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Scaling up molecular pattern recognition with 
DNA-based winner-take-all neural networks
Kevin M. Cherry1 & Lulu Qian1,2*

From bacteria following simple chemical gradients1 to the brain 
distinguishing complex odour information2, the ability to recognize 
molecular patterns is essential for biological organisms. This 
type of information-processing function has been implemented 
using DNA-based neural networks3, but has been limited to the 
recognition of a set of no more than four patterns, each composed 
of four distinct DNA molecules. Winner-take-all computation4 has 
been suggested5,6 as a potential strategy for enhancing the capability 
of DNA-based neural networks. Compared to the linear-threshold 
circuits7 and Hopfield networks8 used previously3, winner-take-
all circuits are computationally more powerful4, allow simpler 
molecular implementation and are not constrained by the number 
of patterns and their complexity, so both a large number of simple 
patterns and a small number of complex patterns can be recognized. 
Here we report a systematic implementation of winner-take-all 
neural networks based on DNA-strand-displacement9,10 reactions. 
We use a previously developed seesaw DNA gate motif3,11,12, 
extended to include a simple and robust component that facilitates 
the cooperative hybridization13 that is involved in the process of 
selecting a ‘winner’. We show that with this extended seesaw motif 
DNA-based neural networks can classify patterns into up to nine 
categories. Each of these patterns consists of 20 distinct DNA 
molecules chosen from the set of 100 that represents the 100 bits in 
10 × 10 patterns, with the 20 DNA molecules selected tracing one of 
the handwritten digits ‘1’ to ‘9’. The network successfully classified 
test patterns with up to 30 of the 100 bits flipped relative to the digit 
patterns ‘remembered’ during training, suggesting that molecular 
circuits can robustly accomplish the sophisticated task of classifying 
highly complex and noisy information on the basis of similarity to 
a memory.

Winner-take-all computation4 is one of the simplest competitive  
neural-network models, inspired by the lateral inhibition and com-
petition observed among biological neurons in the brain14. In this 
model, the output of a neuron is ON if and only if the weighted sum 
of all binary inputs is the largest among all neurons (Fig. 1a). Here, in 
a winner-take-all neural network, the weight matrix associated with 
each output is referred to as a ‘memory’. As shown in Fig. 1b, a simple 
training algorithm involves using the target patterns as weights. The 
example network has two memories—in other words, it ‘remembers’ 
two patterns—‘L’ and ‘T’. The network ‘recognizes’ a pattern by com-
paring it to all memories and identifying which memory the pattern is 
most similar to—the output associated with this memory will be ON 
and all other outputs will be OFF. For instance, a corrupted ‘L’ with 
the last bit flipped from 1 to 0 can be recognized as ‘L’, because it will 
result in y1 (the output of the neuron remembering ‘L’) being ON and y2  
(the output of the neuron remembering ‘T’) being OFF.

The winner-take-all function can be broken into five subfunctions, 
each of which can be implemented with a simple chemical reaction 
(Fig. 1c): First, weight multiplication of xi × wij (where xi is a binary 
input and wij is an analogue weight) is implemented with reactions 
wherein an input species Xi catalytically converts a weight species 
Wij to an intermediate product Pij. If Xi is absent, then no Pij will be 

produced; if Xi is present, then the final concentration of Pij will be 
determined by the initial concentration of Wij, thus setting the value 
of the weighted input. Second, summation is implemented with reac-
tions that convert all intermediate species Pij within the same neuron 
to a common weighted-sum species Sj. Third, comparison of weighted 
sums to determine which is the largest is implemented with a set of 
‘pairwise annihilation’ reactions, wherein each weighted-sum species 
Sj destroys any other weighted-sum species Sk until only a single winner 
remains. Fourth, signal-restoration reactions bring the concentration 
of the winner species back to a predetermined output value—the final 
concentration of a winning output species Yj corresponds to the initial 
concentration of a restoration-gate species RGj. Last, reporting reac-
tions are used to convert each output Yj to a fluorescent signal Fluorj.

All reactions except pairwise annihilation and signal restoration  
naturally take place sequentially, because the product of a previous 
reaction is a reactant of the next one. Because there are common reac-
tants in the annihilation and restoration reactions, we used different 
rates to control their order: the former has a much faster rate constant 
than the latter, so a winner that survives all fast competitions is then 
converted slowly to an output signal.

Weight multiplication and signal restoration are both catalytic 
reactions, implemented with a pair of seesawing reactions11 (Fig. 1e, 
Extended Data Fig. 1). An input Xi (or weighted sum Sj) species first 
interacts with a weight Wij (or restoration gate RGj) species through 
a reversible strand-displacement reaction15 to release an intermediate 
product Pij (or output Yj) species. A fuel strand XFi (or YFj) then frees 
the input (or weighted sum) species for more catalytic cycles. As long 
as the fuel strand is in excess, all weight (or restoration gate) molecules 
will eventually be converted to intermediate (or output) molecules. 
Summation is implemented with a single seesawing reaction facili-
tated by a summation gate SGj (Extended Data Fig. 1). The reaction is 
reversible by itself but drained forward by the downstream irreversible 
reaction of pairwise annihilation.

The annihilation reaction is implemented with cooperative hybrid-
ization13 (Fig. 1f). One weighted-sum strand Sj can bind to a toehold 
on one side of an annihilator molecule Anhjk and branch-migrate to 
the middle point of the double-stranded domain. If only Sj is pres-
ent, then this process is completely reversible and no molecules will 
be consumed. However, if another weighted-sum strand Sk is also 
present, then it can bind to another toehold on the opposite side of 
the annihilator and also branch-migrate to the middle point of the 
double-stranded domain. When the Sj and Sk strands reach the middle 
point simultaneously, the annihilator will be split apart into two waste 
molecules. Because neither waste molecule has a toehold exposed, it 
cannot interact with any other molecules. The annihilation reaction 
shown in Fig. 1f is designed to be roughly 100 times faster than the 
signal-restoration reaction shown in Fig. 1e, owing to the two extra 
nucleotides in both toeholds on the annihilator—it is known that the 
rate of strand displacement reactions grows exponentially faster with 
a longer toehold15,16.

Reporting is implemented with an irreversible strand-displacement 
reaction, wherein an output strand Yj interacts with a double-stranded 
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Fig. 1 | Winner-take-all neural network and its DNA implementation.  
a, A winner-take-all (WTA) neural network with m memories that each 
has n bits; x1 to xn and y1 to ym are binary inputs and outputs, respectively; 
wij (1 ≤ i ≤ n and 1 ≤ j ≤ m) are analogue weights of positive, real numbers; 
sj and sk (1 ≤ j ≠ k ≤ m) are weighted sums of the inputs. b, Example 
pattern recognition using target patterns as weights. Each 9-bit pattern is 
shown in a 3 × 3 grid. Each black or coloured pixel indicates a 1 and each 
white pixel indicates a 0. The two target patterns correspond to the letters 
‘L’ and ‘T’, respectively. If the input pattern is corrupted (for example, the 
last bit of ‘L’ is flipped from 1 to 0, as indicated by the orange cross), then 
the neural network can still recognize it as being more similar to ‘L’ than 
to ‘T’, because the weighted sum using ‘L’ as weights is still larger than 
the weighted sum using ‘T’ as weights. c, Chemical-reaction-network 
implementation. The concentrations of chemical species Xi, Wij, Sj and 
Yj correspond to the values of variables xi, wij, sj and yj, respectively. The 
species in black are needed as part of the function, whereas the species 
in grey are needed to facilitate the reactions. The waste molecules are not 
shown in the reactions. kf and ks are the rate constants of the pairwise-
annihilation and signal-restoration reactions, respectively. d, DNA-strand-

displacement implementation. The initial test tube (left) shows all DNA 
species with 1 ≤ i ≤ n and 1 ≤ j ≠ k ≤ m. The final test tube (right) shows 
only the product species after a set of input strands are added, with i, j 
and k being a subset of all possible numbers depending on the specific 
input. Zigzag lines indicate short (5 or 7 nucleotide) toehold domains 
and straight lines indicate long (15 or 20 nucleotide) branch-migration 
domains in DNA strands, with arrowheads marking their 3′ ends. Each 
domain is labelled with a name and assigned a unique DNA sequence, 
with asterisks in the names indicating sequence complementarity. Strand 
modifications are labelled as F and Q, where F indicates a fluorophore 
and Q indicates a quencher. e, Signal-restoration reaction. The grey circle 
with an arrow indicates the direction of the catalytic cycle. f, Pairwise-
annihilation reaction. Representative (not all possible) states are shown. 
In e and f, arrows with black-filled and white-filled arrowheads indicate 
the forwards and backwards directions of a reaction step, respectively. 
The mechanisms of weight multiplication, summation and reporting 
reactions are shown in Extended Data Fig. 1. DNA sequences are listed in 
Supplementary Table 1.
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reporter molecule Repj (Extended Data Fig. 1) to separate the  
fluorophore- and quencher-labelled strands in the reporter, resulting 
in increased fluorescence. Overall, the implementation of an arbitrary 
winner-take-all neural network can be mapped systematically to a see-
saw DNA circuit (Extended Data Fig. 2).

We started the experimental demonstration with a two-species 
winner-take-all function (Fig. 2a), which is similar to approximate 
majority17 and consensus network18 functions. If the initial concen-
tration of one weighted-sum species (S1 or S2) is higher than that of 
the other, then we expect the corresponding output strand (Y1 or Y2) 
to be released catalytically and the fluorescent signal to reach an ideal 
ON state, while the other output signal remains at an ideal OFF state. 
The data agree with the expected overall circuit behaviour, and lead to 
two main observations. First, the circuit computed an ON state faster 
with a larger difference between the two species, as shown in the plots 
farther away from the diagonal line in Fig. 2a. This is because the signal- 
restoration reaction reaches completion faster with a larger amount of 
catalyst, which is the leftover amount of the winner after the annihi-
lation reaction. Second, among experiments for which the differences 
between the two species are the same, the circuit maintained a cleaner 
OFF state with lower initial concentrations of the two species, as shown 
in the plots that are equidistant to the diagonal line but closer to the 
bottom left corner of the grid. This is because a small fraction of the 
weighted-sum strands will interact with a restoration-gate molecule  

before encountering an annihilator molecule—the stronger the  
runner-up is (that is, with a higher concentration), the more it can 
escape the process of being completely annihilated. These observations 
suggest that the DNA circuit does not yield a perfect winner-take-all 
behaviour, but that it does compute correctly for competitors that are 
not too similar to each other and are not both too strong.

Next, we added a weighted-sum layer to the winner-take-all circuit 
to demonstrate recognition of 4-bit patterns (Fig. 2b). Using the two 
target patterns as weights, the perfect input patterns each triggered 
the desired output trajectory to turn ON, indicating that the inputs 
were recognized correctly. When one or two bits of the input patterns 
were flipped, either from a 1 to a 0 or vice versa, the circuit still yielded 
the desired output for all six examples that are classifiable. The other 
eight possible inputs are not classifiable because they result in equal 
weighted sums (s1 = s2). Interestingly, the circuit behaviour was better 
for the inputs with 2-bit corruptions than for the perfect inputs: the ON 
trajectories reached completion just as fast and the OFF trajectories 
remained lower. This result can be understood by looking at the input 
patterns in the weighted-sum space (Fig. 2b, bottom left): all four inputs 
are equidistant to the diagonal line and the corrupted patterns are closer 
to the bottom left corner of the space. Because catalytic reactions are 
used to implement weight multiplication, together with thresholding 
reactions, the circuit can also handle a range of input concentration that 
varies from the ideal high or low concentration (Extended Data Fig. 3).
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Fig. 2 | Experimental characterization of winner-take-all DNA neural 
networks. a, Two-species winner-take-all behaviour. The standard 
concentration is 50 nM (1×). The circuit is composed of two weighted-
sum strands (S1 and S2), an annihilator molecule ([Anh1,2] = 75 nM 
(1.5×)), two restoration gates ([RG1] = [RG2] = 50 nM (1×)), two 
fuel strands ([YF1] = [YF2] = 100 nM (2×)) and two reporters 
([Rep1] = [Rep2] = 100 nM (2×)). Initial concentrations of S1 and S2 
are shown as fractions of the standard concentration. The diagonal line 
indicates equal concentrations of both strands. Fluorescence kinetics data 
are shown over the course of 2.5 h, normalized using a common minimum 
and maximum fluorescence level (Methods section ‘Data normalization’). 
To clearly illustrate the difference between the two output trajectories, 
the background below the data points are shown in the same colour (with 
some transparency) as the data points. b, A 4-bit pattern-recognition 
circuit. In the weighted-sum layer of the circuit diagram (top left), each 
wire corresponds to a weight molecule, all wires from the same input 
require a common fuel strand and all wires to the same output require 
a common summation gate. Thus, a circuit that can remember any two 
4-bit patterns is composed of 25 molecules (4 inputs, 14 molecules in 
the weighted-sum layer and 7 molecules in the winner-take-all layer). 

However, a circuit that remembers two specific 4-bit patterns requires 
only a subset of the wires in the weighted-sum layer, each corresponding 
to a 1 in the memories (for example, each orange wire in the circuit 
diagram corresponds to a black pixel in the memories). Thus, the example 
circuit is composed of 20 molecules (4 fewer weight molecules and 1 
fewer fuel strand). In each output-trajectory plot (right), dotted lines 
indicate fluorescence kinetics data and solid lines indicate simulations. 
The patterns to the left and right of the arrows indicate input signals and 
output classifications, respectively. Each orange cross indicates a bit-flip 
compared to the memories. The initial concentration of each input strand 
or weight molecule is either 0 or 50 nM; weight fuels (XF1 and XF2) are 
twice the concentration of weight molecules; the initial concentrations of 
the summation gates, annihilator, restoration gates, restoration fuels and 
reporters are 100 nM (1×), 400 nM (4×), 100 nM (1×), 200 nM (2×) 
and 200 nM (2×), respectively, with a standard concentration of 100 nM 
(details in Supplementary Table 3). In the weighted-sum space (bottom 
left), the two patterns with two corrupted bits are the same distance 
(shown as double-headed arrows) from the diagonal line as the two  
perfect inputs.
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Fig. 3 | A winner-take-all DNA neural network that recognizes  
100-bit patterns as one of two handwritten digits. a, Weights determined 
as the average of 100 ‘6’s and ‘7’s from the MNIST database. The value 
of each pixel (for example, 0.036 for the 35th pixel in ‘6’ and 0.062 for 
the 16th pixel in ‘7’) was used to determine the concentration of each 
weight molecule, relative to a standard concentration of 100 nM (for 
example, [W35,1] = 3.6 nM and [W16,2] = 6.2 nM). The concentrations of 
the fuel strands that facilitate the weight multiplication reactions were 
twice that of their respective weight molecules. b, Example binary inputs 
with each 1 and 0 corresponding to the presence and absence of an input 
strand, respectively. The concentration of each input strand present was 
1/b × 100 nM = 5 nM, where b = 20 is the total number of 1s in each input. 
The orange crosses indicate bit-flips compared to the memories (that is, 
weight matrices) shown in a. There are 12 flipped bits in each example. 
Because the total number of 1s in each input pattern is the same as the total 
number of non-zero weights in the memories, it is always the case that half 
of the flipped bits are associated with non-zero weights. c, Circuit diagram 

and the number of distinct species in the circuit. For the total number of 
species, the two values correspond to the number of species for a specific 
number b of inputs (left) and for all n possible inputs (right). d, The 
13,936 classifiable digits (left; large green and yellow points) correspond 
to 98% of all ‘6’s and ‘7’s in the MNIST database. Test input patterns were 
chosen (right; large green and yellow points; 36 in total) on the basis of 
their locations in the weighted-sum space. The lines labelled s1 = s2 ± 0.15 
indicate a 15% margin to the diagonal line, within which we expect the 
pattern recognition to be experimentally difficult. The light grey points 
correspond to non-classifiable (left) or non-tested (right) digits.  
e, Recognizing handwritten digits with up to 30 flipped bits compared to 
the ‘remembered’ digits. Dotted lines indicate fluorescence kinetics data 
and solid lines indicate simulations. The input pattern is shown in each 
plot. Note that 40 is the maximum number of flipped bits because all 
patterns have exactly 20 1s. Weights and inputs are listed in Supplementary 
Table 2. The initial concentrations of all species are listed in Extended Data 
Fig. 10 (details in Supplementary Table 3).
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To understand the theoretical limits of the scalability and power of 
winner-take-all DNA neural networks, in the context of simply using 
the target patterns as weights, we now address the following three ques-
tions. The first is the number of distinct target patterns that can be 
remembered simultaneously. Any set of patterns that consists of the 
same number of 1s can be remembered (Methods, Theorem 1). For 
example, the largest set of 9-bit patterns that can be remembered, each 
consisting of five 1s, consists of 9C5 = 126 patterns. Moreover, any set 
of patterns can be remembered if it does not contain a pattern in which 
all 1s are a subset of 1s in another pattern (Methods, Theorem 2). The 
second question concerns which corrupted patterns can be recognized. 
All patterns with fewer than b − o corrupted bits can be recognized, 
where b is the total number of 1s and o is the maximum number of 
overlapped 1s in all target patterns (Methods, Theorem 3). For example, 
all patterns with fewer than three corrupted bits can be recognized for 
the 9-bit target patterns ‘L’ and ‘T’ shown in Fig. 1b, because b = 5 and 
o = 2. Moreover, some patterns with more than b − o corrupted bits can 
still be recognized; for example, in all possible 9-bit patterns, there are 
128, 102 and 30 patterns with three, four and five corrupted bits, respec-
tively, that can be recognized as ‘L’ or ‘T’. We chose 28 example 9-bit 
patterns with an increasing number of corrupted bits from one to five, 
and demonstrated that the DNA neural network correctly classified all 
examples (Extended Data Fig. 4). The final question asks how the size 
of the DNA circuit scales with an increasing number of more complex 
patterns. In general, constructing a network that can remember m dis-
tinct n-bit patterns requires n input strands, n × m weight molecules 
and n fuel strands for weight multiplication, m summation gates, mC2 
annihilators, m gates and m fuel strands for signal restoration, and m 
reporters, totalling n × m + 2n + 4m + mC2 molecules. However, for a 
specific set of target patterns, only a subset of the weight molecules are 
required, each corresponding to a 1 in the patterns.

To demonstrate the scalability and power of winner-take-all DNA 
neural networks experimentally, we chose a task that is visually inter-
esting: recognizing handwritten digits. Some aspects of this task are 
computationally non-trivial, such as distinguishing a sloppy ‘4’ from a 
sloppy ‘9’. The patterns of digits were taken from the Modified National 
Institute of Standards and Technology (MNIST) database19, which is 
commonly used to test machine learning algorithms20. We converted 
the original patterns to binary patterns with 20 1s on a 10 × 10 grid, 
averaged 100 example ‘6’ and ‘7’ patterns, and selected and normalized 
the top 20 pixels as weights (Fig. 3a, Methods section ‘Neural network 
training and testing’). The value of each analogue weight was then 
implemented with the concentration of a weight molecule. The test 
inputs remained binary patterns, in which each 1 or 0 corresponded to 
the presence or absence of an input strand, respectively (Fig. 3b). The 
theoretical limits of the winner-take-all neural networks with analogue 
weights are similar to those with binary weights (Methods, Theorems 
4 and 5). In total, 104 distinct molecules were used for testing any  
specific input pattern out of 184 distinct molecules for all possible 
inputs (Fig. 3c).

In the MNIST database, there are more than 14,000 example hand-
written ‘6’ and ‘7’ digits. On the basis of the understanding that we have 
established from the experimental characterization of smaller winner-
take-all circuits, we looked at all example patterns in the weighted-sum 
space (Fig. 3d, Extended Data Fig. 5a): 2% of the patterns are on the 
wrong side of the diagonal line, which means that it is impossible for the 
DNA circuit to recognize them correctly; 8% of the patterns are fairly 
close to the diagonal line (within a 15% margin), which we expect to 
be experimentally difficult; however, the remaining 90% of the patterns 
are far enough from the diagonal line that we expect correct recogni-
tion. Therefore, we chose 36 representative example patterns from the 
last category, ensuring both uniform distribution in the weighted-sum 
space and the full range of bit deviation from the memories (Methods 
section ‘Neural network training and testing’). As shown in the exper-
imental data (Fig. 3e, Extended Data Fig. 5d), the perfect patterns  
(the weights converted to binary) each yield the desired circuit output. 
More importantly, patterns that increasingly deviate from the memories 

were also recognized, with up to 30 flipped bits. Similar to observations 
in the smaller DNA neural networks, some of the patterns that are 
visually more challenging to recognize are not necessarily more diffi-
cult for the DNA circuit—a desirable property of the winner-take-all 
computation.

We have shown that the winner-take-all DNA neural networks scale 
well to more complex patterns. Next, we explore whether they could 
also be used to remember an increasing number of distinct patterns 
simultaneously. The pairwise-annihilation approach alone is not well 
suited for scaling up the number of patterns because the number of 
annihilators grows quadratically with the number of patterns. We show 
that the three-species winner-take-all function was still robust enough 
(Extended Data Fig. 6a) to allow the construction of a DNA neural 
network that remembers three 100-bit patterns. However, the compe-
tition became harder with more competitors: the reaction rates for 
multiple annihilation pathways could be matched approximately but 
not perfectly (Methods section ‘Sequence design’, Extended Data 
Fig. 6b, c), and it took much longer for the annihilation reactions to 
yield a winner and for the signal level of the winner to be fully restored 
(Extended Data Fig. 7). Using the same method, it would be difficult 
to construct networks that remember more patterns. We therefore pro-
pose an alternative approach that first divides the target patterns into 
groups and then uses multiple distinct group identities to classify the 
patterns (Fig. 4a). The nine digits ‘1’–‘9’ can be divided into three 
groups in two ways (shown as three rows and three columns in Fig. 4b), 
such that a pair of outputs corresponds uniquely to each digit (Fig. 4d). 
For example, a ‘4’ is recognized if and only if y1 = 1 and z1 = 1 (where y1  
is the output identifying the first row and z1 is the output identifying 
the first column). With this grouping approach, nine distinct patterns 
can be recognized using only × =C 2 69

2  annihilators, which would 
otherwise require 9C2 = 36 annihilators. In total, 225 distinct molecules 
were used for testing any specific input pattern out of 305 distinct  
molecules for all possible inputs (Fig. 4c).

We determined the weights for each group using a simple ‘average 
then subtract’ method (Fig. 4b): take the average of 100 examples per 
in-group digit, subtract the average of 100 examples per out-of-group 
digit, then select and normalize the top 20 pixels (Methods section 
‘Neural network training and testing’). The trade-off of the grouping 
approach is that fewer example patterns can be recognized. With the 
best grouping, 47% of the patterns can potentially be recognized, of 
which 48% are experimentally feasible (with a 15% margin to the 
diagonal line in the normalized weighted-sum space). In general, 
with the same circuit complexity, this alternative approach enables 
a larger set of distinct target patterns to be classified, but with less  
accuracy. Nonetheless, as shown in the experimental data, the  
circuit yields the desired pair of outputs for 99 representative example 
patterns (Fig. 4d, e).

To facilitate the design of winner-take-all DNA neural networks, we 
developed an online software tool. The WTA Compiler21 (Extended 
Data Fig. 8) converts a user-defined set of memories and test patterns 
into program code that describes a DNA neural network, which can 
then be used to simulate the kinetics of the network. It also provides 
sequences of the DNA strands that are required to construct the DNA 
neural network experimentally.

It is interesting to compare the performance of winner-take-all neural  
networks with logic circuits. For example, it is possible to distinguish 
whether a 9-bit pattern is more similar to ‘L’ or ‘T’ using a circuit con-
sisting of 8 logic gates, for all input patterns that we have tested experi-
mentally. However, a more complex circuit consisting of 21 logic gates 
is required to correctly compute the output for all classifiable patterns 
(Extended Data Fig. 9a). Similarly, the 100-bit handwritten digits can 
be recognized by circuits with up to 23 logic gates, if only the example 
patterns that we have tested experimentally are considered. But these 
logic circuits perform poorly when tested against the entire MNIST 
database (Extended Data Fig. 9b). To match the theoretical limit of  
winner-take-all neural networks, measured by the percentage of classifi-
able patterns, much more complex logic circuits are needed. Importantly, 
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varying the concentrations of the weight molecules in the winner-take-
all neural networks would enable the same set of DNA molecules to 
be used for different pattern-classification tasks. By contrast, without 
reconfigurable circuit architectures, a different set of DNA molecules 
would be required for a logic circuit that performs a different task.

The power of winner-take-all DNA neural networks could be explored 
further in several directions. Instead of the pairwise-annihilation  
approach, a winner could be selected by utilizing competing 
resources5,6, which could potentially lead to more scalable and 
accurate pattern recognition. It could also provide the possibility of 
selecting several winners instead of just one, which in theory is com-
putationally more powerful4. Extending the circuit construction from 
single-layer to multi-layer winner-take-all computation, or simply 
allowing the outputs of winner-take-all circuits to be connected to 
downstream logic circuits, could enable more sophisticated pattern 

recognition (such as involving translated and rotated patterns)22. 
Using a variable-gain amplifier23,24, winner-take-all DNA circuits 
could be adapted to process analogue inputs, which would enable 
a wider range of signal-classification tasks, including applications 
in detecting complex disease profiles that consist of mRNA and 
microRNA signals. With aptamers25,26, more diverse biomolecules 
could be detected.

The fact that we were able to use target patterns as weights in  
winner-take-all DNA neural networks opens up immediate possibilities 
for embedding learning within autonomous molecular systems. With 
one additional circuit component that actives weight molecules during 
a supervised training process, the DNA circuits would be capable of 
activating a specific set of wires in the weight-multiplication layer when 
exposed to a specific set of patterns. As widely discussed in experimental27  
and theoretical28–30 studies, learning—the most desirable property 

Fig. 4 | A winner-take-all DNA neural network that recognizes 100-bit  
patterns as one of nine handwritten digits. a, Circuit diagram for 
recognizing nine distinct patterns using a grouping approach. WTA1 
and WTA2 are two separate winner-take-all functions that each yields a 
distinct set of outputs (yj and zj). b, Weights determined using an ‘average 
then subtract’ method. The average of 100 example digits from the MNIST 
database are shown grouped by rows (corresponding to outputs yj) and 
columns (corresponding to outputs zj). The weight matrix for each group 
(boxed patterns; colours correspond to the respective output trajectories  
in d) is the average of all in-group digits less the average of all out-of-group 
digits. Using this weight matrix, the fraction of experimentally feasible test 
patterns from all examples in the MNIST database was calculated for all 
possible ways of grouping the nine digits and the best grouping was chosen 

and shown here. c, Number of distinct species in the circuit in a. For 
the total number of species, the two values correspond to the number of 
species for a specific number b of inputs (left) and for all n possible inputs 
(right). d, Fluorescence kinetics data (dotted lines) and simulations (solid 
lines) of the circuit behaviour with nine representative input patterns 
(shown in the plots). e, Fluorescence level of each pair of outputs at 24 h or 
longer after the inputs were added, collected from 99 experiments with 11 
example patterns per digit. Each coloured point corresponds to an example 
pattern from the labelled class of digit; each grey point corresponds 
to an out-of-class example pattern. Weights and inputs are listed in 
Supplementary Table 2. The initial concentrations of all species are listed 
in Extended Data Fig. 10 (details in Supplementary Table 3).
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of biochemical circuits—would allow artificial molecular machines 
to adapt their functions on the basis of environmental signals during 
autonomous operations.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0289-6.
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MethodS
Sequence design. All DNA strands used in the winner-take-all neural networks 
were composed of long branch-migration domains and short toehold domains. 
Owing to the modularity of the previously developed seesaw DNA motif3,11 and the 
extended new circuit component—the annihilator—the sequence design was per-
formed at the domain level. A pool of domain sequences was generated according 
to a set of design heuristics that have previously been experimentally validated12. 
All domains used a three-letter code (A, T and C) to reduce secondary structure 
and undesired strand interactions. No domain sequences include runs of more 
than four consecutive As or Ts or more than three consecutive Cs, which reduces 
synthesis errors. All domain sequences had between 30% and 70% C-content so 
all double-stranded complexes would have similar melting temperatures. Finally, 
no pairs of domain sequences share a matching sequence longer than 35% of the 
domain length, and all pairs have at least 30% different nucleotides. This ensures 
that a strand with a mismatched branch-migration domain will not complete 
strand displacement initiated from either the 3′ or the 5′ end. In addition to a 
15-nucleotide sequence pool used in previous work3,11,12, a 20-nucleotide sequence 
pool was generated and used in the weight multiplication layers because of the large 
number of molecules used here. The two sequence pools were checked to ensure 
that the same pairwise criteria were met. All domains included the clamp design 
introduced previously11, to reduce leak reactions between initial gate species.

All molecular complexes shared a 5-nucleotide universal toehold domain3,11,12. 
The annihilator complexes had 7-nucleotide toeholds composed of the 5-nucleotide  
universal toehold and a 2-nucleotide extension that matched the 2 nucleotides 
adjacent to the toehold on the upstream seesaw gate. This increased the binding 
energy and thus the effective strand-displacement reaction rate between the anni-
hilator complexes and the weighted-sum strands, compared to that between the 
signal-restoration gates and the weighted-sum strands.

To ensure ‘fair competition’ between the weighted-sum species (that is, same 
rates for all pairwise-annihilation reactions), all annihilators within a set of  
winner-take-all computations had identical toehold extensions, and the weighted- 
sum strands had the same single-nucleotide dangle to keep the binding energies 
consistent within a winner-take-all computation. Here, we used up to two sets of 
three annihilators. The extensions and dangle sequences were chosen by estimating 
the binding energies using NUPACK31, and the sequences for the second set of 
annihilators were chosen with similar energies to those of the first set that worked 
well in the three-species winner-take-all experiments (Extended Data Fig. 6a). 
In addition, the rate of an annihilation reaction could depend on the sequence of 
the branch-migration domains. We measured the rates of 15 catalytic gates, and 
selected two groups of three gates with the closest rates (Extended Data Fig. 6b, c). 
By using these gates for signal restoration, the branch-migration domains in the 
annihilators were determined simultaneously, because the signal-restoration gates 
and annihilators share the same branch-migration domains (Extended Data Fig. 1).

All DNA sequences are listed in Supplementary Table 1.
Neural-network training and testing. The winner-take-all DNA neural network 
was tested on patterns derived from the MNIST handwritten-digit database19. The 
training and testing sets were downloaded and merged into a single database, and 
all example patterns of digits ‘1’–‘9’ were retained, totalling 63,097 images. The 
original MNIST dataset consists of weight-centred grey-scale images on a 28 × 28 
grid. Here, we used binary patterns on a 10 × 10 grid. First, the images were res-
caled to a 12 × 12 grid using Gaussian resampling. The largest 20 bits in each image 
were set to 1 and the remaining bits were set to 0. Finally, the digits were re-centred 
on a 10 × 10 grid on the basis of their bounding boxes.

We made a conscious effort to train the neural networks using a simple algo-
rithm. In the neural networks that remember two or three handwritten digits, for 
each digit, the weight matrices were the average of the first 100 example patterns 
in the database, restricted to the 20 most common bits (that is, the ones with the 
largest averaged values), and normalized to sum to 1. For the nine-digit network, 
all digits were divided into three groups in two ways. For each group, the weight 
matrix was the average of the first 100 examples of the three in-group digits less 
the average of the first 100 examples of the six out-of-group digits. The 20 most 
common bits were retained, and all weight matrices were normalized to sum to 
1.15, to shift the test patterns into a more ideal area in the weighted-sum space. 
The fraction of experimentally feasible test patterns (with a 15% margin to the 
diagonal line in the weighted-sum space for all pairs of species) was calculated for 
all ways of grouping the nine digits, and the best grouping was chosen. The clas-
sification performance of the network using weights determined by non-negative 
least squares was only slightly better than the performance using weights from the 
simple ‘average then subtract’ method (54% versus 47%).

Experimentally tested input patterns were chosen to represent the whole weighted- 
sum space as well as the full range of bit deviation from the memories of the  
networks. To choose a set of test patterns for a digit, all correctly classified examples 
of that digit with at least a 15% margin in the weighted-sum space were divided 
into six corruption classes. The weighted sums for the digits in each class were then 

clustered using the k-medoids algorithm, and an example test pattern was chosen 
randomly from each cluster according to a uniform distribution. This ensured 
that the test patterns represented the whole weighted-sum space and not just the 
most common digits.

Weights and inputs used in all experiments are listed in Supplementary Table 2. 
By exporting each sheet of the Excel file to a .csv file and uploading it to the WTA 
Compiler21, the weights and inputs can be visually displayed, the inputs analysed 
in their weighted-sum space, the kinetics behaviour of the winner-take-all DNA 
neural network simulated and DNA sequences generated.
DNA oligonucleotide synthesis. All DNA strands were purchased from Integrated 
DNA Technologies (IDT). The reporter strands with fluorophores and quenchers 
were purified (HPLC) and the other strands were unpurified (standard desalting). 
All strands were shipped lyophilized then resuspended at 100 μM in Tris-EDTA 
(TE) buffer, pH 8.0, and stored at 4 °C.
Annealing protocol and buffer condition. Annihilator and gate complexes 
were prepared for annealing at 45 μM with top and bottom strands in a 1:1 ratio. 
Reporters were prepared at 20 μM with top quencher strands in 20% excess of 
bottom strands. The buffer for all experiments and annealed complexes was TE 
with 12.5 mM Mg2+. Complexes were annealed in a thermal cycler (Eppendorf) 
by heating to 90 °C for 5 min and then cooling to 20 °C at a rate of 0.1 °C per 6 s.
Purification. Annealed annihilator and gate complexes were purified using 12% 
polyacrylamide gel electrophoresis (PAGE). Double-stranded complex bands were 
cut from the gel, chopped into pieces and incubated for 24 h at room temperature in 
TE buffer with 12.5 mM Mg2+ to allow DNA to diffuse into the buffer. The solution 
with purified complexes was recovered and concentrations were determined with 
NanoDrop (Thermo Fisher). Weight matrices for the DNA neural networks that 
remember handwritten digits had 20 gate complexes for each neuron. These gates 
(weight molecules) were annealed individually and then mixed together in the 
appropriate ratio, on the basis of the values of the weights. This mixture was then 
purified via PAGE, recovered and the concentration determined by NanoDrop 
using the weighted-average extinction coefficient.
Fluorescence spectroscopy. Fluorescence kinetics data were collected every 2, 3 
or 4 min, depending on the overall length of the experiment, using a microplate 
reader (Synergy H1, Biotek). Excitation (emission) wavelengths were 496 nm  
(525 nm) for dye ATTO488, 555 nm (582 nm) for dye ATTO550 and 598 nm  
(629 nm) for dye ATTO590. Experiments were performed in 96-well plates 
(Corning) with 160-μl reaction mixture per well for the nine-digit experiments 
and 200-μl reaction mixture per well for all other experiments. Experiments were 
performed at a standard concentration of 100 nM for all 4-bit and 100-bit pattern 
recognition and at a standard concentration of 50 nM for all other experiments. 
Initial concentrations of all species are listed in Extended Data Fig. 10. Detailed 
protocols for all experiments are listed in Supplementary Table 3.

In the nine-digit experiments, six distinct output trajectories were read using 
three distinct fluorophores. Every experiment was run twice, each having half 
of the outputs connected to fluorophore-labelled reporters and the other half to 
non-fluorophore-labelled reporters. Combining the output trajectories from each 
pair of experiments into a single plot allows the observation of all six outputs 
simultaneously.
Data normalization. All data were normalized from raw fluorescence level to stand-
ard concentration, which is the maximum concentration of an output strand Yj 
released from gate RGj and interacted with a double-stranded reporter molecule 
Repj. The fluorescence level that corresponds to standard concentration (1×) was 
obtained from the average of the final five measurements from the highest signal 
produced from gate RGj on a plate. Negligible concentration (0×) corresponds to the 
background fluorescence of the reaction mixture before any reporter molecules have 
been triggered, which was obtained from the first measurement of the lowest signal 
produced from gate RGj on a plate. All experiments on a single plate were normalized 
together, allowing direct comparison between the output of a network for different 
input patterns. In the two-species winner-take-all experiments shown in Extended 
Data Fig. 3, the first six columns of data were measured on one plate and the last five 
columns measured on another. In the 9-bit pattern-recognition experiments shown 
in Extended Data Fig. 4, the input patterns with 0–2 corrupted bits were measured 
on one plate and those with 3–5 corrupted bits were measured on another.
Model and simulations. Mass-action simulation were performed using the same 
set of reactions and rate constants developed in the seesaw model11, with four 
additional reactions to model pairwise annihilation:
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Here, kf = 2 × 106 M−1s−1, which is the same as the forward rate constant of the 
thresholding reaction in the seesaw model11. The reverse rate constant kr = 0.4 s−1  
was determined using the experimental data shown in Extended Data Fig. 3a. 
This rate constant is of the same order as found in a previous study of cooperative 
hybridization13. Similar to the spurious reactions in the original seesaw model, 
temporary toehold binding between any single-stranded species and any anni-
hilator (or intermediate annihilator species listed above) are also included here.
Code availability. Simulation code is available at the WTA Compiler website21.
Theoretical limits of the power of winner-take-all neural networks. The winner-
take-all function shown in Fig. 1a is defined to have:
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Definition 1. Let X = {x1, x2, …, xm} be a set of m patterns, each with n bits. Let an 
example pattern from X be =α α α α�x x x x( , , , )n1 2 , with ∈αx {0, 1}i . We say that a 
winner-take-all neural network with weights W remembers X if yα = 1 for all 
1 ≤ α ≤ m (and yj = 0 for all j ≠ α) when x = xα.
Theorem 1. If X is a set of m distinct n-bit patterns, each containing exactly b 1s, 
then the winner-take-all neural network with = …� � �w w wW ( , , , )m1 2  and 
wj = (w1j, w2j, …, wnj) = xj (that is, =w xij i

j) remembers X.
Proof. Consider this network on input x = xα. First, for j = α, we calculate 
sα = xα · xα = b. Second, for j ≠ α, xj ≠ xα. Because the number of 1s in both of 
these patterns is b, the number of indices at which the bits are both 1 is strictly less 
than b. Therefore, sj = xj · xα < b. Putting the first and second calculations together, 
we conclude that sα > sj and thus yα = 1 and yj = 0 for all j ≠ α.

The next theorem is a generalization of Theorem 1.
Theorem 2. If X is a set of m distinct n-bit patterns, and the 1s in any example  
pattern xα is not a subset of the 1s in another pattern xβ (that is, no two example 
patterns satisfy xα · xβ = xα · xα), then the winner-take-all neural network with 

= …� � �w w wW ( , , , )m1 2  and wj = xj remembers X.
Proof. Consider this network on input x = xα. First, sα = xα · xα and is equal to the 
total number of 1s in xα. Second, for j ≠ α, sj = xj · xα ≠ xα · xα. Third, for all j, 
sj = xj · xα ≤ xα · xα = sα. Putting these three constraints together, we conclude that 
sα > sj and thus yα = 1 and yj = 0 for all j ≠ α.
Definition 2. In a winner-take-all neural network with = …� � �w w wW ( , , , )m1 2  and 
wj = xj, we that say each xj is a memory. We say that the network recognizes input 
x as memory xα if yα = 1 (and yj = 0 for all j ≠ α). We say that a pattern x has c 
corrupted bits compared to a memory xα (or has c-bit deviation from xα) if the 
number of indices at which the bits are different (that is, one bit is 0 and the other 
is 1 or vice versa) in x and xα is exactly c. We say that two memories xα and xβ have 
o overlapped bits if the number of indices at which the bits are both 1 in these 
memories is exactly o.
Theorem 3. If x is a pattern with c < b − o corrupted bits compared to a memory xα, 
where b is the total number of 1s in xα and o is the maximum number of overlapped 
bits in xα and xj for all j ≠ α, then the winner-take-all neural network recognizes  
x as xα.
Proof. Let c0 be the number of flipped 0s (that is, where 1 in x and 0 in xα appear 
at the same index) and c1 be the number of flipped 1s (that is, where 0 in x and 
1 in xα appear at the same index). First, sα = xα · x = b − c1. Second, for j ≠ α, 

sj = xj · x ≤ o + c0 (sj reaches its maximum when all corrupted 1s are 0s and all 
corrupted 0s are 1s are at the same indices in xj). Third, because c = c0 + c1 and 
c < b − o, o + c0 = o + c − c1 < o + b − o − c1 = b − c1. Putting the three constraints 
together, we conclude that sα > sj and thus yα = 1 and yj = 0 for all j ≠ α.

Next, we consider a much larger set of n-bit patterns, X = {x1, x2, …, xM} with 
�M m.

Definition 3. Let each example pattern =μ μ μ μ�x x x x( , , , )n1 2  be associated with 
a desired output =μ μ μ μ�y y y y( , , , )n1 2

, with ∈μy {0, 1}j
 and ∑ =μ

= y 1j
m

j1  (that is, 
only one specific =α

μy 1 and =μy 0j
 for all j ≠ α). If =α

μy 1, then we say that xμ is 
a pattern in class α.

Let = = ∑ ∑ ∑α α α α
μ

μ
μ

μ
μ

μ� �� � �� ( )x x x x x x x( , , , ) , , ,n n1 2 1 2  for all μ with =α
μy 1 

(that is, the sum of all patterns in class α). Let = ∑α
α�t xi i  for the b largest compo-

nents of α�x . Let =α α α α�x x x x( , , , )n1 2 , with = /α α
α�x x ti i  if α�xi  is one of the b larg-

est values and =αx 0i  otherwise (that is, the averaged pattern for class α, restricted 
to the b most common bits and normalized to sum to 1). Let =α α α α�x x x xˆ (ˆ , ˆ , , ˆ )n1 2   , 
with =αx̂ 1i  if >αx 0i  and =αx̂ 0i  if =αx 0i . Let = �x x xX̂ { ˆ , ˆ , , ˆ }m1 2  be the set of 
averaged patterns converted to binary.

The next two theorems are similar to Theorems 1 and 3, but generalized to using 
averaged training patterns as analogue weights rather than using a single training 
pattern (that is, target pattern) as binary weights.
Theorem 4. If X is a set of M distinct n-bit patterns, x̂ j contains exactly b 1s for all j 
and ≠x xˆ ˆj k  for all j ≠ k, then the winner-take-all neural network with 

= …� � �w w wW ( , , , )m1 2  and =w xj
j remembers X̂.

Proof. Consider this network on input = αx x̂ . First, we calculate 
= ⋅ = ∑ =α

α α α
=x xs xˆ 1i

n
i1 . Second, for j ≠ α, ≠ αx xˆ ˆj . Because the number of 1s 

in both of these patterns is b, there exist at least one index i at which =x̂ 1i
j  (and 

>x 0i
j ) and =αx̂ 0i ; thus = ⋅ < ∑ =α

=x xs xˆ 1j
j

i
n

i
j

1 . Putting the two constraints 
together, we conclude that sα > sj and thus yα = 1 and yα = 0 for all j ≠ α.
Definition 4. In a winner-take-all neural network with W = (w1

T, w2
T, …, wm

T) 
and =w xj

j, we say that each x j is a memory and each =x x̂ j is a perfect input. We 
say that a binary pattern x has c-bit deviation from a memory αx  if the number of 
indices at which the bits are different in x and αx̂  is exactly c. We say that two 
memories αx  and βx  have overlap = ⋅ ⋅α β β αx x x xo max{ ˆ , ˆ }. We say a bit i is no 
more than average in αx  if ≤ /αx b1i , where b is the total number of 1s in αx̂ .
Theorem 5. If x is a pattern with c-bit deviation from a memory αx , where 
c < b(1 − o), b is the total number of 1s in αx̂  and o is the maximum overlap in αx  
and x j for all j ≠ α, and if all flipped 1s are no more than average in αx  and all flipped 
0s are no more than average in x j for all j ≠ α, then the winner-take-all neural 
network recognizes x as αx̂ .
Proof. Let c0 be the number of flipped 0s (that is, where 1 in x and 0 in αx̂  appear 
at the same index) and c1 be the number of flipped 1s (that is, where 0 in x and 1 
in αx̂  appear at the same index). First, = ⋅ ≥ − /α

αx xs c b1 1 . Second, for j ≠ α, 
= ⋅ ≥ + /x xs o c bj

j
0 . Third, because c = c0 + c1 and c < b(1 − o), o + c0/b = o + 

(c − c1)/b < o + [b(1 − o) − c1]/b = 1 − c1/b. Putting the three constraints together, 
we conclude that sα > sj and thus yα = 1 and yj = 0 for all j ≠ α.

These are not the strongest results possible, but they provide intuition about 
how the winner-take-all neural network functions, with both binary and analogue 
weights, and how tolerant to errors it is.
Data availability. All data that support the findings of this study are included in 
the manuscript and its Extended Data. Source Data for Figs. 2–4 and Extended 
Data Figs. 3–7 are provided with the online version of the paper.
 
 31. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems.  
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Extended Data Fig. 1 | DNA implementation of winner-take-all 
neural networks. The winner-take-all computation is broken into five 
subfunctions: weight multiplication, summation, pairwise annihilation, 
signal restoration and reporting. In the chemical reactions listed next 
to the five subfunctions, the species in black are needed as part of the 
function, the species in grey are needed to facilitate the reactions and 
the waste species are not shown. kf and ks are the rate constants of the 
pairwise-annihilation and signal-restoration reactions, respectively. In 
the DNA-strand-displacement implementation, weight multiplication 
and signal restoration are both catalytic reactions. The grey circle with an 

arrow indicates the direction of the catalytic cycle. Representative, but not 
all possible, states are shown for the pairwise-annihilation reaction. Zigzag 
lines indicate short (5 or 7 nucleotide) toehold domains and straight 
lines indicate long (15 or 20 nucleotide) branch-migration domains in 
DNA strands, with arrowheads marking their 3′ ends. Each domain 
is labelled with a name, and asterisks in the names indicate sequence 
complementarity. Black-filled and white-filled arrowheads indicate the 
forwards and backwards directions of a reaction step, respectively. All 
DNA sequences are listed in Supplementary Table 1.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 2 | Seesaw circuit implementation of winner-take-
all neural networks. a, Same as Fig. 1a. b, Seesaw circuit diagram11 for 
implementing the winner-take-all neural network. Each black number 
indicates the identity of a seesaw node. A total of n + 3m nodes are 
required for implementing a winner-take-all neural network with m 
memories that each has n bits. The location and absolute value of each 
red number indicates the identity and relative initial concentration of a 

DNA species, respectively. A red number on a wire connected to a node 
(or between two nodes) indicates a free signal molecule, which can be an 
input or fuel strand. A red number inside a node indicates a gate molecule, 
which can be a weight, summation gate or restoration gate. A red number 
on a wire that stops perpendicularly at two wires indicates an annihilator 
molecule. A negative red number inside a half node with a zigzag arrow 
indicates a reporter molecule.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 3 | Experimental characterization of winner-take-
all DNA neural networks. a, Two-species winner-take-all behaviour. The 
experimental data (left, same as Fig. 2a) were used to identify the reverse 
rate constant kr = 0.4 s−1 of the annihilation reaction in simulations 
(right). All fluorescence kinetics data and simulation are shown over 
the course of 2.5 h. The standard concentration is 50 nM (1×). Initial 
concentrations of the annihilator, restoration gates, fuels and reporters are 
75 nM (1.5×), 50 nM (1×), 100 nM (2×) and 100 nM (2×), respectively. 
b, A 4-bit pattern recognition circuit with input concentration varying 
from 50 nM to 500 nM. In each output trajectory plot, dotted lines  
indicate fluorescence kinetics data and solid lines indicate simulation.  
The patterns to the left and right of the arrow indicate input signal and 

output classification, respectively. c, Applying thresholding to clean up 
noisy input signals. The thresholding mechanism has been reported 
previously in work on seesaw DNA circuits11. The extended toehold in 
threshold molecule has 7 nucleotides. In b and c, to compare the range 
of inputs, the concentration of each input strand is shown relative to 50 
nM. The initial concentration of each weight molecule is either 0 or 50 
nM; weight fuels are twice the concentration of weight molecules. The 
initial concentrations of the summation gates, annihilator, restoration 
gates, restoration fuels and reporters are 100 nM (1×), 400 nM (4×), 
100 nM (1×), 200 nM (2×) and 200 nM (2×), respectively, with a standard 
concentration of 100 nM.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 4 | A winner-take-all DNA neural network that 
recognizes 9-bit patterns as ‘L’ or ‘T’. In each output trajectory plot, 
dotted lines indicate fluorescence kinetics data and solid lines indicate 
simulation. The standard concentration is 50 nM (1×). The initial 
concentration of each input strand is either 0 or 50 nM (1×). The initial 
concentration of each weight molecule is either 0 or 10 nM (0.2×); 
weight fuels are twice the concentration of weight molecules. The initial 
concentrations of the summation gates, annihilator, restoration gates, 

restoration fuels and reporters are 50 nM (1×), 75 nM (1.5×), 50 nM 
(1×), 100 nM (2×) and 100 nM (2×), respectively. The patterns to the 
left and right of the arrow indicate input signal and output classification, 
respectively. In addition to the perfect inputs, 28 example input patterns 
with 1–5 corrupted bits were tested. Note that 5 is the maximum number 
of corrupted bits, because an ‘L’ with more than 5-bit corruption will be as 
similar as or more similar to a ‘T’, and vice versa.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 5 | A winner-take-all DNA neural network  
that recognizes 100-bit patterns as one of two handwritten digits.  
a, Choosing the test input patterns on the basis of their locations in the 
weighted-sum space. b, Overlap between the two memories: ‘6’ and ‘7’. 
c, 36 test patterns with the number of flipped bits shown next to their 
weighted sums. d, Recognizing handwritten digits with up to 30 flipped 

bits compared to the perfect digits. Dotted lines indicate fluorescence 
kinetics data and solid lines indicate simulation. The standard 
concentration is 100 nM. Initial concentrations of all species are listed in 
Extended Data Fig. 10. The input pattern is shown in each plot. Note that 
40 is the maximum number of flipped bits because all patterns have  
exactly 20 1s.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 6 | Three-species winner-take-all behaviour and rate 
measurements for selecting DNA sequences in winner-take-all reaction 
pathways. a, Fluorescence kinetics data for a three-species winner-take-
all circuit. Initial concentrations of the three weighted-sum species are 
shown on top of each plot as a number relative to a standard concentration 
of 50 nM (1×). The initial concentrations of the annihilator, restoration 
gates, fuels and reporters are 75 nM (1.5×), 50 nM (1×), 100 nM (2×) 
and 100 nM (2×), respectively. b, Measuring the rates of 15 catalytic gates. 
Fluorescence kinetics data (dotted lines) and simulations (solid lines) of 
the signal restoration reaction are shown, with a trimolecular rate constant 

(k) fitted using a Markov chain Monte Carlo package (https://github.com/
joshburkart/mathematica-mcmc). The reporting reaction was needed for 
the fluorescence readout. Initial concentrations of all species are listed 
as a number relative to a standard concentration of 50 nM. c, The 15 
catalytic gates sorted and grouped on the basis of their rate constants. All 
rate constants are within ±65% of the median. The two coloured groups 
of three rate constants are within ±5% of the median. These two groups 
of catalytic gates were selected for signal restoration in the winner-take-
all DNA neural networks that remember two to nine 100-bit patterns 
(Methods section ‘Sequence design’).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 7 | A winner-take-all DNA neural network that 
recognizes 100-bit patterns as one of three handwritten digits. a, Circuit 
diagram. b, Choosing the test input patterns on the basis of their locations in 
the weighted-sum space. c, Overlap between the three memories: ‘2’, ‘3’ and 
‘4’. d, Recognizing handwritten digits with up to 28 flipped bits compared 

to the ‘remembered’ digits. Dotted lines indicate fluorescence kinetics data 
and solid lines indicate simulation. The standard concentration is 100 nM. 
Initial concentrations of all species are listed in Extended Data Fig. 10. The 
input pattern is shown in each plot. Note that 40 is the maximum number of 
flipped bits because all patterns have exactly 20 1s.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 8 | Workflow of the winner-take-all compiler. 
The compiler21 is a software tool for designing DNA-based winner-
take-all neural networks. Users start by uploading a file that describes a 
winner-take-all neural network. Alternatively, the weight matrix and test 
patterns can be drawn graphically. Next, a plot of the weighted-sum space 
provides a visual representation of the classification decision boundaries. 

The kinetics of the system can be simulated using Mathematica code 
downloaded from the compiler website, and the set of reaction functions 
are displayed online. Finally, the compiler produces a list of DNA strands 
that are required to experimentally demonstrate the network as designed 
by the user.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 9 | Size and performance analysis of logic circuits 
for pattern recognition. a, Logic circuits that determine whether a 
9-bit pattern is more similar to ‘L’ or ‘T’. b, Logic circuits that recognize 
100-bit handwritten digits. To find a logic circuit that produces correct 
outputs for a given set of inputs, with no constraint on other inputs, 
we first created a truth table including all experimentally tested inputs 
and their corresponding outputs. The outputs for all other inputs 
were specified as ‘don’t care’, meaning the values could be 0 or 1. The 
truth table was converted to a Boolean expression and minimized in 
Mathematica, and then minimized again jointly for multiple outputs 
and mapped to a logic circuit in Logic Friday (https://download.cnet.

com/Logic-Friday/3000-20415_4-75848245.html). In the minimized 
truth tables shown here, ‘X’ indicates a specific bit of the input on which 
the output does not depend. For comparison, minimized logic circuits 
were also generated from training sets with a varying total number of 
random examples from the MNIST database. The performance of each 
logic circuit, defined as the percentage of correctly classified inputs, was 
computed using all examples in the database. To make the minimization 
and mapping to logic gates computable in Logic Friday, the size of the 
input was restricted to the 16 most significant bits, determined on the 
basis of the weight matrix of the neural networks.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 10 | Species and their initial concentrations in all 
neural networks that recognize 100-bit patterns. a, List of species and 
strands. Reporters were annealed with top strands (that is, Rep[j]-t) in 20% 
excess. All other two-stranded complexes were annealed with a 1:1 ratio of 
the two strands and then PAGE-purified (Methods section ‘Purification’). 

b, Weights and example inputs in the neural network that recognizes ‘6’ 
and ‘7’. c, Weights in the neural network that recognizes ‘1’–‘9’. Weights 
and inputs used in all experiments are listed in Supplementary Table 2. 
Detailed protocols for all experiments are listed in Supplementary Table 3.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


	Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks
	Online content
	Acknowledgements
	Reviewer information
	Fig. 1 Winner-take-all neural network and its DNA implementation.
	Fig. 2 Experimental characterization of winner-take-all DNA neural networks.
	Fig. 3 A winner-take-all DNA neural network that recognizes 100-bit patterns as one of two handwritten digits.
	Fig. 4 A winner-take-all DNA neural network that recognizes 100-bit patterns as one of nine handwritten digits.
	Extended Data Fig. 1 DNA implementation of winner-take-all neural networks.
	Extended Data Fig. 2 Seesaw circuit implementation of winner-take-all neural networks.
	Extended Data Fig. 3 Experimental characterization of winner-take-all DNA neural networks.
	Extended Data Fig. 4 A winner-take-all DNA neural network that recognizes 9-bit patterns as ‘L’ or ‘T’.
	Extended Data Fig. 5 A winner-take-all DNA neural network that recognizes 100-bit patterns as one of two handwritten digits.
	Extended Data Fig. 6 Three-species winner-take-all behaviour and rate measurements for selecting DNA sequences in winner-take-all reaction pathways.
	Extended Data Fig. 7 A winner-take-all DNA neural network that recognizes 100-bit patterns as one of three handwritten digits.
	Extended Data Fig. 8 Workflow of the winner-take-all compiler.
	Extended Data Fig. 9 Size and performance analysis of logic circuits for pattern recognition.
	Extended Data Fig. 10 Species and their initial concentrations in all neural networks that recognize 100-bit patterns.


