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Abstract 

Background: Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable 
quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory 
networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation 
they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management 
strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in con-
junction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we 
aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of 
inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in 
deciduous broad-leafed forest in central Germany.

Results: Estimation of wood volume from airborne LiDAR was most robust (R2 = 0.92, RMSE = 50.57 m3 
ha−1 ~14.13 Mg C ha−1) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based 
on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R2 = 0.68, 
RMSE = 101.01 ~28.09 Mg C ha−1). Differences between the 1 and 0.05 ha volume models from LiDAR were negligi-
ble however at the scale of individual land-management units. Sample size permutation tests showed that increasing 
the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R2 and RMSE variability of 
the LiDAR-predicted wood volume model.

Conclusions: Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous 
broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust 
relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era 
where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to 
strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote 
sensing strategies.
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Background
Temperate forests have functioned as significant sinks 

of atmospheric carbon dioxide CO2 over the last few 

decades, but their capacity for continued carbon seques-

tration is uncertain [1, 2]. Modelled estimates of the size 

and duration of the sink are highly variable, and reduc-

ing this uncertainty requires better quantification of 

how much carbon is stored in different forests types, 

how it is spatially distributed across environmental and 

land-management gradients, and how it changes over 
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time. �is task becomes increasingly urgent in view 

of the Paris Protocol where national sinks will balance 

national emissions. Estimates of above ground carbon 

stock have traditionally been measured and monitored 

through field-based inventories on a grid-scale [3]. �ese 

approaches typically rely upon allometric equations to 

scale simple field measures of tree structure (diameter at 

breast height, height) to wood volume—and ultimately to 

carbon mass by accounting for wood density [4, 5]. Allo-

metric scaling has inherent limitations [6], but additional 

constraints of field-based inventories for regional scale 

analyses are the restricted spatial coverage of inventory 

plots, the time cost associated with conducting thorough 

wood volume estimations on the ground, and a lack of 

techniques to measure complete wood volume without 

the actual harvesting of stems.

Airborne light-detection and ranging (LiDAR) has 

emerged as a key remote sensing technology for advanc-

ing the mapping of forest structure and biomass over 

larger spatial scales [7–9]. �e core strength of airborne 

LiDAR lies in its ability to accurately measure vegetation 

canopy height remotely, enabling detailed and georefer-

enced three-dimensional (3D) representations of canopy 

structure and associated biophysical parameters. Height 

and canopy density metrics derived from LiDAR have 

proven to be well correlated with above ground biomass 

(AGB) in a broad range of ecosystems—from semi-arid 

savannas to tropical forests [7, 10–13]. AGB mapping 

with airborne LiDAR is most commonly conducted by 

deriving empirical models between a suite of LiDAR met-

rics and field-measured AGB values obtained from geo-

referenced field sample plots. �is relationship is then 

applied across the broader area of LiDAR data coverage 

at the same spatial resolution as the field sample plots 

from which the relationship was derived. As the num-

ber of studies comparing field-based estimates of AGB 

with LiDAR derived metrics has increased over the past 

decade, it has become increasingly apparent that perfor-

mance is dependent upon the forest type and both the 

size and number of the field plots used for model devel-

opment and evaluation [14–16]. Certain forest types lend 

themselves better to airborne characterization than oth-

ers (e.g. conifers vs broad-leafed trees). Forests with rela-

tively simple and regular structures, like those found in 

the boreal zone, are particularly well suited to characteri-

zation by airborne LiDAR [17–19]. Irrespective of forest 

type however, calibration errors between field measured 

and LiDAR predicted AGB tend to increase with decreas-

ing plot size [15, 16]. �is pattern partly arises from 

increasing edge effects as plots get smaller. Smaller plots 

have a greater edge length to area ratio than larger plots, 

and errors arising from GPS position uncertainty are 

also more pronounced in smaller than larger plots, as the 

same positioning offset will cause greater misalignment 

between field and LiDAR data in smaller than larger 

plots. Lastly, temporal differences between field and 

LiDAR data acquisitions can also strain the relationship 

between field and LiDAR measured AGB—due to natural 

growth/mortality, harvest, land-use and land-use change 

[20].

Despite the limitation of smaller plot size discussed 

above, sample plots of approximately 0.05  ha in size 

(25 m diameter) are standard for national forest invento-

ries across much of the temperate zone [21]. As the sci-

ence of forest management and forest inventory moves 

into a new era with greater inclusion of remotely sensed 

data to support monitoring and decision-making, we 

need better understanding of how well current field 

inventory approaches represent key forest variables at 

landscape to regional scales.

In this study we aimed to: (i) compare relationships 

between airborne LiDAR and wood volume estimates 

obtained from small (0.05 ha) and large (1 ha) field inven-

tory plots; (ii) scale wood volume estimates from small 

(0.05  ha) and large (1  ha) inventory plots to the spatial 

extent of regional land-management units with airborne 

LiDAR; (iii) examine the consequence of using small 

(0.05 ha) or large (1 ha) field inventory plots for training 

airborne LiDAR extrapolations at the scale of land-man-

agement units; and (iv) determine the number of plots 

needed to adequately train LiDAR based extrapolations 

at landscape to regional scales.

Methods
Study site

�is study was conducted in the Hainich-Dün region of 

�uringia, Germany (51°12° N 10°18° E). Elevation ranges 

from 100 to 494 m above sea level and the region expe-

riences a mean annual precipitation of 600–800  mm 

and a mean annual temperature of 6–7.5  °C. �e par-

ent material is limestone, which is covered in places by a 

loess layer of variable thickness (ca. 10–50 cm). Primary 

soil groups of the study area are Cambisols, Luvisols and 

Stagnosols [22]. �e climate and soil conditions of the 

region provide optimum growing conditions for beech 

(Fagus sylvatica L.) dominated forests, with admixtures 

of Fraxinus excelsior L., Acer pseudoplatanus L. and Acer 

platanoides L.

At the turn of the 19th century, most of the forest sites 

in the Hainich-Dün region were under the coppice-with-

standards system—a silvicultural system in which timber 

trees with an open canopy are grown above a coppiced 

woodland [23]. Small areas of selectively cut forests were 

also present, with selective harvesting of single trees and 

irregular forest use. In the early 19th century, all coppice-

with-standards forests were converted to age-class forest 
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or to selectively cut forest [24]. �e forest under age-class 

management is characterised by a sequence of relatively 

homogenous, even-aged stands. Coppice-with-standards 

management is no longer practiced in the Hainich-Dün 

region.

Field-inventory plot measurements

We used two different sets of existing field plots for com-

parison and extrapolation with airborne LiDAR data. �e 

first set consisted of 50 large 1  ha plots (100 ×  100  m) 

that were established as part of the Biodiversity Explora-

tories programme (see [25] for more details) to cover dif-

ferent forest and management types of deciduous forest 

within the region. �e second set is a subset of the exist-

ing regional grid based forest inventory, totalling 1100 

circular plots of 25 m diameter (0.05 ha) [26].

A comprehensive forest inventory was conducted in 

each of the 1 ha plots—with the species, height and stem 

diameter at breast height (DBH) recorded for all of trees 

with a DBH of >7 cm. In the 0.05 ha plots, a typical fixed 

area plot approach was used whereby: (i) all stems with 

DBH <=7 cm were measured within a 5 m radius of the 

plot centre point; (ii) stems with a DBH  <12  cm were 

recorded within a 7 m of the plot centre point; (iii) stems 

with a DBH  >12  cm were measured within a 12.5  m 

radius of the plot centre point. �us, each inventory 

point yields information about stand density and diam-

eter distribution when expanding to a common area. �e 

conversion into wood volume follows allometric relation-

ships, which include the form and taper of tree stems [5].

Airborne LiDAR surveying

Airborne LiDAR surveying was conducted by Milan 

GmbH in August 2008 during leaf-on conditions. A Riegl 

LMS-Q560 full-wave form scanner (Riegl Laser Meas-

urement Systems, GmbH, Horn, Austria) was operated 

at 240  kHz from 400–600  m above ground level. Beam 

divergence was 0.5 mrad and footprint size varied from 

20–30 cm. An average pulse density of 16 per m2 and a 

mean point spacing of 0.24  m was achieved across the 

study site, providing excellent representation of the 

three-dimensional structure of canopy over 100  km2 of 

forest (Fig. 1).

Airborne LiDAR processing

�e geolocated LiDAR point clouds were projected 

into the UTM 32 N reference system and classified into 

ground and vegetation returns using the LAStools suite 

of processing tools (rapidlasso GmbH). A high-resolu-

tion digital terrain model (DTM) was interpolated from 

the ground-classified points at 1  m spatial resolution 

using a triangulated network (TIN) approach. �e DTM 

was used to normalize the LiDAR point clouds to height 

above ground level. Field inventory plot centre locations 

were imported into the same projection system and buff-

ered to create 25 m diameter circular polygons and 100 m 

wide square polygons centred on their respective inven-

tory centre points. �ese polygons were used to clip and 

export the normalized LiDAR points falling inside each 

of the field inventory plots. �e exported plot LiDAR 

points were then analysed in FUSION/LDV [27] to derive 

the suite of 25 structural metrics listed in Table 1, using 

a height threshold of 0.5 m above ground level to define 

vegetation returns.

Establishing relationships between airborne LiDAR metrics 

and �eld-measured wood volume

We used two approaches to establish relationships 

between metrics derived from airborne LiDAR survey-

ing and field-measured wood volume for both the 0.05 ha 

and 1  ha datasets. In the first approach we conducted 

step-wise linear regression with AIC minimisation to 

identify the LiDAR derived variables with the most 

explanatory power. In the second approach we employed 

machine learning using the Random Forest Algorithm on 

the same suite of variables and compared these results to 

those obtained from the simpler step-wise linear regres-

sion approach. In both cases we randomly selected 70 % 

of the data for training and used the remaining 30 % for 

cross validation.

Exploring the consequence of using small or large �eld 

inventory plots for training airborne LiDAR extrapolations 

at the scale of land-management units

We used the best model (in terms of explanatory power 

and RMSE) for each plot size to extrapolate wood volume 

across the full extent of the available LiDAR coverage. We 

then intersected these regional wood volume maps with 

forest management GIS layers and compared the cor-

relation between the extrapolated model derived from 

0.05 ha plots and that derived from 1 ha plots on a land 

management unit basis.

Establishing the in�uence of inventory plot sample size 

on wood volume relationships with airborne LiDAR

�e number of inventory plots used in our study is con-

siderably larger than most other studies linking airborne 

LiDAR to field estimates. In order to understand how 

increasing sample size influences the resulting relation-

ship between field and airborne estimates, we devel-

oped a permutation simulation test in R to explore the 

effects of sample size on the correlation between the 

LiDAR metric with the most explanatory power and 

field-measured wood volume. Our approach involved: 

(i) the random selection of x plots from the full field 

dataset; (ii) fitting a linear regression between wood 
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volume and LiDAR metric; (iii) repeating steps i and ii 

y times and quantifying the distribution of the regres-

sion outputs. For the 0.05  ha dataset, x ranged from 

25–1000 in increments of 25 plots. For the 1 ha dataset, 

x ranged from 5–50 in increments of five plots. We ran 

1000 permutations (y) for each sample size step in both 

datasets, resulting in a total of 40,000 linear regressions 

for the 0.05 ha dataset, and 10,000 linear regressions for 

the 1 ha dataset. We plotted box-plots of the R2 and the 

RMSE of from the linear regression outputs at each sam-

ple size step.

Results
Relationship between airborne LiDAR and �eld-measured 

wood volume

LiDAR derived mean canopy height (MCH) was well 

correlated with field-estimated wood volume at both 

the 1 ha and 0.05 ha scales (Fig. 2a, b). Step-wise multi-

ple linear regression analysis showed that a combination 

of LiDAR derived height metrics could account for 92 % 

of the variation in field-measured wood volume at the 

1 ha plot scale (R2 = 0.92, RMSE = 50.79, Fig. 3a). Five 

explanatory variables were retained in the final model 

(determined by AIC minimisation)—variance of canopy 

height (var), the 20th, 40th, and 70th percentiles (q2, q4, 

q7) and kurtosis (kur). �e 70th percentile height (q7) 

was the most important explanatory variable, but inclu-

sion of the other metrics reduced the RMSE.

�e same analysis for the 0.05  ha plots showed that 

LiDAR derived metrics could only account for 68  % of 

the variation in wood volume at this scale (R2  =  0.68, 

RMSE  =  101.01, Fig.  3b). Mean canopy height was the 

most important explanatory variable, but CV was also 

significant and its inclusion reduced the RMSE.

�ere was a lot more scatter in the 0.05  ha relation-

ships, and the RMSE was almost double that of the 1 ha 

scale plots. Evaluation of the model residuals showed no 

spatial pattern and there was no trend with increasing 

terrain slope (Fig. 4).

Random Forest modelling produced the same results 

and explanatory variables as the step-wise linear regres-

sions, with only marginal improvements in RMSE. As 

such we used the simpler multiple linear regression equa-

tions for our landscape extrapolations.

Wood volume (1 ha) = 120.32 + −1.74 (var) + −4.38 (q2)

+16.64 (q4) + 9.7 (q7) + −11.05 (kur)

Wood volume (0.05 ha) = − 144.85 + 25.89 (MCH)

+ 67.64 (CV )

Fig. 1 Aerial overview of study region in central Germany with LiDAR survey areas shown in red (a). Large overlap between flight lines and low fly-
ing altitude enabled high-resolution characterisation of forest canopy structure in both rasterised (b) and 3D point cloud (c) space
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Extrapolating wood volume to landscape scale 

management units with airborne LiDAR

Extrapolation of wood volume from inventory plots 

to landscape scales with airborne LiDAR revealed a 

high degree of spatial variability in wood volume dis-

tribution, with the influence of forest management 

clearly evident in the patch characteristics (Fig. 5). �e 

extrapolation from the 1 ha plots (Fig. 5a) produced a 

smoother distribution of wood volume with lower vari-

ance, as expected, whilst the 0.05 ha plot extrapolation 

retained higher spatial detail with greater variance 

(Fig. 5b). At the scale of individual forest management 

units, however, these differences are largely averaged 

out with strong linear correlation between LiDAR 

derived wood volume estimates from 1 and 0.05  ha 

models (Fig. 6).

The in�uence of inventory plot sample size on wood 

volume relationships with airborne LiDAR

�e median R2 value of the fit between field and LiDAR 

estimated wood volume at the 0.05  ha scale remained 

constant as the number of plots increased from 25 to 

1000 (Fig.  7a). �e variation around the median values 

decreased with increasing number of plots. With the 

smallest number of plots (n = 25) the range in R2 values 

spanned 0.37–0.91, and stability was only achieved with 

greater than 350 inventory plots. �e same patterns held 

true for the RMSE, whereby the median values were con-

sistent with increasing number of plots, but stability in 

the range between high and low values was achieved with 

plot numbers greater than 350 (Fig. 7b).

�e pattern of decreasing range in R2 and RMSE val-

ues with increasing number of plots was repeated at the 

1 ha scale (Fig. 8a, b). Median values where consistent at 

sample size of greater than 10 plots of 1 ha, and stability 

in the range between high and low values was achieved 

when the number of inventory plots was greater than 30.

Discussion
Airborne LiDAR provides direct measurement of forest 

canopy height, but no information on DBH, which is the 

most commonly used (and often the sole) correlate of 

wood volume in field inventories. Establishing consist-

ent and transferable relationships between wood volume 

and canopy structural variables that airborne LiDAR can 

acquire is important for enhancing forest inventory and 

long-term monitoring of aboveground biomass over large 

spatial areas. Our results from this study in central Ger-

many confirm the utility of LiDAR for estimating wood 

volume in deciduous broad-leafed forest, but highlight 

the challenges of field plot size and number in establish-

ing robust relationships between airborne LiDAR and 

field inventory derived wood volume.

Estimation of wood volume from airborne LiDAR was 

most robust (R2 =  0.92, RMSE =  50.79  m3 ha−1) when 

trained and tested with the 1 ha experimental plot data. 

Predictions based on the more extensive but considerably 

smaller (0.05 ha) inventory plots were inferior (R2 = 0.68, 

RMSE = 101.01 m3 ha−1). In above ground carbon terms, 

assuming a mean wood density of 0.57 g cm−3 [28] and 

a carbon content of 0.488 for temperate broad-leafed 

species [29], these findings relate to RMSE values of 

14.13 Mg C ha−1 for the 1 ha plots and 28.09 Mg C ha−1 

for the 0.05 ha plots. Higher error in the smaller plots was 

not unexpected, as larger plot sizes smooth out much of 

the variability inherent at smaller scales, e.g. the shelter 

wood harvest is only visible based on 0.05  ha resolu-

tion (Fig. 5). What was surprising however was the lack 

of any spatial pattern in the residuals of the fit between 

Table 1 List of canopy structural metrics derived from air-

borne LiDAR

Canopy structural metric Abbreviations

Total number of returns totRET

Count of returns by return number ret1, ret2, ret3, ret4, ret5, ret6, ret7, 
ret8, ret9

Minimum minCH

Maximum maxCH

Mean MCH

Median medCH

Mode modCH

Standard deviation stdev

Variance var

Coefficient of variation CV

Interquartile distance intD

Skewness skew

Kurtosis kurt

Average absolute deviation AAD

Median of the deviations from the 
overall median

MADmed

Median of the deviations from the 
overall mode

MADmod

L-moments (L1, L2, L3, L4) L1, L2, L3, L4

L-moment skewness Lskew

L-moment kurtosis Kurt

Percentile values (5th–95th) q1, q5, q10, q20, q25, q30, q40, q50, 
q60, q70, q75, q80, q90, q95, q99

Canopy relief ratio CRR

Quadratic mean CQM

Cubic mean CCM

Canopy cover cov

Canopy density dens

Strata counts s2, s4, s6, s8, s10, s12, s14, s16, s18, 
s20, s22, s24, s26, s28, s30, s32, 
s34, s36, s38, s40
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field-measured and LiDAR-predicted wood volume. We 

anticipated that plots situated on steeper slopes would 

deviate more from LiDAR-predicted values than those on 

flatter slopes due to variations in growth patterns, varia-

tions in canopy architecture and the increased difficulty 

of collecting geolocated field data in steep environments. 

�is was not the case however as we found no spa-

tial trends in the residuals and there was no significant 

relationships between slope attributes and the model 

residuals (Fig.  4). Furthermore, the even distribution of 

residuals above and below zero indicates equal probabil-

ity of over- and under-estimation of wood volume from 

the 0.05  ha LiDAR model, suggesting a more random 

source of error.

Given the lack of environmental variation in the 0.05 ha 

model residuals and their uniform distribution, we con-

sider edge effects to be the most likely cause of LiDAR 

prediction errors. Edge effects become more pronounced 

when plot size decreases, as greater proportions of tree 

canopy bisect the plot boundary [30]. During field inven-

tory, trees rooted just inside the plot boundary contrib-

ute their full wood volume to the total plot estimate—yet 

any canopy extending over the boundary is ignored in the 

LiDAR analysis which clips the point cloud with the exact 

boundary dimensions of the field plot. �is scenario 

would lead to an underestimation of plot wood volume 

from LiDAR. Similarly, any tree rooted just outside of 

a plot would not be recorded in the field wood volume 

inventory, but any of its branches and canopy that extend 

into the plot are included in the LiDAR analysis—leading 

to possible overestimations of plot wood volume from 

LiDAR. As such, these edge effects present equal oppor-

tunity for over- or under-estimations to arise, depend-

ing on the tree trunk geographic location in relation to 

the plot boundary line. �ese edge effect artefacts could 

be avoided, or at least minimised, by adopting a “crown-

distributed” carbon density approach in the LiDAR 

analysis stage. Typical field inventories place carbon in 

space according to the geographic location of each stem 

(“stem-localised” approach), but as Mascaro et  al. [15] 

and Packalen et al. [30] have shown, its makes more sense 

to distribute carbon spatially according to the foot-print 

of the tree’s crown (“crown-distributed” approach). �e 

crown-distributed carbon density approach is more suit-

able for LiDAR-based investigations as LiDAR energy is 

returned more strongly by leaves and branches orien-

tated perpendicular to the sensor, than stem boles orien-

tated directly towards the sensor [15].

Successfully implementing a crown-distributed car-

bon density approach, however, relies on the delineation 
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and identification of individual trees crowns in the air-

borne LiDAR data. Although much progress has been 

made in this direction through top-down segmentation 

of normalised canopy models [31–33], individual tree 

detection success is heavily dependant upon forest type. 

High accuracies have been recorded in coniferous for-

est and savanna, but success of individual crown deline-

ation decreases as the complexity of canopy structure 

increases, and the interlocking crowns of broad-leafed 

temperate forest render them particularly challenging for 

automated individual crown separation [34–36]. Recent 

advances in bottom-up region growing techniques that 

identify trunk locations and segment their connected 

crowns within the LiDAR point cloud [35, 37] could 

prove useful in these forests. Airborne LiDAR datasets 

with higher pulse densities, preferably collected in leaf-

off conditions, would be needed however to achieve 

sufficient returns from tree trunks to enable bottom-up 

delineation.

Despite the differences observed in the relationship 

between field-estimated and LiDAR-predicted wood vol-

ume at 1 and 0.05 ha plot scales, and the possible improve-

ments that could be made in future LiDAR analyses, the 

greater uncertainty in the 0.05  ha model was of minimal 

consequence when scaling wood volume to land-manage-

ment units across the entire landscape. We found hardly 

any difference between total wood volume estimates 

derived from the 1 and 0.05 ha models for individual land-

management units (R2 = 0.99, RMSE = 114 m3). Nonethe-

less, reducing unexplained variation in the 0.05 ha model 

is important for ecological questions or management deci-

sions operating at smaller scales, and for evaluating canopy 

dynamics over time. Although our results show minimal 

difference between 1 and 0.05  ha models at the scale of 

land-management units, we need greater exploration of 

how a broader range of plot sizes impact scaling relation-

ships, across different forest types, to optimise the integra-

tion of field-based and airborne inventories.

In addition to advancing the LiDAR processing chain 

by adopting individual tree and crown-distributed car-

bon density approaches, uncertainty could be further 

reduced through improvements the field-inventory data 

collection. Common forest inventory systems in much 

of Europe utilise a fixed area sampling approach of 

three concentric circles of increasing distance from plot 

centre (5, 7, 12.5 m) and trees are sub-sampled accord-

ing to DBH thresholds [38]. �is approach assumes 

homogenous distribution of size classes across the plot, 
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which is unlikely to hold true in reality. Measurement 

of all trees within the plot area would avoid this source 

of uncertainty, but involves greater time costs, and it 

would not significantly change the total volume esti-

mate which depends on the coverage of the dominant 

trees. Nested fixed-area sampling approaches for forest 

inventory were developed to reduce sampling time per 

plot, and enable a higher number of plots to be sampled 

over more land area [39]. Our permutation tests in this 

study show however that very large plot numbers may 

yield limited benefit. Indeed, in terms of establishing 

relationships between field-estimated wood volume and 

airborne LiDAR metrics, increasing the number of plots 

beyond 350 does not improve the range of attained 

R2 and RMSE values (Fig.  6). In  situations were field-

inventory can be coupled with airborne LiDAR surveys, 
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it would therefore make more sense to spend time and 

effort on increasing field plot size, and ensuring meas-

urement of all stems, than increasing number alone. 

Moreover, the inclusion of airborne LiDAR into forest 

management and monitoring strategies can improve 

the effectiveness of field-based inventories by informing 

plot stratification over heterogeneous landscapes [12, 

17, 40]. Lastly, inclusion of recent advances in terrestrial 

LiDAR sampling [41–43] into the field-inventory pro-

cess would help reduce uncertainty of wood volume 

estimates at the plot scale, and facilitate integration of 

field and airborne data. Reducing uncertainty in the 

field to airborne scaling will be critical for validating 

upcoming global efforts to monitoring carbon stocks 

with spaceborne LiDAR, such as the global ecosystem 

dynamics investigation (GEDI) [44].
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Fig. 8 The influence of sample size (number of plots) on the proportion of variation in wood volume explained by LiDAR metrics—coefficient of 
determination (a) and root mean square error (b)—at the 0.05 ha plot scale



Page 13 of 14Levick et al. Carbon Balance Manage  (2016) 11:7 

Conclusions
�e results from our study in broad-leafed deciduous 

forest show that airborne LiDAR can be used very effec-

tively to map wood volume in deciduous forest stands, and 

therefore quantify carbon stocks across large landscapes 

at high spatial resolutions. We suggest that field inventory 

campaigns should prioritise plot size and place greater 

emphasis on precise stem and crown geolocation for bet-

ter integration with high-resolution remote sensing tech-

niques. Ensuring accurate geolocation of individual stems 

provides greater flexibility in the analysis stages of fusing 

LiDAR with field data, by enabling sub-sampling to pro-

vide information at a greater range of scales. We are mov-

ing into a forest management era where field-inventory 

and airborne LiDAR are inextricably linked. Forest inven-

tory campaigns and airborne LiDAR surveying should not 

operate independently, as each add considerable value to 

the other.
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