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Abstract

Pre-trained representations are becoming crucial

for many NLP and perception tasks. While repre-

sentation learning in NLP has transitioned to train-

ing on raw text without human annotations, vi-

sual and vision-language representations still rely

heavily on curated training datasets that are expen-

sive or require expert knowledge. For vision appli-

cations, representations are mostly learned using

datasets with explicit class labels such as Ima-

geNet or OpenImages. For vision-language, popu-

lar datasets like Conceptual Captions, MSCOCO,

or CLIP all involve a non-trivial data collection

(and cleaning) process. This costly curation pro-

cess limits the size of datasets and hence hinders

the scaling of trained models. In this paper, we

leverage a noisy dataset of over one billion image

alt-text pairs, obtained without expensive filter-

ing or post-processing steps in the Conceptual

Captions dataset. A simple dual-encoder archi-

tecture learns to align visual and language rep-

resentations of the image and text pairs using a

contrastive loss. We show that the scale of our

corpus can make up for its noise and leads to

state-of-the-art representations even with such a

simple learning scheme. Our visual representation

achieves strong performance when transferred to

classification tasks such as ImageNet and VTAB.

The aligned visual and language representations

enables zero-shot image classification and also

set new state-of-the-art results on Flickr30K and

MSCOCO image-text retrieval benchmarks, even

when compared with more sophisticated cross-

attention models. The representations also enable

cross-modality search with complex text and text

+ image queries.
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1. Introduction

In the existing literature, visual and vision-language repre-

sentation learning are mostly studied separately with differ-

ent training data sources. In the vision domain, pre-training

on large-scale supervised data such as ImageNet (Deng

et al., 2009), OpenImages (Kuznetsova et al., 2020), and JFT-

300M (Sun et al., 2017; Kolesnikov et al., 2020) has proven

to be critical for improving performance on downstream

tasks via transfer learning. Curation of such pre-training

datasets requires heavy work on data gathering, sampling,

and human annotation, and hence is difficult to scale.

Pre-training has also become the de-facto approach

in vision-language modeling (Lu et al., 2019; Chen

et al., 2020c; Li et al., 2020). However, vision-language

pre-training datasets such as Conceptual Captions (Sharma

et al., 2018), Visual Genome Dense Captions (Krishna

et al., 2016), and ImageBERT (Qi et al., 2020) require

even heavier work on human annotation, semantic parsing,

cleaning and balancing. As a result, the scales of these

datasets are only in the realm of ∼10M examples. This is at

least an order of magnitude smaller than their counterparts

in the vision domain, and much smaller than large corpora

of text from the internet for NLP pre-training (e.g., Devlin

et al. (2019); Radford et al. (2019); Yang et al. (2019); Liu

et al. (2019b); Raffel et al. (2020)).

In this work, we leverage a dataset of over one billion noisy

image alt-text pairs to scale visual and vision-language rep-

resentation learning. We follow the procedures described

in the Conceptual Captions dataset (Sharma et al., 2018)

to have a large noisy dataset. But instead of applying the

complex filtering and post-processing steps as proposed

by (Sharma et al., 2018) to clean the dataset, we only apply

simple frequency-based filtering. The resulting dataset is

noisy, but is two orders of magnitude larger than the Con-

ceptual Captions dataset. We show that visual and vision-

language representations pre-trained on our exascale dataset

achieve very strong performance on a wide range of tasks.

To train our model, we use an objective that aligns the visual

and language representations in a shared latent embedding

space using a simple dual-encoder architecture. Similar
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Figure 1. A summary of our method, ALIGN. Visual and language representations are jointly learned from noisy image alt-text data. The

representations can be used for vision-only or vision-language task transfer. Without any fine-tuning, ALIGN powers zero-shot visual

classification and cross-modal search including image-to-text search, text-to-image search and even search with joint image+text queries.

objectives has been applied to learning visual-semantic

embeddings (VSE) (Frome et al., 2013; Faghri et al., 2018).

We name our model ALIGN: A Large-scale ImaGe and

Noisy-text embedding. Image and text encoders are learned

via a contrastive loss (formulated as normalized softmax)

that pushes the embeddings of matched image-text pair

together while pushing those of non-matched image-text

pair apart. This is one of the most effective loss functions

for both self-supervised (Chen et al., 2020b) and supervised

(Zhai & Wu, 2019; Musgrave et al., 2020) representation

learning. Considering paired texts as fine-grained labels of

images, our image-to-text contrastive loss is analogous to

the conventional label-based classification objective; and

the key difference is that the text encoder generates the

“label” weights. The top-left of Figure 1 summarizes the

method we use in ALIGN.

The aligned image and text representations are naturally

suited for cross-modality matching/retrieval tasks and

achieve state-of-the-art (SOTA) results in corresponding

benchmarks. For instance, ALIGN outperforms the previous

SOTA method by over 7% in most zero-shot and fine-tuned

R@1 metrics in Flickr30K and MSCOCO. Moreover, such

cross-modality matching naturally enables zero-shot image

classification when feeding the classnames into the text en-

coder, achieving 76.4% top-1 accuracy in ImageNet without

using any of its training samples. The image representa-

tion itself also achieves superior performance in various

downstream visual tasks. For example, ALIGN achieves

88.64% top-1 accuracy in ImageNet. Figure 1-bottom shows

the cross-modal retrieval examples that come from a real

retrieval system built by ALIGN.

2. Related Work

High-quality visual representations for classification or

retrieval are usually pre-trained on large-scale labeled

datasets (Mahajan et al., 2018; Kolesnikov et al., 2020;

Dosovitskiy et al., 2021; Juan et al., 2020). Recently,

self-supervised (Chen et al., 2020b; Tian et al., 2020;

He et al., 2020; Misra & Maaten, 2020; Li et al., 2021;

Grill et al., 2020; Caron et al., 2020) and semi-supervised

learning (Yalniz et al., 2019; Xie et al., 2020; Pham et al.,

2020) have been studied as alternative paradigms. However,

models trained by these methods so far show limited

transferability to downstream tasks (Zoph et al., 2020).

Leveraging images and natural language captions is another

direction of learning visual representations. Joulin et al.

(2015); Li et al. (2017); Desai & Johnson (2020); Sariyildiz

et al. (2020); Zhang et al. (2020) show that a good visual

representation can be learned by predicting the captions

from images, which inspires our work. These works are

however limited to small datasets such as Flickr (Joulin

et al., 2015; Li et al., 2017) and COCO Captions (Desai

& Johnson, 2020; Sariyildiz et al., 2020), and the resulting

models don’t produce a vision-language representation that

is needed for tasks like cross-modal retrieval.

In the vision-language representation learning domain,

visual-semantic embeddings (VSE) (Frome et al., 2013;

Faghri et al., 2018) and improved versions (e.g., leveraging

object detectors, dense feature maps, or multi-attention

layers) (Socher et al., 2014; Karpathy et al., 2014; Kiros

et al.; Nam et al., 2017; Li et al., 2019; Messina et al., 2020;

Chen et al., 2020a) have been proposed. Recently more
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advanced models emerge with cross-modal attention layers

(Liu et al., 2019a; Lu et al., 2019; Chen et al., 2020c; Huang

et al., 2020b) and show superior performance in image-text

matching tasks. However, they are orders of magnitudes

slower and hence impractical for image-text retrieval

systems in the real world. In contrast, our model inherits

the simplest VSE form, but still outperforms all previous

cross-attention models in image-text matching benchmarks.

Closely related to our work is CLIP (Radford et al., 2021),

which proposes visual representation learning via natural

language supervision in a similar contrastive learning

setting. Besides using different vision and language encoder

architectures, the key difference is on training data: ALIGN

follows the natural distribution of image-text pairs from the

raw alt-text data, while CLIP collects the dataset by first

constructing an allowlist of high-frequency visual concepts

from English Wikipedia. We demonstrate that strong visual

and vision-language representations can be learned with

a dataset that doesn’t require expert knowledge to curate.

3. A Large-Scale Noisy Image-Text Dataset

The focus of our work is to scale up visual and vision-

language representation learning. For this purpose, we resort

to a much larger dataset than existing ones. Specifically,

we follow the methodology of constructing Conceptual

Captions dataset (Sharma et al., 2018) to get a version of

raw English alt-text data (image and alt-text pairs). The

Conceptual Captions dataset was cleaned by heavy filtering

and post-processing. Here, for the purpose of scaling, we

trade quality for scale by relaxing most of the cleaning

steps in the original work. Instead, we only apply minimal

frequency-based filtering as detailed below. The result is a

much larger (1.8B image-text pairs) but noisier dataset. Fig-

ure 2 shows some sample image-text pairs from the dataset.

“motorcycle front wheel” “thumbnail for version as of 21 
57 29 june 2010”

“file frankfurt airport 
skyline 2017 05 jpg”

“file london barge race 2 jpg” “moustache seamless 
wallpaper design”

“st oswalds way and shops”

Figure 2. Example image-text pairs randomly sampled from the

training dataset of ALIGN. One clearly noisy text annotation is

marked in italics.

Image-based filtering. Following Sharma et al. (2018),

we remove pornographic images and keep only images

whose shorter dimension is larger than 200 pixels and aspect

ratio is smaller than 3. Images with more than 1000 associ-

ated alt-texts are discarded. To ensure that we don’t train on

test images, we also remove duplicates or near-duplicates

of test images in all downstream evaluation datasets (e.g.,

ILSVRC-2012, Flickr30K, and MSCOCO). See supplemen-

tary material for more details.

Text-based filtering. We exclude alt-texts that are shared

by more than 10 images. These alt-texts are often irrelevant

to the content of the images (e.g., “1920x1080”, “alt img”,

and “cristina”). We also discard alt-texts that contain any

rare token (outside of 100 million most frequent unigrams

and bigrams from the raw dataset), and those that are ei-

ther too short (<3 unigrams) or too long (>20 unigrams).

This removes noisy texts like “image tid 25&id mggqpuwe-

qdpd&cache 0&lan code 0”, or texts that are too generic to

be useful.

4. Pre-training and Task Transfer

4.1. Pre-training on Noisy Image-Text Pairs

We pre-train ALIGN using a dual-encoder architecture. The

model consists of a pair of image and text encoders with a

cosine-similarity combination function at the top. We use

EfficientNet with global pooling (without training the 1x1

conv layer in the classification head) as the image encoder

and BERT with [CLS] token embedding as the text em-

bedding encoder (we generate 100k wordpiece vocabulary

from our training dataset). A fully-connected layer with

linear activation is added on top of BERT encoder to match

the dimension from the image tower. Both image and text

encoders are trained from scratch.

The image and text encoders are optimized via normalized

softmax loss (Zhai & Wu, 2019). In training, we treat

matched image-text pairs as positive and all other random

image-text pairs that can be formed in a training batch as

negative.

We minimize the sum of two losses: one for image-to-text

classification

Li2t = −
1

N

N∑

i

log
exp(x⊤

i yi/σ)∑N

j=1
exp(x⊤

i yj/σ)
(1)

and the other for text-to-image classification

Lt2i = −
1

N

N∑

i

log
exp(y⊤

i xi/σ)∑N

j=1
exp(y⊤

i xj/σ)
(2)

Here, xi and yj are the normalized embedding of image in

the i-th pair and that of text in the j-th pair, respectively. N

is the batch size, and σ is the temperature to scale the logits.

For in-batch negatives to be more effective, we concatenate

embeddings from all computing cores to form a much larger

batch. The temperature variable is crucial as both image
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and text embeddings are L2-normalized. Instead of man-

ually sweeping for the optimal temperature value, we find

that it can be effectively learned together with all the other

parameters.

4.2. Transferring to Image-Text Matching & Retrieval

We evaluate ALIGN models on image-to-text and text-to-

image retrieval tasks, with and without finetuning. Two

benchmark datasets are considered: Flickr30K (Plummer

et al., 2015) and MSCOCO (Chen et al., 2015). We also

evaluate ALIGN on Crisscrossed Captions (CxC) (Parekh

et al., 2021), which is an extension of MSCOCO with

additional human semantic similarity judgments for

caption-caption, image-image, and image-caption pairs.

With extended annotations, CxC enables four intra- and

inter-modal retrieval tasks including image-to-text, text-to-

image, text-to-text, and image-to-image retrieval, and three

semantic similarity tasks including semantic textual sim-

ilarity (STS), semantic image similarity (SIS), and semantic

image-text similarity (SITS). As the training set is identical

to the original MSCOCO, we can directly evaluate the

MSCOCO fine-tuned ALIGN model on CxC annotations.

4.3. Transferring to Visual Classification

We first apply zero-shot transfer of ALIGN to visual classifi-

cation tasks on ImageNet ILSVRC-2012 benchmark (Deng

et al., 2009) and its variants including ImageNet-R(endition)

(Hendrycks et al., 2020) (non-natural images such as art,

cartoons, sketches), ImageNet-A(dversarial) (Hendrycks

et al., 2021) (more challenging images for ML models), and

ImageNet-V2 (Recht et al., 2019). All of these variants

follow the same set (or a subset) of ImageNet classes, while

the images in ImageNet-R and ImageNet-A are sampled

from drastically different distributions from ImageNet.

We also transfer the image encoder to downstream visual

classification tasks. For this purpose, we use the ImageNet

as well as a handful of smaller fine-grained classifica-

tion datasets such as Oxford Flowers-102 (Nilsback &

Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012),

Stanford Cars (Krause et al., 2013), and Food101 (Bossard

et al., 2014). For ImageNet, results from two settings are

reported: training the top classification layer only (with

frozen ALIGN image encoder) and fully fine-tuned. Only

the latter setting is reported for fine-grained classification

benchmarks. Following Kolesnikov et al. (2020), we

also evaluate the robustness of our model on Visual Task

Adaptation Benchmark (VTAB) (Zhai et al., 2019) which

consists of 19 diverse (covering subgroups of natural,

specialized and structured image classification tasks) visual

classification tasks with 1000 training samples each.

5. Experiments and Results

We train our ALIGN models from scratch, using the open-

sourced implementation of EfficientNet as the image en-

coder and BERT as the text encoder. Unless in the ablation

study, we use the results of ALIGN where the image encoder

is EfficientNet-L2 and the text encoder is BERT-Large. The

image encoder is trained at resolution of 289 × 289 pixels

no matter what EfficientNet variant is used. We first resize

input images to 346 × 346 resolution and then perform ran-

dom crop (with additional random horizontal flip) in training

and central crop in evaluation. For BERT we use wordpiece

sequence of maximum 64 tokens since the input texts are

no longer than 20 unigrams. The softmax temperature vari-

able is initialized as 1.0 (this temperature variable is shared

between image-to-text loss and text-to-image loss) and we

use 0.1 as label smoothing parameter in the softmax losses.

We use LAMB optimizer (You et al., 2020)1 with weight

decay ratio 1e-5. The learning rate is warmed up linearly

to 1e-3 from zero in 10k steps, and then linearly decay to

zero in 1.2M steps (∼12 epochs). We train the model on

1024 Cloud TPUv3 cores with 16 positive pairs on each

core. Therefore the total effective batch size is 16384.

5.1. Image-Text Matching & Retrieval

We evaluate ALIGN on Flickr30K and MSCOCO cross-

modal retrieval benchmarks, in both zero-shot and fully

fine-tuned settings. We follow (Karpathy & Fei-Fei, 2015)

and most existing works to obtain the train/test splits. Specif-

ically, for Flickr30K, we evaluate on the standard 1K test

set, and finetune on the 30k training set. For MSCOCO, we

evaluate on the 5K test set, and finetune on 82K training

plus 30K additional validation images that are not in the 5K

validation or 5K test sets.

During fine-tuning, the same loss function is used. But there

can be false negatives when the batch size is comparable

to the total number of training samples. So we reduce the

global batch size from 16384 to 2048. We also reduce the ini-

tial learning rate to 1e-5 and train for 3K and 6K steps (with

linear decay) respectively on Flickr30K and MSCOCO. All

the other hyper-parameters are kept the same as pre-training.

Table 1 shows that, compared to previous works, ALIGN

achieves SOTA results in all metrics of Flickr30K and

MSCOCO benchmarks. In the zero-shot setting, ALIGN

gets more than 7% improvement in image retrieval task

compared to the previous SOTA, CLIP (Radford et al.,

2021). With fine-tuning, ALIGN outperforms all existing

methods by a large margin, including those that employ

more complex cross-modal attention layers such as

ImageBERT (Qi et al., 2020), UNITER (Chen et al., 2020c),

1We tried SGD with momentum and ADAM which are known
to work well for CNNs and BERT respectively. LAMB appears to
be a better choice for training both image and text encoders.
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Table 1. Image-text retrieval results on Flickr30K and MSCOCO datasets (zero-shot and fine-tuned). ALIGN is compared with Image-

BERT (Qi et al., 2020), UNITER (Chen et al., 2020c), CLIP (Radford et al., 2021), GPO (Chen et al., 2020a), ERNIE-ViL (Yu et al.,

2020), VILLA (Gan et al., 2020), and Oscar (Li et al., 2020).

Flickr30K (1K test set) MSCOCO (5K test set)
image → text text → image image → text text → image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

ImageBERT 70.7 90.2 94.0 54.3 79.6 87.5 44.0 71.2 80.4 32.3 59.0 70.2
UNITER 83.6 95.7 97.7 68.7 89.2 93.9 - - - - - -
CLIP 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2
ALIGN 88.6 98.7 99.7 75.7 93.8 96.8 58.6 83.0 89.7 45.6 69.8 78.6

Fine-tuned

GPO 88.7 98.9 99.8 76.1 94.5 97.1 68.1 90.2 - 52.7 80.2 -
UNITER 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
ERNIE-ViL 88.1 98.0 99.2 76.7 93.6 96.4 - - - - - -
VILLA 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
Oscar - - - - - - 73.5 92.2 96.0 57.5 82.8 89.8
ALIGN 95.3 99.8 100.0 84.9 97.4 98.6 77.0 93.5 96.9 59.9 83.3 89.8

Table 2. Multimodal retrieval performance on Crisscrossed Captions (CxC) dataset. ALIGN is compared with VSE++ (Faghri et al.,

2018), VSRN (Li et al., 2019), DEI2T (Parekh et al., 2021), and DET2T+I2T (Parekh et al., 2021).

image → text text → image text → text image → image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VSE++ 43.1 74.3 84.2 32.5 62.7 75.4 38.7 62.3 72.2 36.4 70.4 81.3
VSRN 52.4 81.9 90.0 40.1 71.1 81.5 41.0 64.8 74.5 44.2 76.7 86.2
DEI2T 53.9 82.7 91.2 39.8 70.2 80.9 26.0 47.1 57.5 38.3 74.1 85.0
DET2T+I2T 55.9 84.2 91.8 41.7 72.3 83.0 42.4 64.9 74.0 38.5 73.6 84.9
ALIGN 78.1 94.3 97.4 61.8 84.9 91.1 45.4 66.8 75.2 49.4 81.4 89.1

Table 3. Spearman’s R Bootstrap Correlation (×100) on Criss-

crossed Captions (CxC) dataset. ALIGN is compared with

VSE++ (Faghri et al., 2018), VSRN (Li et al., 2019), DEI2T (Parekh

et al., 2021), and DET2T+I2T (Parekh et al., 2021).

Model
STS SIS SITS Mean Avg

avg ± std avg ± std avg ± std

VSE++ 74.4±0.4 73.3±0.9 55.2±1.5 67.6
VSRN 73.0±0.4 70.1±1.0 60.4±1.3 67.8
DEI2T 50.9±0.6 81.3±0.7 61.6±1.4 64.6
DET2T+I2T 74.2±0.4 74.5±0.9 61.9±1.3 70.2
ALIGN 72.9±0.4 77.2±0.8 67.6±1.2 72.6

ERNIE-ViL (Yu et al., 2020), VILLA (Gan et al., 2020) and

Oscar (Li et al., 2020).

Table 2 reports the performance of ALIGN on Crisscrossed

Captions (CxC) retrieval tasks. Again, ALIGN achieves

SOTA results in all metrics, especially by a large margin

on image-to-text (+22.2% R@1) and text-to-image (20.1%

R@1) tasks. Table 3 shows that ALIGN also outperforms

the previous SOTA on SITS task with an improvement of

5.7%. One interesting observation is that, despite being

much better on inter-modal tasks, ALIGN is not as impres-

sive on intra-modal tasks. For instance, the improvements

on text-to-text and image-to-image retrieval tasks (in partic-

ular the former) are less significant compared to those on

image-to-text and text-to-image tasks. The performance on

STS and SIS tasks is also slightly worse than VSE++ and

DEI2T. We suspect it is because the training objective of

ALIGN focuses on cross-modal (image-text) matching in-

stead of intra-modal matching. Parekh et al. (2021) suggest

multitask learning could produce more balanced representa-

tions. We leave it to the future work.

5.2. Zero-shot Visual Classification

If we directly feed the texts of classnames into the text

encoder, ALIGN is able to classify images into candidate

classes via image-text retrieval. Table 4 compares ALIGN

with CLIP on Imagenet and its variants. Similar to CLIP,

ALIGN shows great robustness on classification tasks

with different image distributions. In order to make a

fair comparison, we use the same prompt ensembling

method as CLIP. Each classname is expanded with a set

of prompt templates defined by CLIP such as “A photo

of a {classname}”. The class embedding is computed by

averaging the embeddings of all templates followed by an

L2-normalization. We find that such ensembling gives 2.9%

improvement on ImageNet top-1 accuracy.

Table 4. Top-1 Accuracy of zero-shot transfer of ALIGN to image

classification on ImageNet and its variants.

Model ImageNet ImageNet-R ImageNet-A ImageNet-V2

CLIP 76.2 88.9 77.2 70.1
ALIGN 76.4 92.2 75.8 70.1
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Table 5. ImageNet classification results. ALIGN is compared with WSL (Mahajan et al., 2018), CLIP (Radford et al., 2021),

BiT (Kolesnikov et al., 2020), ViT (Dosovitskiy et al., 2021), NoisyStudent (Xie et al., 2020), and Meta-Pseudo-Labels (Pham et al.,

2020).

Model (backbone) Acc@1 w/ frozen features Acc@1 Acc@5

WSL (ResNeXt-101 32x48d) 83.6 85.4 97.6
CLIP (ViT-L/14) 85.4 - -
BiT (ResNet152 x 4) - 87.54 98.46
NoisyStudent (EfficientNet-L2) - 88.4 98.7
ViT (ViT-H/14) - 88.55 -
Meta-Pseudo-Labels (EfficientNet-L2) - 90.2 98.8
ALIGN (EfficientNet-L2) 85.5 88.64 98.67

5.3. Visual Classification w/ Image Encoder Only

On the ImageNet benchmark, we first freeze the learned

visual features and only train the classification head.

Afterwards we fine-tune all layers. We use basic data aug-

mentations including random cropping (same as in Szegedy

et al. (2015)) and horizontal flip. In evaluation we apply a

single central crop with ratio of 0.875. Following Touvron

et al. (2019), we use 0.8 scale ratio between training and

evaluation to mitigate the resolution discrepancy introduced

by random crop. Specifically, train/eval resolution is

289/360 with frozen visual features, and is 475/600 when

fine-tuning all variables.

In both stages of training, we use a global batch size of

1024, SGD optimizer with momentum 0.9, and learning

rate decayed every 30 epochs with ratio 0.2 (100 epochs

in total). Weight decay is set to zero. With frozen visual

features, we use the initial learning rate of 0.1. When

fine-tuning all layers with use the initial learning rate of

0.01, and use 10x smaller learning rate on the backbone

network compared to the classification head.

Table 5 compares ALIGN with previous methods on the Im-

ageNet benchmark. With frozen features, ALIGN slightly

outperforms CLIP and achieves SOTA result of 85.5% top-1

accuracy. After fine-tuning ALIGN achieves higher accu-

racy than BiT and ViT models, and is only worse than Meta

Pseudo Labels which requires deeper interaction between

ImageNet training and large-scale unlabeled data. Com-

pared to NoisyStudent and Meta-Pseudeo-Labels which also

use EfficientNet-L2, ALIGN saves 44% FLOPS by using

smaller test resolution (600 instead of 800).

In VTAB eval, we follow a hyper-parameter sweep as shown

in the Appendix I in (Zhai et al., 2019) with 50 trials for each

task. Each task is trained on 800 images and the hyperpa-

rameters are selected using the validation set of 200 images.

After the sweep, the selected hyperparameters are used to

train on the combined training and validation splits of 1000

images for each task. Table 6 reports the mean accuracy

(including the breakdown results on each subgroup) with

standard deviation from three fine-tuning runs and shows

that ALIGN outperforms BiT-L (Kolesnikov et al., 2020)

with similar hyper-parameter selection method applied.

Table 6. VTAB (19 tasks) comparison between ALIGN and BiT-L.

Model All tasks Natural Specialized Structured

Bit-L 78.72 - - -
ALIGN 79.99±0.15 83.38 87.56 73.25

To evaluate on smaller fine-grained classification bench-

marks, we adopt a simple fine-tuning strategy for all tasks.

We use the same data augmentation and optimizer as in Ima-

geNet fine-tuning. Similarly, we first train the classification

head and then fine-tune all layers, except with batch norm

statistics frozen. The train/eval resolution is fixed at 289/360.

We use batch size 256 and weight decay 1e-5. The initial

learning rate is set to 1e-2 and 1e-3 respectively, with cosine

learning rate decay in 20k steps. Table 7 compares ALIGN

with BiT-L (Kolesnikov et al., 2020) and SAM (Foret et al.,

2021) which both apply same fine-tuning hyper-parameters

for all tasks.2 For small tasks like these, details in fine-

tuning matter. So we list the baseline results in (Foret et al.,

2021) without using SAM optimization for a fairer compari-

son. Our result (average of three runs) is comparable to the

SOTA results without tweaking on optimization algorithms.

Table 7. Transfer learning results on Fine-grained Classifica-

tion Tasks. BiT-L (Kolesnikov et al., 2020) was trained with

ResNet152 x 4 whereas SAM-baseline, SAM-final (Foret et al.,

2021) and ALIGN were trained with EfficientNet-L2.

Model
Oxford Oxford Stanford

Food101
Flowers Pets Cars

BiT-L 99.63 96.62 - -
SAM-baseline 99.60 96.92 95.07 96.03
SAM-final 99.65 97.10 95.96 96.18
ALIGN 99.65 96.19 96.13 95.88

6. Ablation Study

In the ablation study, we compare model performance

mostly on MSCOCO zero-shot retrieval and ImageNet K-

Nearest-neighbor (KNN) tasks.3 We find these two met-

2ViT (Dosovitskiy et al., 2021) uses different hyper-parameters
for different tasks and hence is not included in comparison.

3For each image in the validation set of ImageNet, we retrieve
its nearest neighbors from the training set w/ pre-trained image
encoder. Recall@K metric is calculated based on if the groundtruth
label of the query image appears in the top-K retrieved images.
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rics are representative and correlate well with other metrics

reported in the section above. If not mentioned, hyper-

parameters other than the ablated factor are kept the same

as in the baseline model.

6.1. Model Architectures

We first study the performance of ALIGN models using

different image and text backbones. We train EfficientNet

from B1 to L2 for the image encoder and BERT-Mini to

BERT-Large for the text encoder. We add an additional

fully-connected layer with linear activation on top of B1,

B3, B5 and L2 globally-pooled features to match the output

dimension of B7 (640). A similar linear layer is added to

all text encoders. We reduce the training steps to 1M in

ablation to save some runtime.

Figures 3 shows MSCOCO zero-shot retrieval and Ima-

geNet KNN results with different combinations of image

and text backbones. Model quality improves nicely with

larger backbones except that the ImageNet KNN metric

starts to saturate from BERT-Base to BERT-Large with

EfficientNet-B7 and EfficientNet-L2. As expected, scaling

up image encoder capacity is more important for vision

tasks (e.g., even with BERT-Mini text tower, L2 performs

better than B7 with BERT-Large). In image-text retrieval

tasks the image and text encoder capacities are equally

important. Based on the nice scaling property shown in

Figure 3, we only fine-tune the model with EfficientNet-L2

+ BERT-Large as reported in Section 5.

We then study key architecture hyperparameters including

embedding dimensions, number of random negatives in the

batch, and the softmax temperature. Table 8 compares a

number of model variants to a baseline model (first row)

trained with the following settings: EfficientNet-B5 image

encoder, BERT-Base text encoder, embedding dimension

640, all negatives in the batch, and a learnable softmax

temperature.

Rows 2-4 of Table 8 show that model performance improves

with higher embedding dimensions. Hence, we let the

dimension scale with larger EfficientNet backbone (L2 uses

1376). Rows 5 and 6 show that using fewer in-batch neg-

atives (50% and 25%) in the softmax loss will degrade the

performance. Rows 7-9 study the effect of the temperature

parameter in the softmax loss. Compared to the baseline

model that learns the temperature parameter (converged to

about 1/64), some hand-selected, fixed temperatures could

be slightly better. However, we choose to use the learnable

temperature as it performs competitively and makes

learning easier. We also notice that the temperature usually

quickly decrease to only around 1.2x of the converged

values in the first 100k steps, and then slowly converges

until the end of training.

Table 8. Ablation study of key architecture parameters. Baseline

model (first row) is trained with embedding dimension 640, using

all negatives in the batch, and a learnable softmax temperature.

Model
MSCOCO ImangeNet KNN

I2T R@1 T2I R@1 R@1

B5 + BERT-base 51.7 37.5 64.6

w/ embedding dim=320 50.3 34.1 64.0
w/ embedding dim=160 47.0 34.4 63.7
w/ embedding dim=80 42.0 29.3 61.9

w/ 50% in-batch negs 50.2 37.0 63.8
w/ 25% in-batch negs 48.7 35.8 63.3

w/ softmax temp=1/128 52.2 36.5 64.8
w/ softmax temp=1/64 52.2 37.3 64.8
w/ softmax temp=1/32 39.6 26.9 61.2

6.2. Pre-training Datasets

It’s also important to understand how the model performs

when trained on different datasets with varying size. For

this purpose, we train two models: EfficientNet-B7 + BERT-

base and EfficientNet-B3 + BERT-mini on three different

datasets: full ALIGN training data, 10% randomly sampled

ALIGN training data, and Conceptual Captions (CC-3M,

around 3M images). CC-3M is much smaller so we train

the model with 1/10 of the default number of steps. All

models are trained from scratch. As shown in Table 9, a

large scale training set is essential to allow scaling up of

our models and to achieve better performance. For instance,

models trained on ALIGN data clearly outperform those

trained on CC-3M data. On CC-3M, B7+BERT-base starts

to overfit and performs even worse than B3+BERT-mini.

Conversely, a larger model is required to fully utilize the

larger dataset – the smaller B3+BERT-mini almost saturate

at 10% of ALIGN data, while with the larger B7+BERT-

base, there is a clear improvement with full ALIGN data.

Table 9. Ablation study of different training datasets.

Model + Data
MSCOCO ImangeNet KNN

I2T R@1 T2I R@1 R@1

B7 + BERT-base
+ ALIGN full data 55.4 41.7 69.3
+ ALIGN 10% data 52.0 39.2 68.8
+ CC-3M data 18.9 15.5 48.7

B3 + BERT-mini
+ ALIGN full data 37.4 24.5 56.5
+ ALIGN 10% data 36.7 24.4 55.8
+ CC-3M data 22.1 17.3 48.9

To understand better how data size scaling wins over the

increased noise, we further randomly sample 3M, 6M, and

12M ALIGN training data and compare them with the

cleaned CC-3M data on B7+BERT-base model. Table 10

shows that while the ALIGN data performs much worse

than CC data with the same size (3M), the model quality

trained on 6M and 12M ALIGN data rapidly catches up.

Despite being noisy, ALIGN data outperforms Conceptual

Captions with only 4x size.
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BERT-Mini BERT-Medium BERT-Base BERT-Large
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MSCOCO image-to-text retrieval R@1

EfficientNet-B1 EfficientNet-B3 EfficientNet-B5 EfficientNet-B7 EfficientNet-L2

BERT-Mini BERT-Medium BERT-Base BERT-Large
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MSCOCO text-to-image retrieval R@1

BERT-Mini BERT-Medium BERT-Base BERT-Large
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ImageNet NN accuracy

Figure 3. Zero-shot image-text retrieval and ImageNet KNN accuracy@1 with different image and text encoder sizes.

Table 10. Tradeoff between training data size and quality.

Model + Data
MSCOCO ImangeNet KNN

I2T R@1 T2I R@1 R@1

B7 + BERT-base
+ ALIGN 12M data 23.8 17.5 51.4
+ ALIGN 6M data 15.8 11.9 47.9
+ ALIGN 3M data 8.1 6.3 41.3
+ CC-3M data 18.9 15.5 48.7

7. Analysis of Learned Embeddings

We build a simple image retrieval system to study the

behaviors of embeddings trained by ALIGN. For demon-

stration purposes, we use an index consisting of 160M

CC-BY licensed images that are separate from our training

set. Figure 4 shows the top 1 text-to-image retrieval results

for a handful of text queries not existing in the training

data. ALIGN can retrieve precise images given detailed

descriptions of a scene, or fine-grained or instance-level

concepts like landmarks and artworks. These examples

demonstrate that our ALIGN model can align images

and texts with similar semantics, and that ALIGN can

generalize to novel complex concepts.

“Van Gogh Starry Night ...”
“details” “in black and white” “on a canvas” “in dark wood frame”

“Lombard street ...”
“view from bottom” “view from top” “bird’s eye view” “in heavy rain”

“seagull in front of ...”
“Golden Gate 

Bridge”
“London Tower 

Bridge”
“Sydney Harbour 

Bridge”
“Rialto 
Bridge”

Figure 4. Image retrieval with fine-grained text queries using

ALIGN’s embeddings.

Previously word2vec (Mikolov et al., 2013a;b) shows that

linear relationships between word vectors emerge as a re-

sult of training them to predict adjacent words in sentences

and paragraphs. We show that linear relationships between

+ “red”

+ “forest” + “desert” + “orange”

+ “blue” + “purple” + “from distance”

+ “beige” + “red” + “purple”

+ “Australia” + “Madagascar”

- “cars” - “trees” - “houses”

- “flowers” - “orange” + “rose”

- “bridge” - “waterfall”  - “mountain”

Figure 5. Image retrieval with image±text queries. We add (or

subtract) text query embedding to (or from) the image query em-

bedding, and then use the resulting embedding to retrieve relevant

images using cosine similarity.

image and text embeddings also emerge in ALIGN. We

perform image retrieval using a combined image+text query.

Specifically, given a query image and a text string, we add

their ALIGN embeddings together and use it to retrieve

relevant images.4 Figure 5 shows results for a variety of

4We normalize the text and image embeddings before adding
them. We also tried various scale factor and found that a scale of 2
for the text embedding and 1 for the image embedding give best
results as shown in the figure, although 1:1 also works well.
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image+text queries. These examples not only demonstrate

great compositionality of ALIGN embeddings across vision

and language domains, but also show the feasibility of a new

paradigm of “search with multi-modal query” that would

otherwise be hard using only text query or image query. For

instance, one could now look for the “Australia” or “Mada-

gascar” equivalence of pandas, or turn a pair of black shoes

into identically-looking shoes with the color of “beige”. Fi-

nally, as shown in the last three rows of Figure 5, removing

objects/attributes from a scene is possible by performing

subtraction in the embedding space.

8. Multilingual ALIGN Model

One advantage of ALIGN is that the model is trained on

noisy web image text data with very simple filters, and none

of the filters are language specific. Given that, we further lift

the language constraint of the conceptual caption data pro-

cessing pipeline to extend the dataset to multilingual (cover-

ing 100+ languages) and match its size to the English dataset

(1.8B image-text pairs). A multilingual model ALIGNmling

is trained using this data. We created a new mutlilingual

wordpiece vocabulary with size 250k to cover all languages.

Model training follows the exact English configuration.

We test the multilingual model on Multi30k, a multilin-

gual image text retrieval dataset extends Flickr30K (Plum-

mer et al., 2015) to German (de) (Elliott et al., 2016),

French (fr) (Elliott et al., 2017) and Czech (cs) (Barrault

et al., 2018). The dataset consists of 31,783 images with

5 captions per image in English and German and 1 cap-

tion per image in French and Czech. The train/dev/test

splits are defined in Young et al. (2014). We evaluate the

zero-shot model performance of ALIGN and compare it

with M3P (Huang et al., 2020a) and UC2 (Zhou et al., 2021).

The evaluation metric is mean Recall (mR), which computes

the average score of Recall@1, Recall@5 and Recall@10

on image-to-text retrieval and text-to-image retrieval tasks.

Table 11 shows that the zero-shot performance of

ALIGNmling outperforms M3P on all languages by a large

margin, with the largest +57.8 absolution mR improvement

on fr. The zero-shot performance of ALIGNmling is even

comparable to the fine-tuned (w/ training splits) M3P and

UC2 except on cs. On en, ALIGNmling performs slightly

worse on its counterpart ALIGNEN (trained on EN-only

data.)

9. Conclusion

We present a simple method of leveraging large-scale noisy

image-text data to scale up visual and vision-language rep-

resentation learning. Our method avoids heavy work on

data curation and annotation, and only requires minimal

frequency-based cleaning. On this dataset, we train a simple

Table 11. Multimodal retrieval performance on Multi30K dataset.

The metric is the mean Recall (mR).

Model en de fr cs

zero-shot

M3P 57.9 36.8 27.1 20.4
ALIGNEN 92.2 - - -
ALIGNmling 90.2 84.1 84.9 63.2

w/ fine-tuning

M3P 87.7 82.7 73.9 72.2
UC2 88.2 84.5 83.9 81.2

dual-encoder model using a contrastive loss. The result-

ing model, named ALIGN, is capable of cross-modal re-

trieval and significantly outperforms SOTA VSE and cross-

attention vision-language models. In visual-only down-

stream tasks, ALIGN is also comparable to or outperforms

SOTA models trained with large-scale labeled data.

10. Social Impacts and Future Work

While this work shows promising results from a method-

ology perspective with a simple data collection method,

additional analysis of the data and the resulting model is

necessary before the use of the model in practice. For in-

stance, considerations should be made towards the potential

for the use of harmful text data in alt-texts to reinforce such

harms. On the fairness front, data balancing efforts may be

required to prevent reinforcing stereotypes from the web

data. Additional testing and training around sensitive reli-

gious or cultural items should be taken to understand and

mitigate the impact from possibly mislabeled data.

Further analysis should also be taken to ensure that the de-

mographic distribution of humans and related cultural items

like clothing, food, and art do not cause model performance

to be skewed. Analysis and balancing would be required if

such models will be used in production.

Finally, unintended misuse of such models for surveillance

or other nefarious purposes should be prohibited.
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