
Scaling-Up the Crowd:

Micro-Task Pricing Schemes for Worker Retention and Latency Improvement

Djellel Eddine Difallah†, Michele Catasta∗, Gianluca Demartini†, Philippe Cudré-Mauroux†
† eXascale Infolab, University of Fribourg, Switzerland

∗EPFL, Switzerland

Abstract

Retaining workers on micro-task crowdsourcing plat-
forms is essential in order to guarantee the timely com-
pletion of batches of Human Intelligence Tasks (HITs).
Worker retention is also a necessary condition for the
introduction of SLAs on crowdsourcing platforms. In
this paper, we introduce novel pricing schemes aimed
at improving the retention rate of workers working on
long batches of similar tasks. We show how increas-
ing or decreasing the monetary reward over time influ-
ences the number of tasks a worker is willing to com-
plete in a batch, as well as how it influences the overall
latency. We compare our new pricing schemes against
traditional pricing methods (e.g., constant reward for all
the HITs in a batch) and empirically show how cer-
tain schemes effectively function as an incentive for
workers to keep working longer on a given batch of
HITs. Our experimental results show that the best pric-
ing scheme in terms of worker retention is based on
punctual bonuses paid whenever the workers reach pre-
defined milestones.

Introduction

“Companies that do a better job of attracting, developing,
exciting, and retaining their talent will gain more than their
fair share of this critical and scarce resource and will boost
their performance dramatically”

— Michaels et al., The War for Talent

Crowdsourcing is increasingly used in order to obtain
large-scale human input for a wide variety of information
management tasks. Common examples include relevance
judgements (Carvalho, Lease, and Yilmaz 2011; Hosseini et
al. 2012), image search (Yan, Kumar, and Ganesan 2010),
data integration (Demartini, Difallah, and Cudré-Mauroux
2013; Wang et al. 2012). Such tasks are typically published
on a crowdsourcing platform like Amazon MTurk1, which
acts as a market for online labor. The crowd workers are free
to pick any of the publisher’s tasks on the platform and sub-
mit their answers in exchange of micro-payments.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.mturk.com

Scale−up

Scale−out
0

10

20

30

40

50

0 5 10 15 20
Worker ID

N
um

be
r

of
 T

as
ks

 S
ub

m
itt

ed

Figure 1: The classic distribution of work in crowdsourced
tasks follows a long-tail distribution where few workers
complete most of the work while many workers complete
just one or two HITs.

The timely completion of a crowdsourcing campaign is
however hardly guaranteed, as many factors influence its
progression pace, including: the crowd availability and time-
of-day (Ross et al. 2010; Ipeirotis 2010), the amount of the
micro-payments (Faradani, Hartmann, and Ipeirotis 2011),
the number of remaining tasks in a given batch, concur-
rent campaigns, or the reputation of the publisher (Irani
and Silberman 2013). A common observation that is often
made when running a crowdsourcing campaign on micro-
task crowdsourcing platforms is the long-tail distribution of
work done by people (Franklin et al. 2011; Demartini, Difal-
lah, and Cudré-Mauroux 2012; Ipeirotis 2010): Many work-
ers complete just one or a few HITs while a small number
of workers do most of the HITs in a batch (see Figure 1).
While this distribution has been repeatedly observed in a va-
riety of settings, we argue in the following that it is hardly
the optimal case from a batch latency point of view.

As shown in previous work (Faradani, Hartmann, and
Ipeirotis 2011), long batches of Human Intelligence Task
(HITs) submitted to crowdsourcing platforms tend to at-
tract more workers as compared to shorter batches. A con-
sequence of the long tail distribution of the workers, how-
ever, long batches tend to attract less workers towards their
end—that is, when only a few HITs are left—as fewer work-
ers are willing to engage with the almost-completed batch.

Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2014)

50

In this case, it is particularly important that current workers
continue to do as much work as possible before they drop
out and prompt the hiring of new workers for the remaining
HITs. In addition, when workers become scarce (e.g., when
the demand is high), such turnovers can become a serious
obstacle to rapid batch completion.

Graceful scalability is an essential property of IT systems
aiming at minimizing latency while answering increasing
numbers of jobs concurrently. Some systems can be scaled
up by introducing better hardware of software in order to
cope with increasing demand. Many distributed systems,
on the other hand, often support horizontal scalability (they
scale out) by supporting the addition of additional nodes to
handle more requests in parallel.

In an analogous way, we introduce in this paper two ways
of scaling the execution of a crowdsourcing campaign:
• scaling-out the crowd: In this model, a large number of

workers complete the tasks in parallel and compete for
the next tasks. Under the assumption that a large crowd of
workers is always available to handle the different tasks at
hand, this model can minimize the batch execution time
by increasing the competition among workers.

• scaling-up the crowd: A different way of scaling a crowd-
sourcing campaign is to focus on attaining higher worker
retention rates such that they keep working longer on a
given batch. This model potentially presents two advan-
tages: It minimizes the down times incurred when wait-
ing for new workers, and yields potentially better workers
having more experience handling a given task.
Both approaches are valid ways to reduce the latency of

the crowd, reduce the overall execution time, and improve
the global efficiency of an hybrid human-machine informa-
tion system. It is worth noting that under both regimes the
system could reach its optimum, that is, with a sufficiently
large crowd where each individual is highly motivated to fin-
ish a batch that he engages with, the execution time con-
verges to a minimum.

Scaling out the crowd is difficult on current micro-task
crowdsourcing platforms where the number of workers is
strictly limited2. Instead, we propose to focus on scaling up
the crowd in the following and introduce a series of new in-
centive schemes towards that goal. Our fundamental goal is
to retain workers working on a specific batch of HITs as long
as possible in order to minimize the overall batch execution
time. The set of schemes that we experimentally compare in-
clude a uniform pricing scheme baseline that assigns a fixed
price to every HIT in a batch, as well as a set of bonus pric-
ing schemes that vary the amount of money paid for a HIT
over the duration of the crowdsourcing campaign.
Experiments run with crowd workers from the Amazon
MTurk platform over different task types show that our pro-
posed pricing strategies perform differently depending on
the task: For example, for tasks that require some training
and are tedious at first, overpaying workers at the begin-
ning of a batch works well in practice as it encourages the

2MTurk has for example been declining new workers for some
time in order to keep a healthy balance between the number of
workers and the number of tasks posted on the platform.

workers to persevere and continue beyond the initial learn-
ing phase.

In summary, the main contributions of this paper are:
• A novel crowdsourcing optimization problem focusing on

scaling-up the crowd and retaining workers longer in or-
der to minimize the execution time of long batches.

• A set of new incentives schemes focusing on making indi-
vidual workers more engaged with a given batch of HITs
in order to improve worker retention rates.

• An open-source software library to embed the proposed
schemes inside current HIT interfaces3.

• An extensive experimental evaluation of our new tech-
niques over different tasks on a state-of-the-art crowd-
sourcing platform.
The rest of the paper is structured as follows: In the next

section we review related work focusing on contributions re-
lated to pricing schemes for crowdsourcing platforms and
their effects on the behavioral patterns of the workers. Next,
we formally define the problem and introduce different pric-
ing schemes to retain workers longer on a set of HITs given
a fixed monetary budget. The following section presents em-
pirical results comparing the efficiency of our different pric-
ing schemes and discussing their effect on crowd retention
and overall latency. Finally, we discuss the main findings
from our experimental evaluation and conclude the paper.

Related Work

A number of recent contributions studied the effect of mon-
etary incentives on crowdsourcing platforms. In (Mao et al.
2013), Mao et al. compared crowdsourcing results obtained
using both volunteers and paid workers. Their findings show
that the quality of the work performed by both populations
is comparable, while the results are obtained faster when the
crowd is financially rewarded.

Wang et al. (Wang, Ipeirotis, and Provost 2013) looked
at pricing schemes for crowdsourcing platforms focusing on
the quality dimension: The authors proposed methods to es-
timate the quality of the workers and introduce new pricing
schemes based on the expected contribution of the workers.
While also proposing an adaptive pricing strategy for micro-
task crowdsourcing, our work focuses instead on retaining
the crowd longer on a given batch of tasks in order to im-
prove the efficiency of individual workers and to minimize
the overall batch execution time.

Another recent piece of work (Lasecki et al. 2014) ana-
lyzed how task interruption and context switching decreases
the efficiency of workers while performing micro-tasks on
a crowdsourcing platform. This motivates our own work,
which aims at providing new incentives to convince the
workers to keep working longer on a given batch of tasks.

Chandler and Horton (Chandler and Horton 2011) an-
alyzed (among others) the effect of financial bonuses for
crowdsourcing tasks that would be ignored otherwise. Their
results show that monetary incentives worked better than
non-monetary ones given that they are directly noticeable

3A library based on the Django framework available at:
https://github.com/XI-lab/BonusBar

51

by the workers. In our own work, we display bonus bars on
top of the task to inform the worker on his/her hourly rate,
fixed pay, and bonuses for the current HITs.

Recently also, Singer et al. (Singer and Mittal 2013) stud-
ied the problem of pricing micro-tasks in a crowdsourcing
marketplace under budget and deadline constraints. Our ap-
proach aims instead at varying the price of individual HITs
in a batch (i.e., by increasing or decreasing the monetary re-
wards) in order to retain workers longer.

Faradani et al. (Faradani, Hartmann, and Ipeirotis 2011)
studied the problem of predicting the completion of a batch
of HITs and at its pricing given the current marketplace situ-
ation. They proposed a new model for predicting batch com-
pletion times showing that longer batches attract more work-
ers. In comparison, we experimentally validate our work
with real crowd workers completing HITs on a micro-task
crowdsourcing platform (i.e., on Amazon MTurk).

In (Mao, Kamar, and Horvitz 2013), Mao et al. looked
into crowd worker engagement. Their work is highly related
to ours as it aims to characterize how workers perceive tasks
and to predict when they are going to stop performing HITs.
The main difference with our work is that (Mao, Kamar, and
Horvitz 2013) looked at a volunteer crowdsourcing setting
(i.e., they used data from Galaxy Zoo where people classify
pictures of galaxies). This is a key difference as our focus
is specifically on finding the right pricing scheme (i.e., the
correct financial reward) to engage workers working on a
batch of HITs.

Another setting where retaining workers is critical is push
crowdsourcing. Push crowdsourcing (Difallah, Demartini,
and Cudré-Mauroux 2013) is a special type of micro-task
platform where the system assigns HITs to selected workers
instead of letting them do any available HIT on the platform.
This is done to improve the effectiveness of the crowd by
selecting the right worker in the crowd for a specific type
of HIT based on the worker profile which may include pre-
vious HITs history, skills and preferences. Since attracting
the desired workers is not guaranteed, keeping them on the
target task is essential.

On a separate note, this piece of work was also inspired
from studies on talent management in corporate settings.
Companies have long realized the shortage of highly qual-
ified workers and the fierce competition to attract top tal-
ents. In that context, retaining top-performing employees
longer constitutes an important factor of performance and
growth (Bartlett and Ghoshal 2013; Michaels, Handfield-
Jones, and Axelrod 2001). Although our present setting is
radically different from traditional corporate settings, we
identified many cases where the crowdsourcing requesters
(acting as a virtual employer) could use common human re-
sources practices. In the following, we particularly investi-
gate practices such as: training cost, bonuses, and attribution
of qualifications (Huselid 1995; Arthur 2001).

Worker Retention Schemes

Our main retention incentive is based on compensation of
workers engaged in a batch of tasks, using monetary bonuses
and qualifications. We start this section by formally charac-

terizing our problem below. We then introduce our various
pricing schemes, before describing the visual interface we
implemented in order to inform the workers of the monetary
rewards, and the different types of tasks we considered for
the HITs.

Problem Definition

Given a fixed retention budget B allocated to pay workers
w1, . . . , wm to complete a batch of n analogous tasks H =
{h1, . . . , hn}, our task is to allocate B for the various HITs
in the batch in order to maximize the average number of
tasks completed by the workers. More formally, our goal is
to come up with a function b(h) which, for each hj ∈ H
gives us the optimal reward upon completion of hj such as
to maximize the average number of tasks completed by the
workers, i.e.,

b(h)opt = argmax
b(h)

m−1n−1
m−1∑
i=0

n−1∑
j=0

1C(wi,hj ,b(hj))

where 1C(wi,hj ,b(hj)) is an indicator function equal to 1
when worker wi completed task hj under rewarding regime
b(h), and to 0 otherwise. For simplicity, we assume in the
following that workers complete their hits sequentially, i.e.,
that ∀hi, hj ∈ H , hi is submitted before hj if i < j, though
they can drop out at any point in time in the batch.

Pricing Functions

Fixed Bonus The standard pricing scheme used in micro-
task crowdsourcing platforms like Amazon MTurk is uni-
form pricing. Under this regime, the worker receives the
same monetary bonus for each completed task in the batch:

b(hi) =
B

|H| ∀ hi ∈ H (1)

Training Bonus Instead of paying the same bonus for
each task in a batch, one might try to overpay workers at
the beginning of the batch in order to make sure that they do
not drop out early as is often the case. This scheme is espe-
cially appealing for more complex tasks requiring the work-
ers to learn some new skill initially, making the first HITs
less appealing due to the initial overhead. This scheme al-
lows the requester to compensate the implicit training phase
by initially fixing a high hourly wage despite the low pro-
ductivity of the worker. Many different reward functions can
be defined to achieve this goal. In our context, we propose a
linearly decreasing pricing scheme as follows:

b(hi) =
B

|H| +
(⌈ |H|

2

⌉
− i

)
·
(

B

|H| ·
2

|H|
)

(2)

where we add to the average HIT reward B/|H| a certain
bonus payment increment (i.e., the last term of the equation)
a certain number of times based on the current HIT in the
batch. The general idea behind this scheme is to distribute
the available budget in a way that HITs are more rewarded

52

at the beginning and such that the bonus incrementally de-
creases after that. One potential advantage of this pricing
scheme is the possibility to attract many workers to the batch
due to the initial high pay. On the other hand, retention may
not be optimal since workers could drop out as soon as the
bonus gets too low.

Increasing Bonus By flipping the (+) sign in Equation
2 into a (−), we obtain the opposite effect, that is, a pric-
ing scheme with increasing reward over the batch length.
That way, the requesters are overpaying workers towards
the end of the batch instead of at the beginning. This ap-
proach potentially has two advantages: First, as workers get
increasingly paid as they complete more HITs in the batch,
they might be motivated to continue longer in order to com-
plete the most rewarding HITs at the very end of the batch.
Second, workers get rewarded for becoming increasingly
trained in the type of task present in the batch. On the other
hand, a possible drawback of this scheme is the fairly low
initial appeal of the batch due to the low bonuses granted at
first.

Milestone Bonus In all the previous schemes, bonuses are
attributed after each completed HIT. However, depending on
the budget and the exact bonus function used, the absolute
value of the increments can be very small. To generate big-
ger bonuses, one could instead try to accumulate increments
over several HITs and distribute bonuses occasionally only.
Following this intuition, we introduce in the following the
notion of milestone bonuses. Under this regime, an accumu-
lated bonus is rewarded punctually after completing a spe-
cific number of tasks. For a fixed interval I , I <= n, we
formulate this scheme using the following function:

b(hi) =

{ ⌈
B·I
|H|

⌉
if i mod I = 0

0 otherwise
(3)

Qualifications In addition to the monetary reward that is
offered at each interval, the requester can define a qualifica-
tion level that can be granted after each milestone. Qualifi-
cations are a powerful incentive as they constitute a promise
on exclusivity for future work.

Random Bonus An additional scheme that we consider
is the attribution of a bonus drawn once at random4, from
a predefined distribution of the total retention budget B. In
particular, we consider the Zipf distribution in order to create
a lottery effect so that a worker can get a high bonus at any
point while progressing through the batch.

Visual Reward Clues

On current micro-task crowdsourcing platforms such as
Amazon Mechanical Turk, one can implement the above re-
warding schemes by allocating bonuses for the HITs. Hence,

4The attributed bonus value is removed from the distribution’s
list to insure that the budget limit is met.

Figure 2: Screenshot of the Bonus Bar used to show workers
their current and total reward.

Figure 3: Screenshot of the Bonus Bar with next milestone
and bonus.

workers complete HITs in a batch in exchange of to the usual
fixed reward, but get a bonus that possibly varies from one
HIT to another. In order to make this scheme clear to the
workers, we decided to augment the HIT interface with a
Bonus Bar, an open-source toolkit that requesters can easily
integrate with their HITs5. Figure 2 gives a visual rendering
of the payment information displayed to a worker complet-
ing one of our HITs.

Pricing Schemes for Different Task Types

We hypothesize that the pricing schemes proposed above
perform differently based on the task at hand. In that sense,
we decided to address three very different types of tasks and
to identify the most appropriate pricing scheme for each type
in order to maximize worker retention.

The first distinction we make for the tasks is based on their
length: Hence, we differentiate short tasks that only require
few seconds each (e.g., matching products) and longer tasks
that require one minute or more (e.g., searching the Web for
a customer service phone number). Note that in any case we
only consider micro-tasks, that is, tasks requiring little effort
to be completed by individuals and that can be handled in
large batches.

The second distinction we make is based on whether or
not the task require some sort or initial training. The exam-
ple we decided to pick for this paper is the classification of
butterfly images in a predefined set of classes. We assume
that at the beginning of the batch the worker is not confident
in performing the task and repeatedly needs to check the
corresponding Wikipedia pages in order to correctly catego-
rize the various butterflies. After a few tasks, however, most
worker will have assimilated the key differentiating features
of the butterflies and will be able to perform the subsequent
tasks much more efficiently. For such tasks, we expect the
training bonus scheme to be particularly effective since it
overpays the worker at the beginning of the batch as he/she
is spending a considerable amount of type to complete each
HIT. After the worker gets trained, one can probably lower
the bonuses while still maintaining the same hourly reward
rate.

5Specifically, MTurk requesters can use the toolkit by means of
the ExternalQuestion data structure: That is, an externally hosted
Web form which is embedded in the MTurk webpages.

53

Figure 4: Effect of different bonus pricing schemes on worker retention over three different HIT types. Workers are ordered by
the number of completed HITs.

Table 1: Statistics for the three different HIT types.
Batch Type #Workers #HITs Base Budget Bonus Budget Avg. HIT Time Avg. Hourly Rate
Item Matching 50 50 $0.5 $0.5 22sec $5.3/hr
Butterfly Classification 50 50 $0.5 $0.5 15sec $9.4/hr
Customer Care Phone Number Search 50 20 $0.2 $0.4 78sec $2.2/hr

Experimental Evaluation

Experimental Setup

In order to experimentally compare the different pricing
schemes we introduced above, we consider three very dif-
ferent tasks:
• Item Matching: Our first batch is a standard dataset of

HITs (already used in (Wang et al. 2012)) asking work-
ers to uniquely identify products that can be referred to
by different different names (e.g., ‘iPad Two’ and ‘iPad
2nd Generation’).

• Butterfly Classification: This is a collection of 619 im-
ages of six types of butterflies: Admiral, Black Swallow-
tail, Machaon, Monarch, Peacock, and Zebra (Lazebnik et
al. 2004). Each batch of HITs uses 50 randomly selected
images from the collection that are presented to the work-
ers for classification.

• Customer Care Phone Number Search: In this batch, we
ask the workers to find the customer-care phone number
of a given US-based company using the Web.
Our first task is composed of relatively simple HITs that

do not require the workers to leave the HIT page but just to
take a decision based on the information displayed. Our sec-
ond task is more complex as it requires to classify butterfly
images into predefined classes. We assume that the work-
ers will not be familiar with this task and will have to learn
about the different classes initially. In that sense, we provide
workers with links to Wikipedia pages describing each of the
butterfly species. Our third task is a longer task that requires

no special knowledge but rather to spend some time on the
Web to find the requested piece of information.

Table 1 gives some statistics for each task, including the
number of workers and HITs we considered for each task
(always set to 50 for both), the base and bonus budgets, and
the resulting average execution times and hourly rates. All
the tasks were run on the Amazon MTurk platform.

Our main experimental goals are i) to observe the impact
of our different pricing schemes on the total number of tasks
completed the workers in a batch (worker retention) and ii)
to compare the resulting batch execution times. Hence, the
first goal of our experiments is not to complete each batch
but rather to observe how long workers keep working on the
batch. Towards that goal, we decided to recruit exactly 50
distinct workers for each batch, and do not allow the workers
to work twice on a given task. We build the backend such
that each worker works on his/her HITs in isolation without
any concurrency. This is achieved by allowing 50 repetitions
per HIT and recording the worker Id the first time the HIT is
accepted, once the count of Ids reaches 50, any new comer
is asked not to accept the HIT. All batches were started at
random times during the day and left online long enough to
alleviate any effect due to the timezones.

Experimental Results

Worker Retention Figure 4 shows the effect of the dif-
ferent pricing schemes on worker retention for the different
types of HITs we consider in this work. The first observa-

54

tion we can make is that the pricing scheme based on the
Milestone Bonus that grants rewards when reaching prede-
fined goals performs best in terms of worker retention: more
workers complete the batch of tasks as compared to other
pricing schemes over all the different task types.

Another observation is that in the Butterfly Classification
task the training bonus pricing scheme retains workers better
than the increasing or the fixed bonus scheme. This supports
our assumption that overpaying workers at the beginning of
the batch while they are learning about the different butterfly
classes helps them feeling rewarded for the learning effort
and helps keeping them working on the batch longer.

On the other hand, the increasing pricing scheme per-
formed worse both for the Item Matching and the Butterfly
Classification batches. This is probably the case as workers
did feel underpaid for the work they were doing and pre-
ferred to drop the batch before its end.

The final comment is about the fixed pricing scheme: This
shows bad performance in terms of worker retention over
all the task types we have considered. Note that this is the
standard payment scheme used in paid micro-task crowd-
sourcing platforms like Amazon MTurk where each HIT
in a batch is rewarded equally for everyone independently
on how many other HITs the workers has performed in the
batch.

Learning Curve We report on how the execution time
varies across the different task types in Figure 5. We group
the results based on three different classes of workers: a)
the Short category, which includes workers having com-
pleted 25% or less tasks in the batch, b) the Medium cat-
egory, which includes workers having completed between
25% and 75% of the HITs in the batch, and c) the Long cat-
egory, which includes those workers who completed more
than 75% of the tasks.

From the results displayed in Figure 5, we observe a sig-
nificant learning curve for the Butterfly Classification batch:
On average, the first tasks in the batch require workers a
substantially longer time to complete as compared to the
final ones. For the Customer Care Phone Number Search
batch, we see that the task completion time varies from HIT
to HIT. We also note that workers who remained until the
end of the batch are becoming slightly faster over time. The
Item Matching batch shows a similar trend, where tasks sub-
mitted towards the end of the batch require on average less
time than those submitted initially. Across the different types
of tasks, we also note that workers who are categorized as
Short always start slower than others on average (i.e., work-
ers dropping out early are also slower initially). This is hence
an interesting indicator of potential drop-outs.

These results are particularly important for our goal of im-
proving latency, since the retained workers tend to get faster
with new HITs performed. This gain is expected to have a di-
rect impact on the overall execution time of the batch. Next,
we check whether this has an impact on the quality of the
submitted HITs.

�

Short Medium Long

0.00

0.25

0.50

0.75

1.00

10 20 30 50
#Tasks submitted

A
ve

ra
ge

 p
re

ci
si

on
 p

er
 w

or
ke

r

Category Short Medium Long

Figure 6: Overall precision per worker and category of
worker for the Butterfly Classification task (using Increas-
ing Bonus).

Impact on Work Quality We report on the quality of the
crowdsourced results in Figure 6. We observe that the av-
erage precision of the results does not vary across workers
who perform many or few tasks. We observe however that
the standard deviation is higher for the workers dropping
early than for those working longer on the batches. In ad-
dition, those workers who perform most of the HITs in the
batch never yield low precision results (the bottom right of
the plot is empty). This could be due to a self-selection phe-
nomenon through which workers who perform quite badly
at the beginning of the batch decide to drop out early.

Efficiency Evaluation

In this final experiment, we evaluate the impact of our best
approach (Milestone Bonus) on the end-to-end execution of
a batch of HITs, and we compare with a) the classical ap-
proach with no bonus, and b) using the bonus budget to
increase the base reward. In order to get independent and
unbiassed results, we decided to create a new task for this
experiment6, which consists in correcting 10 english essays
from the ESOL dataset (Yannakoudakis, Briscoe, and Med-
lock 2011). We run the three batches on MTurk, each having
10 HITs and requiring 3 repetitions, that is, 3 entries are re-
quired from different workers for each HIT. A summary of
our setting is shown in Table 2. The three setups differ as
follows:
• Batch A(Milestones): Workers who select Batch A are

presented with the interface displaying the Bonus Bar
configured with a bonus at 3, 6 and 10 HITs milestones
offering respectively ($0.2), ($0.4),($0.8) bonuses for a
maximum retention budget of $1.4*3=$4.2.

• Batch B(Classic): Workers who select Batch B are pre-
sented with a classical interface and receive a fixed reward
of $0.2 for each submission they make.

6In the previous set of experiments, we hired more than 450
distinct workers.

55

Butterfly Classification Customer Care Phone Item Matching

0

50

100

150

0 10 20 30 40 50 5 10 15 20 0 10 20 30 40 50
Task Submission Sequence

Ta
sk

 E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Category Long Medium Short

Figure 5: Average of the HITs execution time with standard error ordered by their sequence in the batch. Results are grouped
by worker category (long, medium and short term workers). In many cases, the Long term workers improve their HIT time
execution. This is expected to have a positive impact on the overall batch latency.

• Batch C(High Reward): Workers who select Batch C
are presented with a classical interface. Here, we use the
bonus budget to increase the base reward, thus, workers
will receive a fixed reward of $0.34 for each submission
they make.
We perform 5 repeated runs as follows: a) we start both

batches A and B at the same time and let them run concur-
rently – this measures the sole effect of retention, b) batch C
was launched separately since it offers a higher base reward
and might influence A and B7.

Figure 7 shows the results of 5 repeated experiments of
the above settings. We report the overall execution time after
each batch finishes (i.e., when all the 3*10 HITs are submit-
ted), the budget used by each run, the number of workers in-
volved and how many HITs each worker submitted. We can
observe the effects of retention in batch A as it involves less
workers who submit a greater number of HITs on average as
compared to batches B and C. From a latency perspective,
batch A consistently outperforms batch B’s execution time,
on average by 33%, thanks to the retention budget in use.
While batch C is faster overall – which can be explained by
the fact that it attracts more workers due to its high reward –
it uses the entirety of its budget, as compared to A that only
uses $2.44 on average.

Discussion

To summarize, the main findings resulting from our experi-
mental evaluation are:

7To minimize timezones effects we run the batch at a similar
time of the day as A and B

Figure 7: Results of five independent runs of A, B and C
setups. Type A batches include the retention focused incen-
tive while Type B is the standard approach using fixed pric-
ing, Batch C uses a higher fixed pricing – but leveraging the
whole bonus budget.

• Giving workers a punctual bonus for reaching a prede-
fined objective defined as a given number of tasks im-

56

Table 2: Statistics of the second experimental setting – English Essay Correction
Batch Type #HITs #Repetitions Reward Base Budget Bonus Budget Avg. HIT Time Avg. Hourly Rate
A (Milestones) 10 3 $0.2 $6 $4.2 268sec $5.7/hr
B (Classic) 10 3 $0.2 $6 N/A 310sec $2.4/hr
C (High Reward) 10 3 $0.34 $10.2 N/A 302sec $3.9/hr

proves worker retention.
• Overpaying workers at the beginning of a batch is use-

ful in case the tasks require an initial training: Workers
feel rewarded for their initial effort and usually continue
working for a lower pay after the learning phase.

• While retention comes at a cost, it also improves latency.
Based on our experiments comparing different setups over
multiple runs, we observe that the bonus scheme involved
less workers who perform more tasks on average. This
property is particularly important when the workforce is
limited on the crowdsourcing platform.

Conclusions

In this work, we addressed the problem of scaling-up the
crowd, that is, of incentivizing workers such that they keep
working longer on a given batch of HITs. Increased worker
retention is valuable in order to avoid the problem of batch
starvation (when only a few remaining HITs are left in a
batch and no worker selects them), or if the workforce is
limited on the crowdsourcing platform (a requester tries to
keep the workers longer on his batch). We defined the prob-
lem of worker retention and proposed a variety of bonus
schemes in order to maximize retention, including fixed,
random, training, increasing, and milestone-based schemes.
We performed an extensive experimental evaluation of our
approaches over real crowds of workers on a popular micro-
task crowdsourcing platform. The results of our experimen-
tal evaluation show that the various pricing schemes we
have introduced perform differently depending of the type
of tasks. The best performing pricing scheme in terms of
worker retention is based on milestone bonuses, which are
punctually given to the workers who reach a predefined goal
in terms of completed number of HITs.

We also observe that our best bonus schemes consistently
outperform the classic fixed pricing scheme, both in terms of
worker retention and efficient execution. The main finding
of this paper is hence that it is possible to adopt new pric-
ing schemes in order to make workers stick to their batch of
tasks longer and obtain results faster back from the crowd-
sourcing platform. We believe that this is a key finding in
the context of hybrid human-machine systems, where most
of the latency is incurred through human computation, and a
step towards providing crowdsourcing SLAs.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments. This work was supported by the Swiss National Sci-
ence Foundation under grant number PP00P2 128459.

References

Arthur, D. 2001. The employee recruitment and retention hand-
book. AMACOM Div American Mgmt Assn.
Bartlett, C., and Ghoshal, S. 2013. Building competitive ad-
vantage through people. Sloan Mgmt. Rev 43(2).
Carvalho, V. R.; Lease, M.; and Yilmaz, E. 2011. Crowdsourc-
ing for search evaluation. In ACM Sigir forum, volume 44, 17–
22. ACM.
Chandler, D., and Horton, J. J. 2011. Labor Allocation in
Paid Crowdsourcing: Experimental Evidence on Positioning,
Nudges and Prices. In Human Computation.
Demartini, G.; Difallah, D. E.; and Cudré-Mauroux, P. 2012.
Zencrowd: leveraging probabilistic reasoning and crowdsourc-
ing techniques for large-scale entity linking. In Proceedings of
the 21st international conference on World Wide Web, 469–478.
ACM.
Demartini, G.; Difallah, D. E.; and Cudré-Mauroux, P. 2013.
Large-scale linked data integration using probabilistic reason-
ing and crowdsourcing. The VLDB Journal 22(5):665–687.
Difallah, D. E.; Demartini, G.; and Cudré-Mauroux, P. 2013.
Pick-a-crowd: tell me what you like, and i’ll tell you what to do.
In Proceedings of the 22nd international conference on World
Wide Web, 367–374. International World Wide Web Confer-
ences Steering Committee.
Faradani, S.; Hartmann, B.; and Ipeirotis, P. G. 2011. What’s
the Right Price? Pricing Tasks for Finishing on Time. In Human
Computation.
Franklin, M. J.; Kossmann, D.; Kraska, T.; Ramesh, S.; and Xin,
R. 2011. CrowdDB: answering queries with crowdsourcing. In
Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of data, SIGMOD ’11, 61–72. New York,
NY, USA: ACM.
Hosseini, M.; Cox, I. J.; Milić-Frayling, N.; Kazai, G.; and
Vinay, V. 2012. On aggregating labels from multiple crowd
workers to infer relevance of documents. In Advances in infor-
mation retrieval. Springer. 182–194.
Huselid, M. A. 1995. The impact of human resource manage-
ment practices on turnover, productivity, and corporate financial
performance. Academy of management journal 38(3):635–672.
Ipeirotis, P. G. 2010. Analyzing the amazon mechanical turk
marketplace. XRDS: Crossroads, The ACM Magazine for Stu-
dents 17(2):16–21.
Irani, L. C., and Silberman, M. 2013. Turkopticon: Interrupting
worker invisibility in amazon mechanical turk. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, 611–620. ACM.
Lasecki, W. S.; Marcus, A.; Tzeszotarski, J. M.; and Bigham,
J. P. 2014. Using Microtask Continuity to Improve Crowd-
sourcing. In Carnegie Mellon University Human-Computer In-
teraction Institute - Technical Reports - CMU-HCII-14-100.

57

Lazebnik, S.; Schmid, C.; Ponce, J.; et al. 2004. Semi-local
affine parts for object recognition. In British Machine Vision
Conference (BMVC’04), 779–788.
Mao, A.; Kamar, E.; Chen, Y.; Horvitz, E.; Schwamb, M. E.;
Lintott, C. J.; and Smith, A. M. 2013. Volunteering Versus
Work for Pay: Incentives and Tradeoffs in Crowdsourcing. In
HCOMP.
Mao, A.; Kamar, E.; and Horvitz, E. 2013. Why Stop Now?
Predicting Worker Engagement in Online Crowdsourcing. In
First AAAI Conference on Human Computation and Crowd-
sourcing.
Michaels, E.; Handfield-Jones, H.; and Axelrod, B. 2001. The
war for talent. Harvard Business Press.
Ross, J.; Irani, L.; Silberman, M.; Zaldivar, A.; and Tomlinson,
B. 2010. Who are the crowdworkers?: shifting demographics
in mechanical turk. In CHI’10 Extended Abstracts on Human
Factors in Computing Systems, 2863–2872. ACM.
Singer, Y., and Mittal, M. 2013. Pricing Mechanisms for
Crowdsourcing Markets. In Proceedings of the 22Nd Inter-
national Conference on World Wide Web, WWW ’13, 1157–
1166. Republic and Canton of Geneva, Switzerland: Interna-
tional World Wide Web Conferences Steering Committee.
Wang, J.; Kraska, T.; Franklin, M. J.; and Feng, J. 2012. Crow-
der: Crowdsourcing entity resolution. Proceedings of the VLDB
Endowment 5(11):1483–1494.
Wang, J.; Ipeirotis, P. G.; and Provost, F. 2013. Quality-Based
Pricing for Crowdsourced Workers. In NYU Stern Research
Working Paper - CBA-13-06.
Yan, T.; Kumar, V.; and Ganesan, D. 2010. Crowdsearch: Ex-
ploiting crowds for accurate real-time image search on mobile
phones. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, 77–
90. New York, NY, USA: ACM.
Yannakoudakis, H.; Briscoe, T.; and Medlock, B. 2011. A
new dataset and method for automatically grading esol texts. In
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-
Volume 1, 180–189. Association for Computational Linguis-
tics.

58

