. In the experiments
we will compare this strategy with the previous one. Our intuition is that the adequacy of each
strategy depends directly on the quality of the helpful actions, the quality of the learned DCK, and
the accuracy of the heuristic for each particular domain.

Another technique for prioritizing helpful actions in BFS was implemented in YAHSP (Vidal,
2004) which inserts two consecutive instances of each node in the open list. These nodes have
equal f(n) since they represent the same state. The first one contains only the helpful actions, and
therefore, when expanded, it only generates successors resulting from these actions. The second
contains only non-helpful actions, called rescue actions. In this way, all the successors with lower
f(n) than the parent node in the sub-tree generated by helpful actions are expanded before any
successor resulting from non-helpful actions.

We have performed some preliminary experiments, obtaining similar results for the two de-
scribed methods for prioritizing helpful actions in BFS: the use of a secondary list for non-helpful
actions, and the use of rescue nodes. For this reason, we only include results of the first technique
in the experimental section. We call this algorithm H-Context Policy Lookahead BFS-HA.

2. When the state is repeated but with a g-value smaller than the existent one, add-to-open does not re-evaluate but
instead takes the heuristic evaluation from the existent state.
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add-to-open-lookahead-successors (n,G,T ,horizon) :state

n: Node (state)
G: Goals
T : Decision Trees (policy)
horizon: horizon

if horizon = 0 then

return n
H = helpful-context(n.HA, G, n)
AA = applicable-actions(n)
AA′ = DT-Filter-Sort(AA,H, T )
while AA′ �= ∅ do

a = pop(AA′)
n′ = generate-successor(n, a)
added = add-to-open(n′)
if added then

if goal-state(n′, G)
return n′

return add-to-open-lookahead-successors(n′, G, T , horizon− 1)
return n

Figure 13: Algorithm for generating lookahead states from decision trees.

4. Experimental Results

In this section we evaluate the performance of the ROLLER system. The evaluation is carried out
over a variety of domains belonging to diverse IPCs: Four domains come from the learning track of
IPC-2008 (Gold-miner, Matching Blocksworld, Parking and Thoughtful). The rest of the domains
(Blocksworld, Depots, Satellite, Rovers, Storage and TPP) were selected from among the domains
of the sequential tracks from IPC between 2000 and 2008 because they presented different structure
and difficulty, and because they have available random problem generators, so that we can automati-
cally build training sets for learning DCK. For each domain, we complete a training phase in which
ROLLER learns the corresponding DCK and a testing phase in which we evaluate the scalability and
quality of the solutions found by ROLLER with the learned DCK. Next, we detail the experimental
results obtained at each of these two phases. Moreover, for each of the domains we give particular
details about training and test sets, the learned DCK and the observed ROLLER performance.

4.1 Training Phase

For each domain, we built a training set of thirty randomly generated problems. The size and
structure of these problems is further discussed in the particular details given for each domain. As
explained in section 3.2, ROLLER generates its training examples solving the problems from the
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training set with a BFS-BnB search. We set a time-bound of 60 seconds to solve each training
problem, discarding those that are not exhaustively explored in this time-bound. Then, ROLLER

generates the training examples from the solutions found and builds the corresponding decision
trees with the TILDE system (Blockeel & De Raedt, 1998).

To evaluate the efficiency of ROLLER at the training phase we computed the following metrics:
the time needed for solving the training problems, the number of training examples generated in
this process, the time spent by TILDE in learning the decision trees and the number of leaves of the
operator selection tree. This last number gives a clue about the size of the learned DCK. Table 1
shows the results obtained for each domain.

Domain Training Learning Learning Tree
Time (s) Examples Time (s) Leaves

Blocksworld 836.0 2542 13.3 18
Depots 456.2 493 23.1 13
Gold-miner 1156.9 126 4.5 5
Matching-BW 865.8 430 12.4 23
Parking 105.8 442 7.0 12
Rovers 528.3 1011 13.6 24
Satellite 19.8 1702 13.4 4
Storage 136.3 677 5.1 6
Thoughtful 883.4 502 352.2 19
TPP 995.9 560 23.3 6

Table 1: Experimental results of the training process. Training and learning times are shown, as
well as the number of training examples, and complexity of generated trees (number of
leaves).

ROLLER achieves shorter Learning Times, fourth column in Table 1, than the state-of-the-art
systems for learning generalized policies (Martin & Geffner, 2004; Yoon et al., 2008). Particularly,
while these systems implement ad-hoc learning algorithms that sometimes require hours in order to
obtain good policies, our approach only needs seconds to learn the DCK for a given domain. This
fact makes our approach more suitable for architectures that need on-line planning and learning pro-
cesses. However, these learning times are not constant for different domains, because they depend
on the number of training examples (in our work, this number is given by the amount of different
solutions for the training problems), on the size of the training examples (in our work this size is
given by the number and arity of predicates and actions in the planning domain) and how training
examples are structured, i.e., whether examples are easily separated by learning or not.

4.2 Testing Phase

In the testing phase ROLLER attempts to solve, for each domain, a set of thirty test problems. These
problems are taken from the evaluation set of the corresponding IPC. When this evaluation set
contains more problems, these thirty problems are the thirty hardest ones. The Depots domain is
an exception with twenty-two problems, because the evaluation set for this domain at IPC-2002
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only contained those twenty-two problems. Three experiments are made for the testing phase. The
first one evaluates ROLLER’s performance when DCK is learned with all solutions of the training
problems or with the ranked solution approach. The second one evaluates the usefulness of the
learned DCK and the third one compares ROLLER with state-of-the-art planners. For each experi-
ment we evaluate two different dimensions of the solutions found by ROLLER: the scalability and
the quality. All testing experiments were done using a 2.4 GHz processor with a time-bound of 900
seconds3 and 6Gb of memory-bound.

4.2.1 SOLUTION RANKING EVALUATION

This experiment evaluates the effect of selecting solutions following the approach described in Sec-
tion 3.3. The ROLLER configurations for this evaluation are:

• Top-Ranked Solutions: The Depth-First H-Context Policy algorithm using DCK learned
with the sub-set of the top ranked solutions. We use this search algorithm, since its perfor-
mance depends more on the quality of the learned DCK than that of the other algorithms
using DCK.

• All Solutions: The Depth-First H-Context Policy algorithm using DCK learned with all solu-
tions obtained by the BFS-BnB algorithm.

Table 2 shows the number of problems solved by each configuration, also with the time and plan
length average computed over the problems solved by both configurations. The number in brackets
in the first column is the number of problems solved in common. The Top-ranked solutions config-
uration solved thirty more problems than all solutions configuration, mainly due to the difference
of 21 problems in the Matching Blocksworld domain.

Top-Ranked Solutions All Solutions
Domains Solved Time Length Solved Time Length

Blocksworld (30) 30 0,62 170,0 30 2,39 550,7
Depots (18) 21 0,94 489,1 18 0,97 607,3

Gold-miner (30) 30 0,01 65,3 30 0,01 65,3

Matching-BW (0) 21 — — 0 — —
Parking (30) 30 4,90 148,9 30 2,20 56,2

Rovers (27) 28 1,40 166,0 29 31,20 355,8
Satellite (28) 30 11,21 123,6 28 11,47 121,6

Storage (10) 15 0,00 9,0 10 0,00 9,0

Thoughtful (12) 12 1,25 249,7 12 1,28 249,2

TPP (30) 30 0,97 147,1 30 0,90 132,8

Total 247 — — 217 — —

Table 2: Problems solved and time and plan length average for the evaluation on ranking solution
heuristic.

The effect of selecting solutions varies across domains. For instance, it is quite important re-
garding the plan quality for Blocksworld, Depots and Rovers. In the Satellite domain the top-ranked
solutions allow ROLLER to solve two more problems while maintaining similar time and plan length

3. 900 seconds was the time-bound established at the learning track of IPC-2008.
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average. In the Gold Miner domain, selecting solutions is irrelevant because there are few equally
good solutions per problem (i.e., the goal is always the single fact of “having the gold”) and fairly
most of them are top-ranked ones. The Parking domain does not benefit from selecting solutions.
Considering the overall results, we think that selecting solutions is a useful heuristic for improving
the DCK quality in many domains. In the remaining evaluations we will refer to DCK used by
ROLLER as the decision trees learned with the top-ranked solutions.

4.2.2 DCK USEFULNESS EVALUATION

As shown in IPC Learning Track results, DCK may degrade the performance of the base planner,
when the DCK is incorrect. With this in mind, we designed this experiment to measure the perfor-
mance of ROLLER algorithms comparing them with versions without DCK. We made two versions
for the non-learning algorithms. The first one is an empty configuration where there is no decision
tree given to the algorithm, thus no ordering is computed for the helpful actions, and the second one
is the systematic configuration, where the ordering is supplied by the FF heuristic instead.

The ROLLER configurations used for the comparisons are:

• ROLLER: The Depth-First H-Context Policy algorithm with the DCK learned at the training
phase.

• ROLLER-BFS: The H-Context Policy Lookahead BFS algorithm with the DCK learned at
the training phase. This configuration uses the horizon h = 100. We choose this value on the
basis of empirical evaluations.

• ROLLER-BFS-HA: A modified version of ROLLER-BFS where only helpful actions are con-
sidered as immediate successors. The lookahead states are generated as in the original ver-
sion, using also the same horizon.

These three algorithms have their equivalent version for the empty configuration:

• DF-HA (Depth-first Helpful Actions): An empty DCK for ROLLER corresponds to a depth-
first algorithm over the helpful actions. As in the original algorithm, non-helpful actions are
placed in the delayed list.

• BFS: An empty DCK for ROLLER-BFS does not generate lookahead states (i.e., the algo-
rithm add-to-open-lookahead-successors in Figure 12). Therefore, the algorithm becomes
the standard Best-first Search.

• BFS-HA: A modified version of BFS where only helpful actions are considered. Non-helpful
actions are placed in a delayed list.

Previous configurations also have a systematic version. In this case action ordering is computed
with the FF heuristic:

• GR-HA (Greedy Helpful Actions): This algorithm corresponds to a greedy search over the
helpful actions. For each node, helpful immediate successors are sorted with the FF heuristic.
Non-helpful nodes go to the delayed list.

• LH-BFS (Lookahead-BFS): A BFS with lookahead states. The function DT-Filter-Sort is
replaced by a function that computes the ordering using the FF heuristic.
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• LH-BFS-HA: A modified version of LH-BFS where only helpful actions are considered. Non-
helpful actions are placed in a delayed list.

For the comparison, we computed the number of problems solved and the scores used in the
IPC-2008 learning track to evaluate planners performance in terms of CPU time and quality (plan
length). The time score is computed as follows: for each problem i the planner receives T ∗

i /Ti

points, where T ∗
i is the minimum time a participant used for solving the problem i, and Ti is the

CPU time used by the planner in question. In a 30 problem test set a planner can receive at most 30
points, the higher the score the better. The quality score is computed in the same way, just replacing
T with L, where L measures the quality in terms of plan length. In addition we compute the time
and quality averages for problems solved by all configurations. If a configuration did not solve
any problem, it is not taken into account for this measure. Average measures complement scores
since they give a direct information for commonly solved problems, while scores tend to benefit
configurations that solve problems which others do not.

Table 3 shows a summary for the results obtained in the DCK usefulness evaluation. For each
configuration we compute the number of domains where the algorithm was the top performer for
each of the evaluated criteria (i.e., numbers of solved problems, time and quality scores and av-
erages). A top performer in a domain is an algorithm that has equal to or better measure than
the rest of the algorithms. In the table, each algorithm can have at most 10 points, the number of
evaluated domains. Global section refers to overall top performers. Relative section refers to the
number of domains where a configuration was equal or better than the other two configurations of
the same algorithm strategy (i.e., depth-first, best-first, best-first with helpful actions). All averages
of commonly solved problems were computed for configurations that solve more than one prob-
lem. Results show that ROLLER is very good in the number of solved problems and speed metrics.
Regarding quality score, ROLLER and ROLLER-BFS-HA were the best performers in three domains
each. However, BFS and BFS-HA obtained better results in quality average.

DEPTH-FIRST BEST-FIRST HELPFUL BEST-FIRST
Global roller gr-ha df-ha roller-bfs lh-bfs bfs roller-bfs-ha lh-bfs-ha bfs-ha

Solved Problems 7 2 2 1 0 1 5 1 1
Time Score 8 1 0 0 0 0 1 0 0

Time Average 9 1 1 1 0 0 1 0 0
Quality Score 3 1 0 1 0 1 3 1 2

Quality Average 0 0 0 1 2 3 0 1 5
Relative

Solved Problems 8 3 2 7 3 2 9 3 2
Time Score 9 1 0 8 1 1 9 0 1

Time Average 9 1 1 9 1 0 7 1 2
Quality Score 7 3 0 4 4 2 7 1 2

Quality Average 5 5 0 1 2 7 2 1 7

Table 3: Summary for DCK usefulness evaluation. Each column gives the number of domains
where each configuration was the top performer for a row item.

Table 4 shows the number of solved problems for the DCK usefulness evaluation. The Total
row shows that each ROLLER configuration solved more problems than the empty and systematic
versions. Results for time and quality scores are reported in Table 9 and Table 10 of Appendix A.
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Detailed results for averages were considered less interesting since in many domains there are very
few common solved problems, which are the easy problems.

DEPTH-FIRST BEST-FIRST HELPFUL BEST-FIRST
Domains roller gr-ha df-ha roller-bfs lh-bfs bfs roller-bfs-ha lh-bfs-ha bfs-ha

Blocksworld (30) 30 1 0 8 0 0 8 0 0
Depots (22) 21 18 18 20 19 13 20 20 20

Gold-miner (30) 30 0 0 17 17 16 30 0 0
Matching-BW (30) 21 0 0 14 7 14 19 10 17

Parking (30) 30 25 1 30 11 7 30 11 9
Rovers (30) 28 30 30 26 28 11 30 30 30

Satellite (30) 30 23 22 25 22 15 30 23 23
Storage (30) 15 9 10 19 18 20 19 10 10

Thoughtful(30) 12 15 0 20 14 11 23 16 12
TPP (30) 30 30 30 16 24 9 19 26 14

Total 247 151 111 195 160 116 228 146 135

Table 4: Problems solved for the DCK usefulness evaluation.

4.2.3 TIME PERFORMANCE COMPARISON

This experiment evaluates the scalability of the ROLLER system, compared to state-of-the-art plan-
ners. For the comparison, we have chosen LAMA (Richter & Westphal, 2010), the winner of the
sequential track of the past IPC, and FF, which in the last IPC has shown to be still competitive. We
used the three ROLLER configurations explained in the previous evaluation. The configuration for
other planners are:

• FF. Running the Enforced Hill-Climbing (EHC) algorithm with helpful actions together with
a complete BFS in case EHC fails 4. Though this planner dates from 2001 we include it
in the evaluation because, as shown by the results of IPC-2008, it is still competitive with
other state-of-the-art planners. Besides, this planner is extensively used in other planning and
learning systems.

• LAMA-first. The winner of the classical track of IPC-2008. In this configuration LAMA

is modified to stop when it finds the first solution. In this way, comparison is fair because
the rest of configurations do not implement anytime behavior, i.e., the continuous solution
refinement until reaching the time-bound). The anytime behavior of LAMA is compared later
with the ROLLER performance in the next section.

Table 5 shows the number of problems solved together with the speed score. These results
give an overall view of the performance of the different planners. ROLLER solves as many or more
problems than any other configuration in 6 of 10 domains and achieves the top speed score in
seven domains. The second best score belongs to ROLLER-BFS-HA, which solves as many or more
problems than other planners in six domains. LAMA-first is fairly competitive, since it solves seven
problems less than ROLLER and 13 more problems than ROLLER-BFS-HA. In both cases LAMA-first
achieves a lower speed score.

4. This planner is actually Metric-FF running STRIPS domains. We consider this implementation an adequate baseline
for comparison because ROLLER was implemented over this code rather than over the original FF in order to extend
our approach to other planning models.
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Domain (problems) ROLLER ROLLER-BFS ROLLER-BFS-HA FF LAMA-first
solved score solved score solved score solved score solved score

Blocksworld (30) 30 29.87 8 2.47 8 2.40 0 0.00 17 0.17
Depots (22) 21 19.86 20 11.01 20 11.46 20 8.70 20 3.88

Gold-miner (30) 30 26.00 17 0.03 30 5.35 27 0.22 29 12.24
Matching-BW (30) 21 14.84 14 1.32 19 1.71 9 0.27 25 20.02

Parking (30) 30 28.57 30 22.72 30 23.60 24 0.94 23 1.69
Rovers (30) 28 24.82 26 13.41 30 16.24 29 5.51 30 18.59

Satellite (30) 30 22.60 25 14.61 30 18.33 22 5.31 28 15.66
Storage (30) 15 11.02 19 12.31 19 16.17 17 10.51 19 9.03

Thoughtful(30) 12 11.99 20 12.38 23 13.09 14 8.16 20 11.29
TPP (30) 30 29.50 16 14.83 19 13.97 26 6.27 30 9.66

Total 247 219.07 195 105.09 228 122.32 188 45.89 241 102.23

Table 5: Problems solved and speed score of the five configurations.

Table 6 shows the average time for the five configurations when addressing the subset of prob-
lems solved by all configurations. The first column shows in parenthesis the number of commonly
solved problems. These results are closely related to those shown in Table 5. ROLLER achieves
the best average time in eight out of ten domains. We also observe that different configurations are
good in particular domains and even more so in particular problems. For instance, in the Thoughtful
domain there were only four problems solved by all the configurations.

Domain (problems) ROLLER ROLLER-BFS ROLLER-BFS-r FF LAMA-first
Blocksworld (7) 0.36 66.31 67.99 139.69

Depots (18) 0.84 15.53 2.54 4.01 61.73
Gold-miner (17) 0.00 49.82 0.02 0.28 0.01

Matching-BW (6) 1.99 42.25 44.53 74.90 1.96

Parking (22) 1.86 2.91 2.78 74.02 108.22
Rovers (25) 1.37 24.38 9.83 42.82 1.59

Satellite (22) 1.24 7.08 1.87 18.23 1.33
Storage (14) 11.74 0.01 0.03 0.05 0.19

Thoughtful(4) 1.49 10.84 9.52 14.52 3.55
TPP (16) 0.02 0.02 0.02 0.70 0.10

Table 6: Planning time averages in the problems solved by all the configurations.

4.2.4 QUALITY PERFORMANCE COMPARISON

This experiment compares the quality of the first solutions found and the solutions found by the
anytime behavior. In the anytime configuration, planners exhaust the time-bound trying to improve
incrementally the best solution found. Three ROLLER algorithms are modified to a configuration
where the best solution found so far is used as an upper-bound in order to prune all nodes that
exceed this plan length. The anytime behavior is the regular configuration for LAMA. FF does
not have anytime behavior, but it will be included in the anytime comparison as well as a base for
comparing quality improvements of other planners.

Table 7 shows the quality scores for the first solution and for the last solution found by the
anytime configurations. The anytime column for each planner shows the score variation and reveals
whether or not the planner was able to make relative improvements of the first solutions. The relative
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Domain ROLLER ROLLER-BFS ROLLER-BFS-HA FF LAMA
first anytime first anytime first anytime first relative first anytime

Blocksworld 29.83 29.83 8.00 8.00 8.00 8.00 0.00 0.00 7.42 8.29
Depots 8.50 9.26 12.39 17.01 12.85 18.95 19.01 17.96 18.32 19.28

Gold-miner 14.30 18.00 11.50 17.00 13.08 15.39 27.00 27.00 14.04 26.81
Matching-BW 9.43 9.52 13.01 12.43 17.67 17.16 8.23 7.15 23.25 24.72

Parking 19.38 17.04 24.24 23.98 24.24 25.51 21.53 17.79 19.16 22.56
Rovers 21.38 21.39 21.78 21.59 25.66 26.14 28.66 28.33 28.26 28.97

Satellite 28.65 28.81 23.20 23.00 28.18 28.94 21.55 21.33 27.02 27.42
Storage 13.41 13.46 15.69 18.38 15.64 17.26 16.23 15.80 17.24 18.81

Thoughtful 6.27 6.21 15.93 15.12 18.63 18.35 13.96 13.09 18.84 18.59

TPP 25.38 24.26 14.45 15.09 16.80 17.77 23.42 21.56 29.99 29.82

Total 176.53 177.35 160.19 171.65 180.75 193.53 179.59 170.06 203.54 219.24

Table 7: Quality scores for the first solution and the anytime configuration of evaluated planners.

for FF shows the score of its solutions compared to the solutions given by the anytime configuration
of other planners. FF loses points in most cases because the others were able to improve their
solutions. The two LAMA configurations obtained the top score in their category. Nevertheless, no
planner dominated in all the domains. Furthermore, all configurations achieved the top quality score
for the first solution in at least one domain.

Domain ROLLER ROLLER-BFS ROLLER-BFS-HA FF LAMA
first anytime first anytime first anytime first relative first anytime

Blocksworld (7) 146.29 146.29 142.86 142.86 142.86 142.86 – – 358.57 318.00
Depots (18) 385.78 372.22 81.78 54.00 76.83 43.33 46.39 46.39 49.28 41.56

Gold-miner (17) 55.65 38.18 30.06 19.65 47.88 39.35 19.65 19.65 43.35 19.65

Matching-BW (6) 186.00 170.33 75.00 70.00 76.00 69.33 71.67 71.67 78.33 62.33

Parking (22) 96.91 93.82 75.32 59.86 75.32 54.45 60.00 60.00 64.14 47.91

Rovers (25) 150.80 149.96 115.56 115.56 114.40 112.12 94.20 94.20 101.44 98.36
Satellite (22) 78.41 77.59 80.05 80.00 80.05 77.32 77.18 77.18 76.91 75.50

Storage (14) 43.07 42.64 15.21 11.36 15.64 13.29 12.43 12.43 12.71 11.29

Thoughtful(4) 292.25 291.75 168.50 168.25 168.50 164.50 123.25 123.25 140.25 128.50
TPP (16) 60.25 57.00 60.00 52.06 60.25 49.38 59.19 59.19 51.81 47.94

Table 8: Quality averages for the first solution and the anytime configuration of evaluated planners.

Table 8 shows the plan length average for the problems solved by all configurations. The first
column shows the average for the first solutions and the anytime column gives the average for
the last solutions of the anytime configuration. The commonly solved problems are the same as
those reported in Table 6. Although FF is the planner that solved fewer problems, it achieves the
best average plan length in seven domains. Plan length averages reveal that ROLLER is not able
to find first solutions of good quality for most domains. ROLLER-BFS and ROLLER-BFS-HA find
better quality solutions than ROLLER, and in several domains, their averages are competitive with
LAMA. ROLLER-BFS and ROLLER-BFS-HA show a better quality performance mainly due to the
combination of learned DCK with a domain-independent heuristic within the BFS algorithm.

In the following subsections we discuss particular details for each of the domains. We give a
very brief description of the domain together with information about training and test sets used in
the experimental evaluation. For each domain, we also analyze the learned DCK and the obtained
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results in order to give a fine-grained interpretation of the observed performance. Further details on
these domains can be found at the IPC web site.5

4.2.5 BLOCKSWORLD DETAILS

Problems in this domain are concerned with configuring towers of blocks using a robotic arm.
The training set used for the experiments consisted of: ten eight-block problems, ten nine-block
problems and ten ten-block problems. The test set consisted of the 30 largest typed problems from
IPC-2000, which have from 36 to 50 blocks.
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Figure 14: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Blocksworld domain.

Although this domain is one of the oldest benchmarks in automated planning, it is still chal-
lenging for state-of-the-art heuristic planners. Blocksworld presents strong interaction among goals
that current heuristics fail to capture. In particular, achieving a goal in this domain may undo
previously satisfied goals. Therefore, it is crucial to achieve goals in a specific order. The DCK
learned by ROLLER gives a total order of the domain actions in different contexts capturing this key
knowledge, which lets ROLLER achieve impressive scalability results while producing good quality
solution plans. ROLLER configurations are considerably better than non-learning configurations.
Particularly, ROLLER solved the thirty problems of the set while DF-HA and GR-HA did not solve
any problem. ROLLER is also quite good when compared to state-of-the-art planners. In Figure 14
we can observe that ROLLER performs two orders of magnitude faster than LAMA. The x-axis of
the figure represents the CPU time in logarithmic scale and the y-axis represents the percentage of
solved problems in a particular time. Moreover, ROLLER obtained the best quality score in the first
solution and anytime evaluations. In addition, the average plan length of common problems is fairly
close to the best average, obtained by ROLLER-BFS and ROLLER-BFS-HA. BFS algorithms do not

5. http://idm-lab.org/wiki/icaps/index.php/Main/Competitions
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scale well in this domain because they are partially guided by the FF heuristic, which considerably
underestimates the distance to the goals. Similarly, lookahead states generated by the policy are
discarded because they fail to escape plateaus generated by this heuristic function.

When analyzing the learned operator tree we found explanations for the good performance of
ROLLER in the Blocksworld domain: The operator tree is clearly split in two parts. The first part con-
tains decisions to take when the arm is holding a block. In this situation, the tree captures when to
STACK or PUT-DOWN a block. The second part contains decisions to take when the arm is empty. In
this case the tree captures when to UNSTACK or PICK-UP a block. In this second part of the tree, if
the current state of the search matches the logical query helpful unstack(Block1,Block2)6

it means that the tower of blocks under Block1 is not well arranged, i.e., Block1 or at least
one block beneath Block1 is not well placed. Therefore, the set of helpful actions compactly
encodes the useful concept of a bad tower. This kind of knowledge was manually defined in
previous works in order to learn good policies for Blocksworld. One approach consisted of in-
cluding recursive definitions of new predicates, such as the support predicates above(X,Y) and
inplace(X) (Khardon, 1999). Another alternative involved changing the representation lan-
guage, for instance the concept language (Martin & Geffner, 2004) or the taxonomic syntax (Yoon,
Fern, & Givan, 2007). The Kleene-star operator of the taxonomic syntax (i.e., the operator for defin-
ing recursion) was discarded in a subsequent work (Yoon et al., 2008) and the above predicate was
used instead. ROLLER’s ability to recognize bad-towers without extra predicates arises because any
misplaced block in a tower makes the UNSTACK action of the top block helpful, since it is always
part of the relaxed plan when the arm is empty.

Due to the extraordinary performance of ROLLER in this domain, we built an extra test set
to clarify whether or not the trend observed in the ROLLER configuration would hold for larger
problems. With this aim, we randomly generated 30 problems distributed in sub-sets of 50, 60, 70,
80, 90 and 100 blocks with 5 problems for each sub-set. ROLLER solved the 30 problems in this
extra test set with a time average of 20.1 seconds per problem and spending at most 175.3 to solve a
problem. Obviously, problems became more difficult for ROLLER as the number of blocks increase.

4.2.6 DEPOTS DETAILS

This domain is a combination of a transportation domain and the Blocksworld domain, where there
are crates instead of blocks and hoists instead of the robot arm. The problems consist of trucks
transporting crates around depots and distributors. Using hoists, crates can be stacked onto pallets
or on top of other crates at their final destination. In this domain, the 30 training problems are
different combinations of 2 or 3 locations (depots and distributors), 1 or 2 trucks, 1 or 2 pallets per
location, 1 hoist per location and from 2 to 5 crates to be placed in different configurations. For
the testing phase we have used the 22 problems of the IPC-2002 set. The hardest problem has 12
locations (1 or 2 pallets and 1 or 2 hoists), 6 trucks and 20 crates.

ROLLER and ROLLER-BFS improve the performance of the non-learning strategies, but the three
configurations of BFS Helpful-Action solved the same 20 problems. ROLLER is able to solve 21
problems, achieving the best speed score. However, the high average plan length indicates that the
policy is not producing good quality plans. ROLLER-BFS-HA obtains the second best speed score
with more competitive plan lengths. Figure 15 shows the percentage of solved problems while

6. As explained in section 3.2 logic queries in ROLLER present the example and problem Ids. In this case these Ids are
ignored for simplicity given that they are not needed for matching the current helpful context.
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increasing the CPU time (in logarithmic scale). In the anytime configuration, ROLLER-BFS-HA is
able to refine its solutions, achieving a quality average similar to LAMA.
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Figure 15: Percentage of solved problem when increasing time for evaluating the scalability per-
formance in the Depots domain.

The DCK learned in this domain provides inaccurate advice for large planning contexts. For
instance, ROLLER makes some mistakes when deciding which crate to unload when several crates
are loaded in a truck. The reason for the inaccurate DCK is that training problems are not large
enough to gain this knowledge. In addition, adding more crates to these problems makes it un-
feasible for them to be solved with BFS-BnB. Nevertheless, this limitation of the learned DCK is
not very evident. The Depots domain is undirected (i.e., all actions are reversible), so it has no
dead ends. Therefore, mistakes made by the DCK are fixed with additional actions, which leads
to worse quality plans. Besides, since first solutions are rapidly found, ROLLER configurations can
spend time refining solutions. This is the reason for the great improvement in the plan average for
ROLLER-BFS-HA.

4.2.7 GOLD-MINER DETAILS

The objective of this domain is to navigate in a grid of cells until reaching a cell containing gold.
Some of the cells are occupied by rocks that can be cleared using bombs or a laser. In this domain
the training set consists of: 10 problems with 3 × 3 cells, 10 problems with 4 × 4 cells, and 10
problems with 5× 5 cells. This domain was part of the learning track in IPC-2008 so we have used
the same test set used in the competition. This set has problems ranging from 5×5 up to 7×7 cells.

Problems in the Gold-Miner domain are not solvable with helpful actions alone. This explains
the difference in the number of solved problems between ROLLER, ROLLER-BFS-HA and their non-
learning counterpart. In general terms, this domain is trivial for ROLLER, ROLLER-BFS-HA (they
solved all the test problems in less than 10 seconds per problem) and LAMA. Nevertheless, FF scales-
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up poorly. In this domain essential actions for picking up bombs are frequently not considered
helpful actions, because the relaxed problem is solvable using the laser. Consequently, FF fails
to solve most problems with EHC and it requires an additional BFS search. Figure 16 shows the
percentage of solved problems while increasing the CPU time. Regarding the anytime evaluation,
all tested configurations improved the first solution found in many problems.
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Figure 16: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Gold-miner domain.

In this domain, the operator tree succeeds in capturing the key knowledge. In the initial states,
the bombs and the laser are in the same cell, so the robot needs to decide which of them to pick-up.
The operator tree for this domain matches the logical query candidate pickup laser(Cell)

with a higher ratio for operator PICKUP-BOMB than for operator PICKUP-LASER. This operator
preference allows ROLLER to avoid dead ends when the laser destroys the gold. On the other hand,
situations where the laser is required (i.e., to destroy hard rocks) are reached as a second choice
of the policy. This fact implies some backtracking for ROLLER, but the additional evaluated nodes
do not significantly affect the overall performance. The preference of the PICKUP-BOMB over the
PICKUP-LASER action is an example of selecting non-helpful actions.

4.2.8 MATCHING BLOCKSWORLD DETAILS

This domain is a version of Blocksworld designed to analyze limitations of the relaxed plan heuristic.
In this version blocks are polarized, either positive or negative. There are also two polarized robot
arms. Furthermore, when a block is placed (stack or put-down actions) with an arm of different
polarity, the block becomes damaged and no block can be placed on top of it. However, picking up
or unstacking a block with the wrong polarity seems to be harmless. This fact makes recognizing
dead ends a difficult task for the FF heuristic. Particularly, in the relaxed task blocks are never
damaged. Thus, both the relaxed plan (and consequently the set of helpful actions) and the heuristic
estimation are wrong. The training set used in this domain consists of fifteen 6-blocks problems and
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fifteen 8-blocks problems. We used an even number of blocks to keep the problems balanced (i.e.,
half of the blocks of each polarity). For the testing phase we used the test set from the learning track
of IPC-2008. This set has problems ranging from 15 to 25 blocks.

DF-HA and GR-HA did not solve any problem, because these problems are not solvable with
helpful actions alone. The learned DCK recommended some useful non-helpful actions, thus
ROLLER was able to solve 21 problems. Policy configurations perform better than systematic strate-
gies, but are fairly similar to not using a lookahead strategy. This fact reveals that the learned DCK
is not effective enough to pay off the effort of building lookahead states. LAMA is the planner that
solves the most problems. Figure 17 shows the percentage of solved problems while increasing the
CPU time.
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Figure 17: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Matching Blocksworld domain.

ROLLER solved problems by evaluating a considerable number of nodes above the plan length,
which means that the DCK learned for this domain is not accurate. When analyzing the training
examples we find many solution plans that do not satisfy the key knowledge of the domain (robot
arms should unstack or pick-up blocks of the same polarity). Specifically, when the robot is handling
a top block, i.e., a block with no other blocks above it in the goal state, then the polarity of the robot
arm becomes meaningless. This effect is unavoidable because the shortest plans involve managing
top blocks in a more efficient way while ignoring the polarities. These examples include noise in
the learning and make generalization very complex.

4.2.9 PARKING DETAILS

This domain involves parking cars on a street with N curb locations where cars can be double
parked, but not triple parked. The goal is to move from one configuration of parked cars to another
by driving cars from one curb location to another. In this domain the training set consists of: fifteen
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problems with six cars and four curbs and fifteen problems with eight cars and five curbs. For testing
we used the test set from the learning track of IPC-2008. The hardest problem in this set has 38 cars
and 20 curbs.

The three ROLLER configurations solve all problems and perform significantly better than non-
learning strategies. In addition, the three ROLLER configurations outperform FF and LAMA with a
difference of more than one order of magnitude. This is the reason for LAMA and FF low speed
scores. ROLLER configurations are also consistently better than systematic and empty configura-
tions. Figure 18 shows the percentage of solved problems while increasing the CPU time. On
the other hand, the three ROLLER configurations did not achieve first solutions of suficient qual-
ity. However, these solutions are refined in the anytime evaluation, especially by ROLLER-BFS-HA,
which achieves the top quality score and has a plan length average fairly similar to LAMA.
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Figure 18: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Parking domain.

The learned DCK in this domain was quite effective (ROLLER rarely backtracked). The oper-
ator tree perfectly classifies the MOVE-CAR-TO-CURB action at the first tree node, asking if it is
considered a helpful action. Besides, the binding tree for this operator selects the right car by asking
about the target goal and rejecting other candidates. These two decisions guide the planner to place
a car in the right position whenever possible. As a result, a large number of nodes are not evaluated,
which explains the scalability difference with FF and LAMA.

4.2.10 ROVERS DETAILS

This domain is a simplification of the tasks performed by the autonomous exploration vehicles sent
to Mars. The tasks consist of navigating the rovers, collecting soils and rocks samples, and taking
images of different objectives. In this domain the training set consists of: ten problems with one
rover, four waypoints, two objectives and one camera; ten problems with an additional camera; and
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ten problems with an additional rover. Problems in the test set are the thirty largest problems from
the IPC-2006 set (i.e., problems 11 to 40). The largest problem in this set has 14 rovers and 100
waypoints.

DCK strategies are faster than systematic and empty strategies, but differences are not signifi-
cant since all configurations solved most of the problems. On the one hand helpful actions in the
Rovers domain are quite good but on the other hand the test set does not have problems which are
big enough to generate differences among approaches. Regarding planner comparison, ROLLER

achieves the top performance score and scales significantly better than FF, and solves two problems
less than LAMA. Figure 19 shows the percentage of solved problems when increasing the CPU time.
Regarding the anytime evaluation, all planners are able to refine their first solutions. LAMA gets the
top quality score and the best plan length after refining solutions.
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Figure 19: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Rovers domain.

In this domain, ROLLER learned imperfect DCK, but it manages to achieve good scalability
results. DCK is imperfect partially because actions for communicating rock, soil or image analysis
can be applied in any order among them. Therefore, the preferences for ranking and selecting
solutions fail to discriminate among these actions which confuse the learning algorithm. Since
these actions could be applied in any order, the DCK mistakes seem to be harmless at planning
time.

4.2.11 SATELLITE DETAILS

This domain comprises a set of satellites with different instruments, which can operate in different
formats (modes). The tasks consist of managing the instruments for taking images of certain targets
in particular modes. In this domain the training set consist of thirty problems with one satellite, two
instruments, five modes and five observations. Problems in the test set are the thirty largest problems
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from the IPC-2004 (i.e., problems 7 to 36). The largest problem in this set has 10 satellites, 5 modes
and 174 observations.

The three ROLLER configurations improved the number of solved problems of their non-learning
counterpart. In addition, ROLLER and ROLLER-BFS-HA solved the 30 problems in the set, two more
than LAMA and eight more than FF. Figure 20 shows the percentage of solved problems when
increasing the CPU time. ROLLER and ROLLER-BFS-HA achieve good quality solutions and are
able to refine them in the anytime evaluation, achieving plan lengths similar to LAMA.
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Figure 20: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Satellite domain.

The learned DCK captures the key knowledge of the Satellite domain. The trees shown in
Figure 4 and Figure 7 are part of the learned DCK with fewer training examples. In this domain
both ROLLER and ROLLER-BFS-HA perform quite similarly. The reason is that the FF heuristic is
also quite accurate in the domain. Thus, the deepest lookahead state generated by the learned policy
is frequently selected by the heuristic in the BFS search.

4.2.12 STORAGE DETAILS

This domain is concerned with the storage of a set of crates taking into account the spatial con-
figuration of a depot. The domain tasks comprise using hoists to move crates from containers to a
particular area in the depot. The training set consists of 30 problems with 1 depot, 1 container, 1
hoist and different combinations of 2 or 3 crates and from 2 up to 6 areas inside the depot. For the
test set we used the 30 problems from the IPC-2006 set. The largest problem in this domain has 4
depots with 8 areas each, 5 hoist and 20 crates.

The first 12 problems are trivially solved by all configurations. Then, problem difficulty in-
creases quickly when the number of problem objects increases. The BFS solved 20 problems, one
more than any DCK strategy, meaning that DCK lookahead strategies do not pay off. This domain
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is also hard for FF and LAMA. Figure 21 shows the percentage of solved problems when increasing
the CPU time.
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Figure 21: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Storage domain.

Although DCK is not effective, we found interesting properties in it. The learned operator tree
is compact and succeeds in selecting the GO-IN action which is normally not marked as a helpful
action.

4.2.13 THOUGHTFUL DETAILS

This domain models a version of the solitaire card game, where all cards are visible and one can
turn each card from the talon rather than 3 cards at a time. As in the original version, the goal of
the game is to place all cards in ascending order in their corresponding suit stacks (home deck).
There is no available random problem generator for this domain. Therefore, we used the bootstrap
problem distribution given in the learning track of IPC-2008. This set contains problems for the
four suits, having up to card seven for each suit. For the test phase we used the 30 problems from
the test distribution of the learning of IPC-2008. The largest problem in this domain has the full set
of a standard card game.

ROLLER only solves 12 problems, three fewer than GR-HA. However, ROLLER-BFS and ROLLER-
BFS-HA are better in the number of solved problems than non-learning approaches. In this domain,
the use of DCK for lookahead construction combined with the FF heuristic makes the search process
more robust against policy mistakes. ROLLER-BFS-HA solves 23, three more than LAMA. Figure 22
shows the percentage of solved problems when increasing the CPU time.

The BFS-BnB algorithm for generating training examples is only able to solve 12 out of 30
problems from the bootstrap problem distribution. We believe that a different bootstrap distribu-
tion with smaller problems would generate more accurate DCK. Additionally, even though DCK
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Figure 22: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the Thoughtful domain.

lookahead strategies achieve good results, learning accurate decision trees is more complex when
there are many more classes (20 operators in this particular domain) and many more arguments in
the predicates of the background knowledge (up to 6 parameters in operator col-to-home and 7
parameters in operator col-to-home-b).

4.2.14 TPP DETAILS

TPP stands for Traveling Purchase Problem, which is a generalization of the Traveling Salesman
Problem. Tasks in the domain consist in selecting a subset of markets to satisfy the demand for
a set of goods. The selection of markets should try to optimize the routing and the purchasing
costs of the goods. In the STRIPS version, the graph that connects markets has equal costs for all
arcs. Nevertheless, the domain is still interesting because it is difficult for planners to scale when
increasing the number of goods, markets and trucks. The training set consists of thirty problems
with a number of goods, trucks and depots varying from one to three and with load levels of five
and six. The test set consists of the thirty problems used for planner evaluation at IPC-2006. The
largest problem in this set has 20 goods, 8 trucks, 8 markets with a load level of six.

ROLLER, GR-HA and DF-HA solved the 30 problems in the test set, but ROLLER performs faster
than the other two, achieving similar plan lengths. Besides, ROLLER outperforms the rest of the
planners and it is two orders of magnitude faster than FF. The main reason is the overwhelming
branching factor of the large problems together with the fact that FF heuristic falls into big plateaus
in this domain. Greedy (depth-first) approaches perform better because they avoid the effect of these
plateaus. Additionally, ROLLER achieved competitive quality scores and average plan length in the
first solution and the anytime evaluation. ROLLER-BFS and ROLLER-BFS-HA got very bad results
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for this domain because of the imprecision of the FF heuristic. Figure 23 shows the percentage of
solved problems while increasing the CPU time.
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Figure 23: Percentage of solved problems when increasing time for evaluating the scalability per-
formance in the TPP domain.

The learned DCK is compact and useful for reducing the number of evaluations, as shown by
ROLLER performance. For instance, the DRIVE binding tree recognizes perfectly when a truck in
market A does not need to go to a market B because there is already a truck in B handling the goods
of that market. In these situations, the state with the truck in B has a helpful action DRIVE, meaning
the truck B has something to deliver.

5. Lessons Learned from the IPC

IPC-2008 included a specific track for planning systems that benefit from learning. Thirteen systems
took part in this track including a previous version of ROLLER (De la Rosa et al., 2009) that achieved
the 7th position. This version was an upgrade of the original ROLLER system (De la Rosa et al.,
2008). The first version proposed the EHC-Sorted algorithm as an alternative to the H-Context Pol-
icy, but it was not effective in many domains. The competing version tried to recommend ordering
for applying actions from the relaxed plans. This idea, although initially appealing, was not a good
choice because its usefulness strongly depends on the fact that the relaxed plan contains the right ac-
tions. After the competition we completed an analysis of the ROLLER performance to diagnose and
strengthen its weak points. The system resulting from these improvements is the ROLLER version
described in this article. One example of the ROLLER improvements is the results obtained at the
Thoughtful and Matching Blocksworld domains. At IPC-2008, ROLLER failed to solve all the prob-
lems from the Thoughtful domain and it only solved two problems from the Matching Blocksworld.
As reported in section 4, the current version of ROLLER solves 23 and 19 problems respectively in
these domains. In addition, the current version of ROLLER outperforms LAMA and FF in the Park-

805



DE LA ROSA, JIMENEZ, FUENTETAJA & BORRAJO

ing domain by one order of magnitude. The improvements of ROLLER overcome limitations of the
version submitted to IPC-2008 in three aspects:

• Robustness to wrong DCK. Issues discussed in Section 2 are all decisions that introduce bi-
ases in the learning process making learning of DCK a complex task. In fact, no competitor at
IPC-2008 was able to learn useful DCK for all the domains. Furthermore, in many domains
the learned DCK damaged the performance of the baseline planner. This was the case of
ROLLER. As we described in the paper, we have strengthened ROLLER against wrong DCK
by proposing two versions of a modified BFS algorithm that combine the learned DCK with
a numerical heuristic. The combination of DCK and the heuristic makes the planning pro-
cess more robust to imperfect and/or incorrectly learned knowledge. A similar approach was
followed by the winner of the best learner award, OBTUSE WEDGE (Yoon et al., 2008).

• Efficiency of the baseline. The overall competition winner was PBP (Gerevini, Saetti, & Val-
lati, 2009) a portfolio of state-of-the-art planners that learns which planner and settings are
the best ones for a given planning domain. As a result, the performance of this competitor
was never worse than the performance of a state-of-the-art planner. At IPC-2008 the base-
line performance of ROLLER was far from being competitive with state-of-the art planners
because ROLLER algorithms were coded in LISP. To overcome this weakness we optimized
the implementation of ROLLER using C code that outperformed our IPC-2008 results in all
domains.

• Definition of significant training sets. Training examples are extracted from the experience
collected while solving problems of a training set. Therefore, the quality of the training
examples depends on the quality of the problems used for training. At IPC-2008 the training
problems were fixed by the organizers and, in many domains, they were too large for the
ROLLER system to extract useful DCK. In this paper we have created training problems using
random generators to build useful training sets for the ROLLER system for each domain.

• Selection of training examples. Relational classifiers induce a set of rules/trees that model
regularities in the training data. For the case of forward state-space search planning not all
best-cost solutions for a problem may be used as training data, because this leads to alterna-
tives that will confuse the learner. To avoid this, training data should be cleaned before being
used by the learning algorithm. The ranking and solution selection proposed in this article is
an option to give the learner training data with clearer regularities.

Additionally, ROLLER performed poorly in the Sokoban and N-puzzle domains. Traditionally,
useful DCK for these domains has the form of numeric functions, such as the Manhattan distance,
which provides a lower-bound for the solution length. In general, action policies are inaccurate in
these domains, because they lack knowledge about the trajectory to the goals. Currently, we are still
unable to learn useful DCK for ROLLER in these domains. A possible future direction is to introduce
not only goals but subgoals (e.g. landmarks) in the helpful context with the aim of capturing some
of this knowledge.

6. Related Work

Our approach is strongly inspired by the way Prodigy (Veloso et al., 1995) models DCK. In the
Prodigy architecture, the action selection is a two-step process: first, Prodigy selects the uninstan-
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tiated operator to apply, and second, it selects the bindings for that operator. Both selections can
be guided by DCK in the form of control rules (Leckie & Zukerman, 1998; Minton, 1990). We
have returned to this idea of the two-step action selection because it allows us to define the learning
of planning DCK as a standard classification task and therefore to solve this learning task with an
off-the-shelf classification technique such as relational decision trees. Nevertheless, ROLLER does
not need to distinguish among different kinds of nodes as Prodigy does, because ROLLER performs
a standard forward heuristic search in the state space where all the search nodes are of the same
type.

Relational decision trees have been previously used to learn action policies in the context of
Relational Reinforcement Learning (RRL) (Dzeroski, De Raedt, & Blockeel, 1998). In comparison
with the DCK learned by ROLLER, RRL action policies present two limitations when solving plan-
ning problems. First, in RRL the learned knowledge is targeted to a given set of goals, therefore
RRL cannot directly generalize the learned knowledge for different goals within a given domain.
Second, since training examples in RRL consist of explicit representations of the states, RRL needs
to add extra background knowledge to learn effective policies in domains with recursive predicates
such as Blocksworld.

Previous works on learning generalized policies (Martin & Geffner, 2004; Yoon et al., 2008)
succeed in addressing these two limitations of RRL. First, they introduce planning goals in the
training examples. In this way the learned policy applies for any set of goals in the domain. Second,
they change the representation language of the DCK from predicate logic to concept language. This
language makes capturing decisions related to recursive concepts easier. Alternatively, ROLLER

captures effective DCK in domains like Blocksworld without varying the representation language.
ROLLER implicitly encodes states in terms of the set of helpful actions of the state. As a result,
ROLLER can benefit directly from off-the-shelf relational classifiers that work in predicate logic.
This fact makes learning times shorter and the resulting policies easier to read.

Recently, other techniques have also been developed to improve the performance of heuristic
planners:

• Learning Macro-actions (Botea, Enzenberger, Müller, & Schaeffer, 2005; Coles & Smith,
2007) are the combination of two or more operators that are considered as new domain opera-
tors in order to reduce the search tree depth. However, this benefit decreases with the number
of new macro-actions added because they enlarge the branching factor of the search tree caus-
ing the utility problem (Minton, 1990). Other approaches overcome this problem, applying
filters that decide on the applicability of the macro-actions (Newton, Levine, Fox, & Long,
2007). Two versions of this work participated in the learning track of IPC-2008, obtaining
third and fourth place. One advantage of macro-actions is that the learned knowledge can
be exploited by any planner. Thus, approaches which learn generalized policies could also
benefit from macro-actions. Nevertheless, as far as we know, this combination has not been
tried for improving heuristic planners.

• Learning domain-specific heuristic functions: In this approach (Yoon, Fern, & Givan, 2006;
Xu, Fern, & Yoon, 2007), a state-generalized heuristic function is obtained from examples
of solution plans. The main drawback of learning domain-specific heuristic functions is that
the result of the learning algorithm is difficult to understand by humans which makes the
verification of the learned knowledge difficult. On the other hand, the learned knowledge is
easy to combine with existing domain-independent heuristics. A slightly different approach
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consists of learning a ranking function for greedy search algorithms (Xu, Fern, & Yoon,
2009, 2010). At each step of a greedy search, the current node is expanded and the child node
with the highest rank is selected to be the current node. In this case, the ranking function is
iteratively estimated in an attempt to cover a set of solution plans with the greedy algorithm.

• Learning task decomposition: This approach learns how to divide planning tasks of a given
domain into smaller subtasks that are easier to solve. Techniques for reachability analysis
and landmark extraction (Hoffmann, Porteous, & Sebastia, 2004) are able to compute in-
termediate states that must be reached before satisfying the goals. However, it is not clear
how to systematically exploit this knowledge to build good problem decompositions. Vi-
dal et al. (2010) consider this as an optimization problem and use a specialized optimization
algorithm to discover good decompositions.

In general, any system that learns planning DCK has to deal with ambiguity in the training
examples, because a given planning state may present many good actions. Trying to learn DCK
that selects one action over other, inherently equal, is a complex learning problem. To cope with
ambiguous training data ROLLER created a function that ranks solutions with the aim of learning
from the same kind of solutions. A different approach is followed by Xu et al. (2010) who generate
training examples from partially ordered plans.

7. Conclusions and Future Work

We have presented a new technique for reducing the number of node evaluations in heuristic plan-
ning based on learning and exploiting generalized policies. Our technique defines the process of
learning generalized policies as a two-step classification and builds domain-specific relational de-
cision trees that capture the action to be selected in the different planning contexts. In this work,
planning contexts are specified by the helpful actions of the state, the pending goals and the static
predicates of the problem. Finally, we have explained how to exploit the learned policies to solve
classical planning problems, applying them directly or combining them with a domain independent
heuristic in a lookahead strategy for the BFS algorithm. This work contributes to the state-of-the-art
of learning-based planning in three ways:

1. Representation. We propose a new encoding for generalized policies that is able to capture
efficient DCK using predicate logic. As opposed to previous works that represent generalized
policies in predicate logic (Khardon, 1999), our representation does not need extra back-
ground knowledge (support predicates) to learn efficient policies for the Blocksworld domain.
Besides, encoding states with the set of helpful actions is frequently more compact and fur-
thermore, this set normally decreases when the search has fewer goals left. Thus, the process
of matching DCK becomes faster when the search advances towards the goals.

2. Learning. We have defined the task of learning a generalized policy as a two-step standard
classification task. Thus, we can learn the generalized policy with an off-the-shelf tool for
building relational classifiers. Results in this paper are obtained with the TILDE system (Bloc-
keel & De Raedt, 1998), but any other tool for learning relational classifiers could have been
used. Because of this, advances in relational classification can be applied in a straightforward
manner in ROLLER to learn faster and better planning DCK.
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3. Planning. We have explained how to extract an action ordering from an H-Context Policy
and we have shown how to use this ordering to reduce node evaluations: (1) in the algo-
rithm Depth-First H-Context Policy that allows a direct application of the H-Context policies;
and (2) in the H-Context Policy Lookahead BFS, which combines the policy with a domain-
independent heuristic within a BFS algorithm. In addition, we have included a modified
version of this algorithm (ROLLER-BFS-HA) that only considers helpful successors in order
to reduce the number of evaluations in domains where helpful actions are good.

Experimental results show that our approach improved the scalability of the baseline heuristic
planners FF and LAMA (winner of IPC-2008) over a variety of IPC domains. This effect is more
evident in domains where the learned DCK presents good quality, e.g. Blocksworld and Parking.
In these domains the direct application of the learned DCK saves large amounts of node evaluations
achieving impressive scalability performance. Moreover, using the learned DCK in combination
with a domain-independent heuristic in a BFS algorithm achieves good quality solutions. When
the quality of the learned DCK is poor, planning with the direct application of the policy fails to
solve many problems, mainly the largest ones which are more difficult to solve without a reasonable
guide. Unfortunately, the only current mechanism for quantifying the quality of the learned DCK
is evaluating it against a set of test problems. Therefore, a good compromise solution is combining
the learned DCK with domain-independent heuristics.

In some domains, the DCK learned by ROLLER presents poor quality because the helpful context
is not able to represent concepts that are necessary in order to discriminate between good and bad
actions. This problem frequently arises when the arguments of the good action do not correspond
to the problem goals or the static predicates. We plan to study refinements to our definition of
the helpful context to achieve good DCK in such domains. One possible direction is extending
the helpful context with subgoal information such as landmarks (Hoffmann et al., 2004) of the
relaxed plan. Moreover, the use of decision trees introduces an important bias in the learning step.
Algorithms for tree learning only insert a new query in the tree if doing so produces a significant
information gain. However, in some domains this information gain can only be obtained by the
conjunction of two or more queries. Finally, we are currently providing the learner with a fixed
distribution of training examples. In the near future, we plan to explore how the learner can generate
the most convenient distribution of training examples according to a target planning task as proposed
by Fuentetaja and Borrajo (2006).
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Appendix A. DCK Usefulness Results

DEPH-FIRST BEST-FIRST HELPFUL BEST-FIRST
Domains roller gr-ha df-ha roller-bfs lh-bfs bfs roller-bfs-ha lh-bfs-ha bfs-ha

Blocksworld (30) 29.87 0.03 0.00 2.47 0.00 0.00 2.40 0.00 0.00
Depots (22) 19.42 7.70 3.61 10.51 5.32 2.45 10.98 5.27 7.08

Gold-miner (30) 28.00 0.00 0.00 0.04 0.05 0.00 7.35 0.00 0.00
Matching-BW (30) 20.88 0.00 0.00 3.82 0.98 3.90 3.72 2.20 5.81

Parking (30) 28.57 1.23 0.00 22.72 0.26 0.01 23.60 0.26 0.04
Rovers (30) 25.99 10.09 7.73 14.58 5.52 0.14 18.12 17.17 8.21

Satellite (30) 27.97 2.93 1.69 16.09 3.05 0.08 21.93 2.68 2.90
Storage (30) 11.02 8.03 8.08 11.53 10.56 8.97 16.12 7.00 7.00

Thoughtful(30) 11.91 13.15 0.00 11.30 8.90 2.31 11.89 9.05 3.04
TPP (30) 29.50 10.86 11.45 14.83 8.67 5.00 13.97 7.54 6.13

Total 233.13 54.02 32.56 107.89 43.31 22.86 130.08 51.17 40.21

Table 9: Problems solved for the DCK usefulness evaluation.

DEPH-FIRST BEST-FIRST HELPFUL BEST-FIRST
Domains roller gr-ha df-ha roller-bfs lh-bfs bfs roller-bfs-ha lh-bfs-ha bfs-ha

Blocksworld (30) 29.83 0.06 0.00 8.00 0.00 0.00 8.00 0.00 0.00
Depots (22) 8.82 8.21 3.02 12.68 14.84 12.37 13.20 16.06 19.97

Gold-miner (30) 19.78 0.00 0.00 11.50 17.00 15.41 16.67 0.00 0.00
Matching-BW (30) 11.53 0.00 0.00 12.76 6.35 13.84 17.21 9.39 16.54

Parking (30) 21.53 8.20 0.01 26.92 6.33 6.14 26.92 6.33 8.18
Rovers (30) 21.54 26.34 25.51 21.94 24.63 10.75 25.71 26.32 29.63

Satellite (30) 28.03 17.36 9.58 22.60 21.48 14.64 27.60 22.31 22.42
Storage (30) 13.43 8.02 8.00 15.59 16.87 19.23 15.66 8.59 9.31

Thoughtful(30) 6.89 12.40 0.00 16.56 13.35 10.60 19.48 14.91 11.75
TPP (30) 25.46 27.92 23.75 13.94 22.04 8.71 16.20 24.36 13.88

Total 186.84 108.51 69.87 162.49 142.89 111.69 186.65 128.27 132.35

Table 10: Quality scores for the DCK usefulness evaluation.
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