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1 Shared memory machines continue to increase in scale by adding more parallelism through additional cores and complex memory

hierarchies. Often, executing multiple applications concurrently, dividing among them hardware threads, provides greater efficiency

rather than executing a single application with large thread counts. However, contention for shared resources can limit the improvement

of concurrent application execution: orchestrating the number of threads used by each application and is essential.

In this paper we contribute SCALO, a solution to orchestrate concurrent application execution to increase throughput. SCALO

monitors co-executing applications at runtime to evaluate their scalability. Its optimizing thread allocator analyzes these scalability

estimates to adapt the parallelism of each program. Unlike previous approaches, SCALO differs by including dynamic contention

effects on scalability and by controlling the parallelism during the execution of parallel regions. Thus, it improves throughput when

other state-of-the-art approaches fail and outperforms them by up to 40% when they succeed.

1 INTRODUCTION

Shared memory machines constitute the building blocks (i.e., nodes) of supercomputing and datacenter facilities. These

nodes continue to increase in scale in terms of cores and hardware threads. A single, parallel program is often limited in

how effectively it can use this increasing hardware parallelism. Co-locating jobs, that is co-executing multiple parallel

programs, on a node can increase throughput and energy efficiency [3–5, 27]. As the parallelism continues to increase,

efficient execution of some workloads will require node sharing [27] and some systems already enable users to share a

node by statically partitioning cores between different jobs2.

Sharing a node between parallel programs to increase throughput is challenging. Programs scale differently on

available resources and co-execution can impact their scalability. Scaling depends on program-specific algorithmic

limitations, synchronization requirements and the impact of contention on shared resources, such as the last level cache

(LLC) and memory. Moreover, the scalability of a given program varies dynamically between parallel regions as well as

1New Paper, Not an Extension of a Conference Paper
2https://wiki.anl.gov/cnm/HPC/Submitting_and_Managing_Jobs/Advanced_node_selection
http://www.archer.ac.uk/documentation/user-guide/batch.php
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the obvious limit of sequential ones. Optimized throughput requires thread allocations that reflect these aspects of each

co-executing program in a workload as well as their interactions.

Quantifying scalability and the impact of contention is complex. Application scalability depends on (1) the varying

application’s algorithmic scaling properties; (2) the varying impact of the evolving set of co-located jobs. Existing

approaches are limited in accuracy and usability. Offline profiling approaches [12, 18] can miss contention effects

that arise during co-execution. Moreover, they require extensive and lengthy runs with different configurations to

build scalability models. Prior solutions to quantify scalability at runtime [9, 24] sample performance metrics by

experimenting with different thread allocations to evaluate scalability. However, this runtime experimentation wastes

execution cycles by bundling measurements with execution [9, 24] and can lead to sub-optimal configurations [12] due

to inaccurate characterization of contention.

Even if scalability and contention are accurately quantified, the allocation policies and mechanisms to improve

throughput through node sharing remain open questions. The degree of parallelism (DoP) of a program execution

controls its thread allocation and use of shared resources, such as the memory subsystem. Existing solutions combine

policies with scalability profiling choices, through machine learning or other empirical models based on offline [12] or

runtime [9] profiles. Irrespective of the allocation policy, prior approaches can only change the DoP at the beginning of

execution [12], or before parallel region execution [9] or at thread synchronization points [16, 24]. These limitations

can lead to missed opportunities to optimize thread allocations.

We present Scalability-Aware Parallelism Orchestration (SCALO), which overcomes many of the limitations of prior

solutions for node sharing, and we demonstrate that it significantly improves throughput. Specifically, we make the

following contributions:

• A novel, lightweight method to quantify the scalability of co-running programs that reflects contention. Our

method builds an accurate speedup model by periodically sampling a set of key performance indicators to

quantify algorithmic, synchronization and contention limitations to scalability. Unlike previous approaches, it

does so without requiring runtime experimentation that disrupts execution. SCALO uses this model to estimate

the speedup of co-running programs.

• A unique methodology for fine-grain control of the DoP during the execution of parallel regions. Our non-

intrusive techniques leverage existing scheduling points within the parallel runtime to control the DoP. A new,

adaptive schedule for parallel loops constructs augments DoP control points of loop execution transparently or

controllably by the programmer. Our methods break the limitation of previous solutions that change DoP only

at the start of a parallel region, never during its execution.

• Two new dynamic allocation policies that increase system throughput, one implementing predictive scaling and

the other using an instantaneous, efficiency-based heuristic. Both policies are effective for increasing throughput

considerably, by up to 40%, compared to statically dividing cores equally among co-running programs. Notably,

they increase throughput when other state-of-the-art runtime approaches fail to do so. Our SCALO allocators,

which provide similar throughput increases, show that accurate runtime scalability information and fine-grain

control of DoP are the key elements that previous solutions lack rather than a sophisticated policy.

We extensively evaluate SCALO on diverse workloads of co-running programs from the BOTS, NAS, Rodinia

and PARSEC suites and compare its allocators with two state-of-the-art solutions: (1) SCAF [8, 9], which is another

scalability-aware solution; and (2) an optimizing thread allocator based on a priori collected, offline profiling information.

We show that SCALO allocators improve throughput significantly compared to SCAF. For workloads with dynamically
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varying scalability, they provide significant improvements compared to the allocator with exhaustive offline profiling

and perform similarly for workloads characterized accurately by the offline information.

The rest of the paper is organized as follows: Section 2 presents our method to characterize scalability and contention.

Section 3 presents the parallelism orchestrator and discusses adaptivity in the OpenMP runtime. Section 4 presents our

performance evaluation. Section 5 discusses related work and Section 6 concludes the paper.

2 SCALABILITY AND SPEEDUP AWARENESS

SCALO provides a significant advance from prior work by accurately and inexpensively modeling scalability and

contention at runtime. This section formally defines scalability and speedup and then presents our model and its

implementation of them. A program executes through sequential and parallel regions. Scalability is a property of its

parallel regions, quantifies the improvement in their performance as the number of allocated threads, n, increases.

In practice, several factors limit scalability. Synchronization may be required to ensure correctness while the

programming model and its implementation may imply other runtime overheads. Machine-level bottlenecks, which

may arise from shared resources such as the last-level cache (LLC) or main memory, can reduce scalability within a

program and due to interference from co-runners. Typically, single-threaded execution time serves as a reference to

quantify scalability under multi-threaded execution. Formally, the execution time of a parallel region p is:

Tp (n) = max ti , i = 1 . . . n (1)

where ti is the time that thread i executed during that region. If the load on threads is well balanced then each thread

executes approximately the same time. Our goal is to quantify scalability without runtime experiments or any other

disruption to execution. We contribute a methodology to derive single-threaded execution time Tp (1) by monitoring

parallel execution.

We assume programs parallelized by annotating their sequential algorithm to create an equivalent parallel one, using

an OpenMP-like programming model. Thus, conceptually, the execution time and number of individual instructions in

a multi-threaded execution is the same as the single-threaded execution. However, multi-threaded execution includes

additional instructions for synchronization and its time contains extra idle cycles or stalls. Stalls due to synchronization

and the overhead of the parallel runtime are readily attributed to multi-threaded execution. However, stalls from

accessing shared machine resources, such as the LLC and memory, are present both in single-threaded and multi-

threaded execution. Some are unavoidable due to poor program locality, while others manifest because of contention,

resulting in limited scalability. Thus, we break down the execution time of a thread i as:

ti = ti,exe + ti,syn + ti,r t + ti,cont (2)

where ti,exe is the computation time of thread i including any locality stalls, while ti,syn , ti,r t , ti,cont represent time due

to synchronization, runtime overhead and time contention stalls. The execution time of the equivalent single-threaded

execution is:

Tp (1) =
∑

i

ti,exe , i = 1 . . . n (3)

Combining Eqs. 1 and 3, we formally define the speedup of parallel region p as:

SPp (n) =
Tp (1)

Tp (n)
=

∑
i ti,exe

max ti
, i = 1 . . . n (4)
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Table 1. Profiling data provided by the runtime

Sample Description

ts Time executed sequentially

ti Execution time of thread i

ti,r t Runtime-level execution time of thread i

ti,sync Time spent in synchronization for thread i

StallsLLC Execution stalls accessing LLC due to an LLC hit

Stallsmem Execution stalls accessing main memory due to an LLC miss

HitL2 Average hit ratio of the private L2 caches across threads

HitLLC Average hit ratio of the shared LLC cache across threads

The time to execute all serial and parallel regions of a program determines its overall speedup. Sequential regions are

those regions of a program that are not parallelized and, thus, are not controlled by a parallel runtime. These regions

execute with one thread without any parallel runtime overheads. In practice, their runtime may vary with the number

of threads due to locality effects. However, for simplicity, we assume that their execution time is independent of the

number of threads. Thus, the speedup of a program, that is, the ratio of its sequential execution time divided by its

parallel execution time with a particular thread allocation for each parallel region, is:

SP(p1, . . . ,pk ) =
Ts +

∑
i Tpi (1)

Ts +
∑
i Tpi (ni )

=

Ts +
∑
i

(
Tpi (ni ) · SPpi (ni )

)

Ts +
∑
i Tpi (ni )

, i = 1 . . . k (5)

where Ts is the cumulative execution time of sequential regions and Tpi (ni ) is the time spent executing parallel region

pi with ni threads.

The model is general to characterize any program running on any micro-architecture, although its parameters will

vary on the specific implementation and environment. We base our implementation on these equations. Accurately

accounting for stalls and contention is non-trivial. We need novel, specialized performance monitors to analyze stalls

accurately [13, 15]. For our implementation, we base profiling on instrumenting the parallel runtime and collecting

information from performance counters on existing hardware. Based on collected data, SCALO approximates stalls to

quantify scalability and speedup.

2.1 Implementation

We discuss our assumptions and then detail our implementation of our model.

Assumption 1: Cores in the system are not over-subscribed. Thus, no contention occurs for cores or core-private cache

components. For our implementation platform, an Intel Ivy Bridge architecture, L1 and L2 caches are core-private.

However, contention can exist for other shared components of the memory subsystem (the LLC and memory).

Assumption 2: Programs only use synchronization constructs that the runtime API provides. Thus, we only need to

monitor the parallel runtime to measure synchronization time. Even if a program uses fine-grain, user-level locks, they

must rely on the runtime API under contention. In our implementation, we instrument an OpenMP runtime that is

structured through the fork-join model and explicit directives for synchronization. Our implementation could easily be

extended to other parallel runtimes.
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We must estimate the sequential execution time of a program while profiling multi-threaded execution with the

current thread allocation. The sequential execution time is the reference to estimate scalability of this particular thread

allocation. These estimates are the input to optimizing thread allocators to extrapolate scalability for any thread

allocation, or as efficiency indicators of the current allocation.

To derive single-threaded performance, SCALO periodically samples timing information and hardware performance

counters from the instrumented parallel runtime. Table 1 shows the profiling data. It is possible to measure directly stalls

attributed to runtime overhead (ti,r t ) or synchronization (ti,sync ). However, wemust indirectly evaluate contention stalls

(ti,cont ) because hardware counters measure the total stalls at each level of memory hierarchy, without differentiating

between locality and contention stalls. Locality stalls are due to memory access patterns of an application, thus they are

unavoidable. Contention stalls are due to multi-threading and an input to the speedup model.

In our experimental architecture, the shared memories are L3, which is the LLC, and the main memory. Profiling

measures the total number of stalled cycles accessing the LLC (StallsLLC ), when an access misses the L2 but hits the LLC,

and main memory (Stallsmem ), when an access misses the LLC to fetch from main memory. For locality information,

profiling measures additionally the hit ratios of core-private L2 caches (HitL2), preceding LLC, and the LLC cache

(HitLLC ), preceding main memory. For simplicity, we assume hit ratios remain the same across different degrees of

parallelism to derive our approximation.

Intuitively, locality stalls from accessing memory at level j are analogous to the miss ratio of the (cache) memory at

level j − 1. Thus, we approximate locality stalls by factoring the total, measured stalls with the miss ratio of the previous

memory in the hierarchy. Taking the LLC for example, a program with good L2 locality rarely accesses the LLC, hence

LLC stalls mostly attribute to contention. Note that, in this case, contention is either due to (true or false) data sharing

within the program or because of sharing the LLC capacity. By contrast, a program with poor L2 locality has LLC stalls,

regardless of contention. For the LLC, locality stalls are approximated by factoring the total LLC stalls with the L2 miss

ratio to deduct them from the measured total stalls and derive contention stalls:

t̃cont,LLC = StallsLLC − StallsLLC ·MissL2 = StallsLLC · HitL2 (6)

To clarify more on the approximation, consider the extreme case whenMissL2 = 1 (i.e., HitL2 = 0), all LLCstalls are

the result of poor locality, thus they do not count as contention stalls. For the extreme whenMissL2 = 0 (i.e., HitL2 = 1),

there are no LLC accesses, hence also no LLC contention stalls occur. For the usual case when 0 < MissL2 < 1, our

approximation derives contention stalls after deducting unavoidable stalls attributed to locality.

SCALO uses a similar methodology to approximate memory stalls factoring in the program’s LLC miss ratio:

t̃cont,MEM = Stallsmem − Stallsmem ·MissLLC = Stallsmem · HitLLC (7)

Contention can affect the LLC hit ratio because of conflict misses from sharing the LLC. Since we cannot directly

measure this effect, we approximate the uncontended LLC hit ratio with the hit ratio under contention. We expect

hardware to evolve to include more capabilities to monitor shared resources, which would support refinements of our

implementation. Combined, Eqs. 6 and 7 approximate the contention stalls from sharing the memory subsystem as:

t̃cont = StallsLLC · HitL2 + Stallsmem · HitLLC (8)
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Thus, the estimated sequential execution time (from Eqs. 2, 3, 8) is:

T̃p (1) =
∑

i

ti,exe =
∑

i

ti −
(∑

i

(
ti,syn + ti,r t

)
+ t̃cont

)

︸                                ︷︷                                ︸
Stalls

, i = 1 . . . n

where n is the number of threads when profiling.

SCALO applies Eqs. 4 and 5 to the measured multi-threaded and estimated sequential execution times to compute

the speedup of the sampled period as:

S̃Pp (n) =
T̃p (1)

Tp (n)
and S̃P(n) =

ts + T̃p (1)

ts +Tp (n)

Discussing the portability of the approximation of contention stalls, it is general to apply on different cache and

sharing levels. Our methodology approximates locality stalls to subtract from the measured, total stalls and derive

contention stalls. The following formula generalizes our method for any shared memory hierarchy:

t̃cont =
∑

j

(
StallsMj

− StallsMj
·MissMj−1

)
=

∑

j

(
StallsMj

· HitMj−1

)
(9)

It sums up contention stalls for all shared memories, whereMj is the shared memory at level j , susceptible to contention.

About implementation, SCALO requires hardware counters to measure the cache hit ratio at various levels as well as

the number of execution stalls related to a pending miss in any cache in the memory hierarchy. Most current processors

include hardware counters that provide these capabilities.
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Fig. 1. Speedup and stalls for programs fft and mg
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Fig. 2. Speedup estimation for the rest of the programs

2.2 Single program evaluation

We compare actual speedup using different thread counts to the speedup estimates by executing each program

individually. This experiment tests the accuracy of the speedup estimation, including the approximation of stalls because

of inter-thread contention, for different degrees of parallelism. The same methodology applies to co-running workloads

to approximate stalls both from contention due to the program’s own threads and interference from co-runners.

Fig. 1 shows the actual speedup, the estimated speedup deducting stalls and the estimated speedup without subtracting

memory contention stalls for fft andmg. The figure also shows graphs on the private L2 and shared LLC cache hit ratios

and the ratio of stalls over the total execution time. fft is memory bound, irrespective of the number of threads, due to

poor locality. Increasing the number of threads has little effect on the LLC cache hit ratio, indicating that contention

does not impact LLC effectiveness. However, memory stalls increase because of contention for memory bandwidth. By

contrast, mg becomes increasingly more memory bound as the DoP increases, by saturating the memory bandwidth as

indicated by the sharp rise in memory stalls.

Fig. 2 shows the speedup estimation graphs for the rest of the programs. Across all programs, the average error of

speedup estimation is less than 18%. The correction on the estimation by subtracting memory stalls is more important

for programs which become increasingly memory bound through scaling, such as fft, mg and cg. For the rest of the

programs, the model is accurate by factoring in sequential execution, synchronization and runtime overhead.

Deducting stalls makes the speedup estimation more accurate. Although our platform does not provide hardware

performance counters to measure contention stalls directly, our approximation is accurate enough to follow the trend

of actual speedup, which is sufficient for evaluating scalability among co-runners. We do not need absolute speedup

estimation to guide parallelism orchestration. We apply our method to factor in contention from co-running programs

in the workload and demonstrate its effectiveness to guide the SCALO allocators in Section 4.
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3 PARALLELISM ORCHESTRATION
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Fig. 3. Overview of SCALO

SCALO runs as a system daemon to have a global view and control over co-executing programs. It can be deployed

in a single-user or multi-user setting to optimize compute node throughput when multiple jobs are co-located on it.

Fig. 3 shows a diagram of SCALO’s functional overview. In detail, SCALO intercepts starting and finishing points in

programs and periodically samples profiling data from co-executing programs, by querying their instrumented parallel

runtime instances. The scalability estimator derives estimates using timing and performance counter data samples,

as described in Section 2. These estimates are the input to the thread allocator module for further analysis. A thread

allocator decides the degree of parallelism for each program, by targeting to optimize a system metric of choice. SCALO

communicates those thread allocations to the parallel runtimes. SCALO allocators optimize system throughput, in line

with other state-of-the-art solutions, formally defined as [14]:

STP =

N∑

i=1

Ti (1)

Ti,co
=

N∑

i=1

SPi,co (10)

where Ti (1) is the execution time of a program running alone with a single thread, while Ti,co is its execution time

when co-running under some thread allocation regime. Next, we present the SCALO thread allocators which differ in

their approach to scalability modeling and thread allocation.

3.1 Logarithmic Model Allocator

The LOGarithmic Model allocator (LOGM) assumes that the speedup of a parallel region in the program follows a

logarithmic curve dependent on the number of threads. This assumption implies that contention effects saturate shared

resources and program scaling halts, but without exhibiting any destructive, retrograde effects. LOGM recalculates the

logarithmic speedup function with each new profiling sample. Specifically, it fits the latest speedup estimate from the

current thread allocation to a logarithmic function using a least-squares method. This function is of the form:

SPp (n) = a · loд(n) + b
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where n is the number of threads. LOGM fits two data points: the basic observation that SPp (1) = 1, thus b = 1, and the

estimated value SPp (nj ) =
T̃p (1)

Tp (nj )
. Note Tp (nj ) is the measured execution time with thread allocation nj while T̃p (1) is

the estimated single-threaded execution time deducting stalls as described in the previous section. LOGM extrapolates

speedup by including sequential and parallel execution timing information as in Eq. 5:

S̃P(n) =
ts +Tp (nj ) · S̃Pp (n)

ts +Tp (nj )
= (1 − f ) + f · (a · loд(n) + 1) = f · a · loд(n), f =

Tp (nj )

ts +Tp (nj )
(11)

LOGM solves an optimization problem to compute the DoP for each program. Specifically, it aims at maximizing the

system throughput, as defined in Eq. 10, using the extrapolated speedup from Eq. 11. We set two constraints to limit

the solutions of the optimization problem: processor cores must be fully subscribed to ensure full system utilization,

and each program must have at least a DoP of 1 to guarantee all co-runners make progress. In formal terms, the

maximization problem for N co-executing programs is:

maximize
n1, ...,nN

∑

i

S̃P i (ni ) ∀ i = 1, . . . ,N

subject to
∑

i

ni = C ∧ ni ≥ 1

where ni is the DoP of program i and C is the total number of available processor cores in the system.

We show an example of this approach by assuming two co-executing programs. The extrapolated speedup functions

of those programs for Eq. 11 are:

S̃P1(n) = f1 · a1 · loд(n)

S̃P2(C − n) = f2 · a2 · loд(C − n)

Note that n is the number of threads allocated on the first program, hence the second program has C − n threads to

ensure full utilization. Differentiating by n and setting the result equal to zero finds the solution which maximizes the

optimization objective:

n =
f1 · a1 ·C

f1 · a1 + f2 · a2
,dop1 = n ∧ dop2 = C − n

After LOGM computes the DoP for each program, SCALO communicates it to the parallel runtime of the program,

provided this results in a different thread allocation than the one in effect.

3.2 Speedup Proportional Allocator

The SPeeDup Proportional allocator (SPDP) improves throughput by following a heuristic approach without an

explicit prediction model for scaling. Instead, it calculates instantaneous speedup for each program, using monitoring

information. The heuristic that drives the thread allocation of SPDP is that throughput is proportional to speedup,

hence SPDP sets the degree of parallelism of each program proportionally to that, as evaluated during co-execution.

Specifically, SPDP applies Eq. 5, updating it after each profiling period with the timing values and the estimated scal-

ability for the specific thread allocation during sampling. SPDP uses this calculated speedup without any extrapolation

on scalability. Putting it in formal terms, SPDP computes the DoP for a program i in a workload of N co-executing
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programs as:

dopi =
S̃P i∑
j S̃Pj

·C ∀ i, j = 1, . . . ,N

Note that the calculated dop values are rounded to integers. Also, SPDP fully subscribes cores in the system and allocates

at least one thread to each program to ensure forward progress.

3.3 Implementation

SCALO is implemented as a daemon process, running in the background. The SCALO daemon communicates with the

parallel runtimes through a messaging protocol implemented over shared memory. When a program begins execution,

its parallel runtime registers itself with SCALO. SCALO bootstraps thread allocation by equipartitioning cores. As soon

as SCALO detects a co-running workload, it starts to periodically sample profiling data of co-runners by probing their

instrumented parallel runtimes. Sampling is synchronous, in the sense that SCALO collects samples of all co-executing

programs before invoking the scalability estimator, hence it has a complete view of execution. The thread allocator takes

input from the scalability estimator to decide an optimizing allocation. SCALO communicates any allocation updates to

each parallel runtime for setting the DoP. When a program finishes execution, its parallel runtime unregisters from the

daemon to signal exiting the workload. In response to a program exiting, the SCALO daemon invokes again the thread

allocator to adjust the DoP for the remaining programs, if there are any.

Next, we present our extensions to the OpenMP runtime, chosen because of its popularity, to make it compatible

with SCALO. Our changes can be used as a strategy to render other parallel runtimes SCALO-compatible too.

1
Collecting profiling 

information

...

t1

t2

t3
Ts=t2-t1

Tp=t3-t2

3
Communicating 

with SCALO

receiveRequest

GetProfile | SetDop

sendReply

Profile | Success

S

C

A

L

O

Comm.

Thread

2 Setting the dop

omp_set_dop(n)
{
if n > dop
 active[dop...n-1] = true
 signal(worker[dop...n-1])
else /* n <= dop */
 active[n...dop-1] = false
dop = n
}

worker schedule()
{
 if(!active)
  wait
 ...
}

worker

4
Adaptive 

scheduling

active active inactive

Loop-based Task-based

decompose

work

item

loop

iterations

work

item

Dynamic

scheduling

...

...

do_sync()
{
 t1 sync t2
 tsync=t2-t1
}

exec_work_item()
{
 t1
 trt=t1- <t0>
 work_item() t2
 texe=t2-t1
 read(stalls, hit)
}

START: register

END: unregister

Fig. 4. Extensions to the OpenMP parallel runtime

3.3.1 Implementing Instrumentation and Adaptivity in the OpenMP Runtime. For the implementation we use the

Insieme OpenMP compiler and runtime framework [17]. Insieme is OpenMP v3.0 compliant, supporting both loop-based

and task-based parallel programs. As for the Insieme runtime [26], it is a high performance OpenMP runtime which is
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on par with other widely used runtime implementations, such as GNU OpenMP and Intel OpenMP. We extend the

runtime for profiling instrumentation and adaptivity. Fig. 4 summarizes those modifications which we discuss next in

detail.

1 Collecting profiling information. The first extension is to instrument the OpenMP runtime for collecting profiling

information. The parallel runtime measures timing using timestamps to mark the start and end of execution of a region

of interest and calculate its duration. Specifically, profiling measures the duration of sequential and parallel regions, as

well as time spent executing runtime, synchronization or program-level code. For collecting hardware counters, we

instrument each OpenMP worker thread using PAPI [6] to measure characteristics of program-level code, including

stalls and cache hit ratios as shown in Table 1.

2 Setting the degree of parallelism. The second extension is implementing the mechanism to set dynamically the

DoP. We extend the runtime interface with a function, namely omp_set_dop, which takes as an argument the number

of active worker threads to set. Also, we declare an additional, internal control variable to store the DoP value as

part of the runtime state, initialized to the total number of threads available to the runtime. Invoking omp_set_dop

activates or deactivates workers to increase or decrease the number of active threads respectively. Implementation wise,

each worker thread has an activity flag and at each scheduling point , a worker checks atomically its private activity

flag before starting the execution of a work item. It suspends (blocks on a condition) if it has been tagged inactive.

When increasing the DoP, omp_set_dop resumes previously blocked worker threads and sets their activity flag. Calling

omp_set_dop blocks the caller until changing the DoP takes effect.

3 Communicating with the SCALO daemon. For the third extension, the parallel runtime creates a dedicated

management thread to communicate with the SCALO daemon. At initialization, the management thread registers the

program with SCALO and blocks waiting to receive requests from the daemon. SCALO performs two types of requests:

(1) a periodic request for profiling data and (2) an on-demand request to set the DoP for the program. Upon receiving a

request for profiling data, the management thread samples timing and hardware counters, then resets them atomically

and replies back their values to SCALO. Upon receiving a request to set the DoP, it calls the runtime interface function

omp_set_dop, waits until it completes and returns a success message to the daemon.

4 Enabling fine-grain control of the degree of parallelism. Superseding other approaches, SCALO changes the DoP

during the execution of parallel regions to be more adaptive. There are two prerequisites to have fine-grain control. The

first is to have a sufficient number of scheduling points to change the DoP and the second is a dynamic scheduling

regime to execute work items on any number of active workers. Task-based programs by design satisfy both those

requirements. However, this is not the case for loop-parallel programs, because of loop chunking and scheduling

semantics.

The fourth and final extension is to enhance adaptivity for loop-based parallel regions. In OpenMP, a parallel loop

can be statically scheduled, equally dividing iterations among worker threads. Although this obviates runtime overhead

for chunking and scheduling the loop, it forbids any adaptivity. First of all, the decomposition of loop iterations to work

items is too coarse grain to create sufficient scheduling points: a worker cannot be rendered inactive executing a chunk

of such a loop. Second, static scheduling of loop iterations may happen at compile time. Notably, this is the default of

the OpenMP pass in GCC, thus forbidding any runtime control.

To tackle these problems, we extend the schedule clause of parallel loops in the OpenMP compiler to have an adaptive

scheduling type, with an optional decomposition factor (df) argument. The semantics for execution are: (1) the runtime

decomposes the loop to work items of granularity iterations
df ·workers

and (2) work items are scheduled dynamically.



12 Georgakoudis et al.

If the decomposition factor is not specified, the runtime chooses a default value, set to 8× in our implementation.

The OpenMP specification leaves the default loop scheduling as implementation-defined when no schedule clause is

explicitly given. Thus, we set adaptive scheduling as the default one.

The methodology of SCALO is applicable to any OpenMP runtime. A SCALO-enabled OpenMP runtime is usable

as a drop-in solution with any binary that conforms to the OpenMP API of that runtime. Adaptivity depends on the

number of scheduling points. A general limitation for any runtime solution exists when the compiler chunks a statically

scheduled loop at compile time, without involving the runtime. Despite that, a SCALO-enabled runtime is still usable as

a drop-in solution for the remaining parallel regions. When statically scheduled loops go through the runtime, SCALO

applies adaptive scheduling with a default decomposition factor to create extra scheduling points. Nevertheless, we

present our extensions to the compiler for explicit adaptive scheduling of parallel loops to let programmers use it if

they wish. Also, SCALO is compatible with programs using nested parallelism, since it profiles threads and controls the

DoP for each individual parallel region.

3.3.2 Discussion.

Using adaptive scheduling by default. Notably, adaptive scheduling can readily override any other type of scheduling

but the static one needs special handling. In particular, static scheduling of loops conveys extra semantics at the

programming model3. This may impose a strict ordering in the execution of loop iterations across work items which

must be observed by the runtime if correctness depends on this, such as when the programmer specifies a nowait clause.

For that, we override static with adaptive scheduling only for those statically scheduled loops for which strict ordering

is not required. Interestingly, the latest OpenMP v4.5 specification includes a taskloop directive which decomposes a

parallel loop to dynamically scheduled OpenMP tasks. It includes a grain-size parameter, similar to the decomposition

factor, to give a hint to the runtime for slicing loops to tasks.
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Fig. 5. Measuring adaptive scheduling and SCALO overhead

Next, we evaluate the performance of adaptive scheduling, with a default decomposition factor of 8×, comparing

it with static scheduling. For this comparison, we use loop-based programs taken from NAS, Rodinia and PARSEC

benchmark suites and execute them in single-program workloads, fully subscribing cores in the system. Fig. 5(a) shows

the results. Adaptive scheduling is on par with static scheduling and notably, in one case, the particlefilter program

from Rodinia, execution time reduces significantly because dynamic scheduling balances load better across threads.

3By the OpenMP specification of static scheduling, loop constructs schedule iterations to the same worker across loop regions, provided those loops have
an identical iteration count and are within the same parallel region.
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SCALO overhead. To quantify the overhead of SCALO we show the percentage increase of execution time when

instrumentation, sampling and the scalability estimator of SCALO are enabled. The sampling period is set to 100 ms

and running the scalability estimator includes the overhead of computations for the speedup model, although its output

is unused. Nevertheless, changing the DoP does not require global synchronization between threads as each thread

reads a private activity flag (see Fig. 4) to resume or suspend execution to comply with the DoP setting. Fig. 5(b) shows

results on all programs, including task-based BOTS programs, again running alone and fully subscribing cores in the

system. The mean overhead across all programs is about 1.2%. This overhead is readily recoverable by optimizing thread

allocation in SCALO, as we show in the evaluation section.

OpenMP threading API. SCALO is compatible with the existing OpenMP threading interfaces. Specifically, a pro-

grammer can control the number of threads either via calling the omp_set_num_threads() API function or setting

the OMP_NUM_THREADS environment variable. For SCALO, this imposes an upper limit to the number of hardware

threads when adapting parallelism. That design choice is motivated by the fact that the programmer sets explicitly

the number of threads as a hint on the available parallelism, hence possible scalability. Additionally, a call to the API

function omp_get_num_threads() returns the maximum number of hardware threads available to the application. This

is either the total number of hardware threads, despite SCALO adapting the DoP intermittently, or the upper limit

on hardware threads set previously by the programmer. That way, programmers that may use this interface to divide

work for parallel execution will always provide enough work items to keep all hardware threads busy, whatever is the

SCALO setting of the DoP during execution.

Synchronization and scheduling points. SCALO is safe to use on programs with synchronization. SCALO cannot

cause deadlock because it changes the number of threads only at preexisting scheduling points of the OpenMP runtime.

Any reduction of threads occurs when the OpenMP runtime would otherwise schedule a new task on one of the worker

threads in its schedule() function (Fig. 4). If SCALO deactivates a thread, this thread is not executing a task so it

cannot hold a lock.

Advanced hardware features. In the section we discuss SCALO in relation to advanced hardware features, including

hyperthreading, frequency scaling and TurboBoost, and Thread Level Speculation (TLS).

SCALO evaluates contention in the shared LLC and main memory which is the point of contention for physical

cores in a hardware system. Hyperthreads are hardware threads running on the same physical core. Besides sharing

the LLC and memory, they also share the lower, core-private levels of cache hierarchy, typically L1 and L2 caches,

and the execution ports of the physical core pipeline. SCALO could be extended for hyperthreading, without affecting

its OpenMP implementation. Parallel programs may execute up to the number of hyperthreads and profiling can

track counters for each hyperthread individually. SCALO’s orchestrator would need to reflect contention between

hyperthreads, which occurs starting in the L1 cache instead of the LLC. The model would also need to include the stalls

from unavailable pipeline ports. Nevertheless, hyperthreading has limited use on compute-bound parallel codes which

we experiment with, because it leads to unpredictable variability and often degrades performance.

Frequency scaling and TurboBoost technologies target sequential and interactive applications, typically found in

desktop workloads. Frequency scaling reduces power consumption by throttling down cores, avoided on parallel

programs as it can cause load imbalance. TurboBoost accelerates sequential performance when there is thermal slack.

Targeting HPC installations, SCALO assumes a maximum performance configuration in which cores run at maximum

frequency and TurboBoost is deactivated because of multi-threaded execution, fully-subscribing processor cores.
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Thread Level Speculation (TLS) is an advanced technique to automatically parallelize sequential applications by

extracting tasks to execute speculatively on parallel threads. It requires hardware support to safely commit (roll back)

speculative tasks when they preserve (violate) the program’s sequential semantics. SCALO could include speculative

threads in the DoP of the application, by measuring their impact on contention.

4 EVALUATION

4.1 Experiment methodology

Table 2. Programs categorized by speedup, including execution information

Program Suite Input Ts (s) Tp (s) # parallel ≥ 2× ≥ 4× ≥ 16× SP (20)
regions

High
slu BOTS -n 100 -m 200 0.32 39.53 2 0 0 0 19.4

(sparselu)

ep NAS class C 0.01 30.58 2 0 0 0 19.3

pf Rodinia -x 128 -y 128 0.14 22.30 20 17 16 16 17.7

(particlefilter) -z 32 -np 2 × 10
5

Medium
fla PARSEC native 0.26 84.90 5 0 0 5 9.49

(fluidanimate)

cg NAS class C 1.94 26.57 30 21 19 19 9.2

fft BOTS -n 2
30 4.24 41.32 4 0 0 0 7.8

bs PARSEC native 19.19 7.76 1 0 0 1 6.36
(blackscholes)

Low

sort BOTS -n 2
30 36.36 11.75 2 0 0 0 3.9

mg NAS class C 13.67 14.32 19 14 11 9 2.5

bp Rodinia -n 2
26 50.42 11.73 3 2 0 0 1.06

(backprop)

Program Suite Barriers Critical Single/Master Reductions Taskwait
regions regions

High
slu BOTS 1 0 1 0 2

ep NAS 2 1 2 1 0

pf Rodinia 11 0 0 2 0

Medium

fla PARSEC 5 0 0 0 0

cg NAS 26 0 14 6 0

fft BOTS 2 0 2 0 16

bs PARSEC 1 0 0 0 0

Low
sort BOTS 1 0 1 0 3

mg NAS 19 1 11 0 0

bp Rodinia 2 0 0 0 0

The node we experiment with is a dual socket Intel Xeon E5-2690v2 system with 20 physical cores. Each socket hosts

10 cores clocked at 3 GHz. Cores run at their maximum frequency using the performance governor of Linux. TurboBoost

is deactivated because program workloads fully-subscribe the processors. We turn off SMT to avoid hyperthreading

interference in our measurements. Moreover, the machine has 64 GB of DDR3 RAM, distributed equally between the

two socket NUMA domains. We use the latest stable (inspire1_3) version of the Insieme OpenMP source-to-source

compiler to produce the source fed to GCC 4.8.3 for generating native code.

To create co-running program workloads, we use programs from the BOTS [11], NAS [1], Rodinia [7] and PARSEC [2]

benchmark suites. NAS benchmarks represent frequently used HPC kernels with regular parallelism using loop-based
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parallelization. BOTS includes programs with irregular parallelism using task-based implementations. Rodinia and

PARSEC benchmarks include OpenMP implementations of a variety of applications, besides HPC, targeting multi-

processor execution. BOTS programs use task-based parallelizationwhichmeans they have few parallel regions spawning

tasks for execution, whereas NAS, Rodinia and PARSEC programs predominantly use loop-based parallelization and each

parallel loop may be a different parallel region. Table 2 presents the benchmark programs, their inputs and additional

information characterizing their execution. This includes the total number of parallel regions of the program and their

frequency of execution, that is how many parallel regions execute more than 2×, 4× and 16× times. The frequency of

parallel region execution is important to understand the limitations of prior work on controlling parallelism and the

operation of SCALO. Moreover, the table shows the speedup of each program when executing alone, using all 20 cores

in the system.

Referring to table 2, we categorize benchmarks by their speedup of solo execution, when fully subscribing cores in

the system. Specifically, those with more than 10× speedup are deemed as high speedup ones, those between 4× and

10× are medium speedup and those with less than 4× are low speedup. We group results by speedup classes to evaluate

the optimizing thread allocators.

For experimentation, we use the same experimentation methodology from other state-of-the-art approaches [8, 9].

Co-running workloads include programs both from the same speedup class or different speedup classes to create

execution scenarios that test the optimizing allocators. Furthermore, programs start execution at the same time but

they may finish at different times. The inputs to programs are chosen so that they have comparable execution times, to

maximize co-execution time. A co-running workload has completed when both programs have finished. We record the

execution time of each benchmark and compute the system throughput as in Eq. 10. All experiments are repeated for 10

times to report the mean value out of those runs. When error bars are given, they represent 95% confidence intervals.

The baseline for our evaluation is equipartitioning, that is equally dividing cores among co-running programs. SCALO

implements LOGM and SPDP, as described in section 3. Besides SCALO allocators, we include an implementation of

the state-of-the-art allocator SCAF [9], following closely its specification. Moreover, for comparison, we include an

allocator using exhaustive offline profiling from solo runs of each program, named OPPS standing for operating points.

OPPS takes as input offline collected profiles from solo runs of programs. Those profiles record the execution time of a

program for all possible threading configurations, varying the number of threads up to the maximum number of cores

and mapping between sockets. OPPS combines offline information of co-runners to choose the thread allocation which

maximizes STP. However, OPPS exerts control on parallelism only when a program starts execution, to decide its thread

allocation alongside co-runners, or when a program finishes, to adjust the thread allocation on remaining programs.

Overall, OPPS represents a design point which has ample offline profiling information from solo execution but lacks the

ability to detect contention and scalability variations at runtime to control parallelism.

Concerning SPDP, LOGM and SCAF, we experiment both with compact and spread mapping of threads to cores.

Compact mapping puts threads of the same program to the same socket before crossing to the next socket, if needed. In

contrast, spread mapping distributes threads as evenly as possible across sockets. Note that OPPS uses offline profiling

information to optimize mapping. Equipartitioning, used as the baseline, always applies compact mapping to isolate

programs on different sockets to avoid interference. We leave the automated optimization of thread mapping in addition

to dynamically controlling the degree of parallelism as future work.
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Fig. 6. Mean throughput increase vs. equipartitioning across 2-program workloads
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Fig. 7. Throughput increase vs. equipartitioning for 2-program workloads (compact)

4.2 Results and Discussion

4.2.1 2-program workloads. Fig. 6 shows the mean improvement or deterioration in STP of each allocator per

workload group and also summarizes results by averaging across all workloads. Fig. 6(a) – 6(b) present overall results



SCALO: Scalability-Aware Parallelism Orchestration 17

for different speedup workloads using compact or spread thread mapping and Fig. 6(c) – 6(d) show results for same

speedup workloads. Results are similar for compact and spread mapping and Fig. 7 shows the STP improvement for

each individual workload using compact mapping.

For different speedup workloads, the SCALO thread allocators SPDP and LOGM effectively improve system through-

put, regardless of the thread mapping. Specifically, SPDP and LOGM improve throughput by an average 30% across

all workloads. Interestingly, SPDP and LOGM are on par to OPPS, averaging across workloads, but without requiring

exhaustive offline profiling. SCAF achieve the lowest throughput improvement, only about 2.5% on average. This result

comes from SCAF limitations: the inaccuracy of runtime experimentation when estimating scalability and the inability

to control parallelism during parallel region execution.

Drawing general conclusions, the higher the speedup disparity among co-running programs the more SCALO

allocators improve throughput. Among the three workload groups, SPDP and LOGM improve throughput the most for

the high-low speedup workloads, followed by high-medium and medium-low workloads. This is because the speedup

difference between programs justifies moving away from an equipartitioning regime. Nevertheless, even in workloads

with less speedup disparity, adapting thread allocation to scalability variations is beneficial, as we elaborate later.

For workloads of programs of the same speedup class, equally dividing cores between them is usually the best

strategy since they benefit about the same from additional cores. SCALO results in a similar division of resources as

equipartitioning. Thus, SCALO allocators achieve less than 10% improvement on throughput by adjusting DoP for

scalability variations. Notably, SCAF results in a net slowdown of about 10% on average because of failing to adapt

parallelism to scalability variations during parallel region execution.

Next, we provide additional data and present typical examples from the experimenting workloads to highlight the

differences among the deployed allocators and how these affect workload execution.
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Fig. 8. Thread allocations and STP for the workload slu-mg
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4.2.2 The importance of controlling parallelism during parallel region execution. Fig. 8(a) – (d) show thread allocations

over time for all optimizers when co-executing the programs slu and mg. Solid lines show what is the optimizing thread

allocation each solution computes, while markers show the actual point in time this allocation takes effect.

This is a high-low workload: slu is the highly-scalable, high speedup program whereasmg is the low speedup one due

to sequential regions and limited scalability from memory bound execution. For such a workload, slu should be allocated

more threads than mg to optimize throughput. SCALO allocators and OPPS increase STP compared to equipartitioning

similarly, by about 15%, but SCAF reduces STP by about 20%.

Notably, SCAF and SCALO allocators have similar decisions for thread allocation. However, SCAF is unable to

effectively control parallelism for the slu program. In particular, slu has a long-running parallel region, within which

tasks spawn to perform the computation. SCAF cannot change the parallelism for that region and slu runs most of

the execution time with the initial allocation of 10 threads, leading to sub-optimal performance. By contrast, SPDP

and LOGM adapt parallelism during parallel region execution to effectively improve throughput, being unaffected by

program structure. Notably, OPPS performs on par to SCALO allocators by having a priori knowledge of scalability.

Conclusion: changing the degree of parallelism during parallel region execution is necessary to optimize

thread allocation, assuming no a priori information on scalability.
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Fig. 9. Thread allocations for the workload fft-mg

4.2.3 Variations in scalability and fine-grain control of parallelism. Certain workloads experience variations in scala-

bility over time because: (1) co-running programs alternate between sequential and parallel regions and (2) contention

affects differently parallel regions of co-runners. This is especially the case for medium-low workloads which combine

programs with less scaling. Referring to results in Fig. 7(b), OPPS improves throughput consistently less than SCALO

allocators on those workloads although it includes offline information on scalability.

As an indicative example, we focus on the medium-low workload of co-executing fft and mg, SPDP improves STP

by about 27%, LOGM is on par with 25%, whereas OPPS improves it modestly, about 13%. SCAF again fails to control
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parallelism effectively for fft due to its few parallel regions and results in an STP improvement of only 3.5%. Fig. 9(a) – (d)

show thread allocations over time for the optimizers.

Of all optimizers, OPPS has both the most coarse grain view of scalability and control of parallelism and this limits its

scope of optimization. OPPS uses whole program speedup to boost thread allocation on the medium speedup program

fft. However, SPDP and LOGM identify scalability changes in the workload through online monitoring and adapt

parallelism to improve STP considerably more than OPPS.

Conclusion: in workloads with variations in scalability, identifying them at runtime and adapting paral-

lelism improves significantly STP.
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4.2.4 Contention-aware modeling versus runtime experimentation for scalability estimation. As a detailed example,

Fig. 10(a) shows actual and estimated scalability for the cg program running alone and fully subscribing the 20 cores. This

is to compare runtime experimentation, used by SCAF, and the SCALO approach of contention modeling. SCALO results

in a much more accurate estimate, being roughly within 10% of the measured scalability while SCAF overestimates it by

about 60%.

Going into deeper analysis, Fig. 10(b) shows the actual and SCAF-estimated IPC for single-threaded and multi-

threaded execution, focusing on the parallel region of cg. Runtime experimentation measures the IPC with Nthreads − 1

and extrapolates this value to the estimatedNthreads . However, this results in overestimation due to ignoring contention

effects from extrapolation. Moreover, SCAF measures the single-threaded IPC executing concurrently to the multi-

threaded instance. This leads to underestimating the single-threaded IPC because of unaccounted contention effects

throttling down single-threaded execution. Since the estimated scalability in SCAF is the ratio of the extrapolated

multi-threaded IPC over the single-threaded IPC, these inaccuracies amount to overestimating scalability considerably

and the estimates becoming increasingly more inaccurate for programs susceptible to contention.

Fig. 11 indicates the shortcomings on thread allocation when SCAF mischaracterizes scalability. The graph shows

thread allocation for all policies, when co-running the programs pf and cg, a high-medium speedup workload. The

program pf is a compute-bound, highly scalable, high speedup program whereas cg is memory bound and thus has

limited scalability. All optimizing allocators but SCAF boost thread allocation of pf. However, SCAF mischaracterizes the

scalability of cg and distributes threads equally between pf and cg, similar to equipartitioning, thus failing to improve

system throughput. Notably, SCAF results in a net decrease of STP of about 25% because of the overhead or runtime

experimentation.

Conclusion: contention-aware modeling results in more accurate scalability estimates than runtime ex-

perimentation, saving also the overhead associated with experimentation.
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Fig. 12. Throughput increase vs. equipartitioning for 3-program (high-medium-low) workloads (compact)

4.2.5 3- and 4-program workloads. For constructing 3- and 4-program workloads, we take all 3-way and 4-way

combinations of programs. Fig. 12 shows detailed results only for 3-program workloads of different speedup, due to

the large number of experiments. Fig. 13 summarizes results by showing the mean throughput, including the total

of possible combinations, for 3- and 4-program workloads. Notably, SCALO allocators maintain good performance,
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increasing throughput by 25% for 3-program workloads and 40% for 4-program workloads, staying on par with the

OPPS allocator. SCAF results in an average slowdown of 15%. Increasing the number of programs in the workload

exacerbates the overhead from SCAF’s runtime experimentation and failing to timely adapt the DoP.

5 RELATEDWORK

This section elaborates on the differences between SCALO and prior work. Table 3 compares several related approaches

to control DoP with SCALO. We first consider work that optimizes single-program execution but does not consider

contention arising from multiprogram workloads.

Table 3. Feature comparison
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SCALO X X X X X X X

SCAF X X X X

Callisto X X X

Varuna X X X X

[12] X X partially X X

Tumbler X X X

Lithe X X

ReSense X X X X

Thread Tailor X X X

DoPE X X X

Parcae X X X X X

[28] X X X X X

FDT X X X X

Dynamic Teams X X X X

5.1 Single-program thread optimizers

Lithe [19] composes parallel runtime libraries that execute in the context of a single program to avoid over-subscription

and to improve utilization. Lithe multiplexes user-level threads that execute the libraries on hardware threads. It avoids
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over-subscription and intercepts synchronization calls to switch blocked user-level threads to ones that are ready to

execute to improve utilization. However, Lithe does not estimate scalability or choose DoPs of the co-executing libraries.

Thread Tailor [18] sets the number of threads of single-program execution to minimize the impact of contention,

inter-thread communication and synchronization. It first profiles an instrumented version of the program to record all

memory accesses and synchronization overhead. Based on this profile, Thread Tailor guides the DoP of the execution

contexts of subsequent runs, using user-level threading, to minimize communication and synchronization overhead.

Thread Tailor profiles are input dependent and are prone to overhead and inaccuracies because of instrumentation.

DoPE [21] adjusts DoP based on algorithmic bottlenecks. It provides tools and APIs to enable adaptivity. However, it

requires significant development effort: programmers must refactor applications in the DoPE programming model;

administrators must set machine-specific optimization targets and constraints; and mechanism developers must

implement those constraints through DoP adjustments.

Suleman et al. [25] propose feedback-directed throttling (FDT) to set the DoP for parallel loops. FDT executes the

first few iterations of a parallel loop with one thread to evaluate its scalability based on synchronization overhead and

memory bandwidth requirements. FDT assumes linear scaling and executes the rest of the loop with the number of

threads that minimizes the extrapolated execution time. The training incurs considerable overhead and its contention

analysis misses important effects such as sharing the last level cache (LLC).

5.2 Multi-program workload thread allocators

SCAF [8, 9] periodically computes an efficiency metric for each program to guide DoP. SCAF uses runtime experiments

that fork single-thread clones of parallel regions and execute them concurrently to the original program running with

the remaining threads. It estimates scalability by taking the IPC ratio of multi-threaded over single-threaded execution.

However, profiling through forking can have large overhead duplicating process resources. Moreover, contention

depends on the number of threads and co-runners; runtime experiments perturbs both, resulting in inaccuracies. Lastly,

SCAF can change the DoP only at entry points of parallel regions, foregoing optimization opportunities during the

execution of those regions.

Callisto [16] assumes threads in parallel regions are compute bound and allocates hardware threads to user-level

contexts using spatial and temporal sharing policies to improve utilization. For temporal sharing, it multiplexes user-

level contexts on hardware threads by scheduling out contexts blocked on synchronization. However, Callisto does not

model scaling under contention. Instead, it simply assigns cores to programs based on user-defined priorities for spatial

sharing.

Varuna [24] estimate scalability based on runtime experiments that periodically measure IPC for different threading

configurations of parallel regions. These experiments disrupts execution. Further, Varuna requires co-ordination between

co-running programs that can lead to unpredictable delays. Lastly, it can only control DoP at synchronization points,

limiting its effectiveness.

Emani et al. [12] observe that measuring performance by varying the number of threads incurs high, unpredictable

delays and reduces accuracy. They propose training multiple, machine learning models (experts) from solo program

runs to predict optimized thread allocations. They deploy a mixture of experts that vary training features and weights,

for each program at runtime. They use the expert that best predicts the execution environment before a parallel region

starts. The training is time consuming and the quality of the experts depends greatly on choosing appropriate training
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weights. Moreover, environment prediction does not model important hardware-level contention effects, such as LLC

and memory sharing.

Tumbler [20] changes load balancing in Linux to account for per-thread CPU utilization and migrates threads between

cores to equalize utilization. Tumbler increases performance in an over-subscribed system, but has no dynamic scaling

model to account for contention and cannot control parallelism.

ReSense [10] changes the thread-to-core mapping for multi-threaded programs to minimize contention. It requires a

characterization step, during which a program runs alone to compute a sensitivity score from contention on shared

caches and memory. ReSense uses this score at runtime to choose which programs to collocate and which to isolate. It

assumes a fixed thread count during execution does not control DoP despite its significant impact on contention.

Parcae [22] is a framework for auto-parallelization of loop-based programs that includes a runtime optimizer

for determining the DoP. The Parcae auto-parallelizing compiler constructs a task graph of parallel loops. During

execution, the runtime guides an iterative search of thread configurations based on the gradient of a programmer-

defined throughput metric. This iterative searching can incur significant overhead, especially for coordinating the

search between co-runners, and may lead to a sub-optimal solution trapped in a local minimum.

Zhuravlev et al. [28] adapt the mapping of single-threaded, multiprogram workloads to balance contention across

shared cache domains. They use the LLC miss rate as the contention predictor and their online scheduling algorithm

migrates programs between shared cache domains to reduce the aggregate miss rate. They do not consider scalability

since they only consider single-threaded programs.

Schönherr et al. [23] use dynamic teams that change the number of active threads during parallel regions to reduce

over-subscription with co-executing OpenMP programs. They show that equipartitioning hardware threads between

co-executing, parallel programs improves performance compared to over-subscription. However, they do not model

contention or consider other partitioning strategies. We use equipartitioning as the baseline for our experiments and

show that dynamic, scalability-aware partitioning significantly improves system performance.

Earlier solutions have several limitations that reduce their applicability and efficacy. SCALO offers a new solution to

avoid those problems. In brief, SCALO contributes lightweight, yet accurate, contention-aware scalability estimation

and fine-grain control of DoP during execution to improve system performance.

6 CONCLUSIONS AND FUTUREWORK

In this paper we presented SCALO, a solution to optimize system throughput when co-running parallel programs that

share the resources of a node. SCALO monitors the execution of co-running programs at runtime, evaluates contention

in vivo and adapts the degree of parallelism to the scalability of each program. SCALO performs better than other state-

of-the-art solutions because of two novelties: (1) contention-aware online profiling by using a model based on execution

stalls which is less intrusive and more accurate compared to previous offline profiling or runtime experimentation

approaches, and (2) controlling the parallelism throughout execution, and critically during the execution of parallel

regions, to effectively adapt thread allocation to scalability.

We show two new dynamic allocators possible within SCALO: LOGM and SPDP. LOGM predicts scalability using a

logarithmic model to choose those thread allocations for each program which maximize model throughput. Differently,

SPDP computes the instantaneous speedup of each program and heuristically allocates threads proportionally to

program speedup. Extensive evaluation on workloads that mix programs with different parallelization structures, task or

loop-based, and different speedup potential, shows that SCALO allocators, whether predicting or heuristically allocating,
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increase throughput significantly. Specifically, SCALO allocators increase throughput on average 30% compared to

a baseline of equipartitioning threads among co-runners, while improving throughput more compared to previous

state-of-the-art allocators.

As future work, we identify several possibilities for further research. We intend to extend our contention-aware

scalability model in two ways. First, to identify contention on other shared resources besides memory, such as accel-

erators, disks, networking etc., to include a wider class of applications. Second, to improve the model accuracy by

proposing new types of performance counters targeted specifically for measuring contention. Furthermore, we are

working towards extending SCALO allocators to optimize execution for other metrics besides performance, such as

energy consumption. Also, in our scope is to extend parallelism orchestration to include thread mapping techniques

for optimizing execution, especially applicable in the presence of hardware heterogeneity, such as NUMA memories

and asymmetric processors. Lastly, we work on applying our ideas and techniques on distributed memory parallel

execution, for efficiently sharing a cluster of nodes besides sharing a single node.
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