
SCAN: A Structural Clustering Algorithm for Networks
Xiaowei Xu

University of Arkansas at Little Rock

xwxu@ualr.edu

Nurcan Yuruk, Zhidan Feng

University of Arkansas at Little Rock

{nxyuruk, zxfeng@ualr.edu}

Thomas A. J. Schweiger
Acxiom Corporation

Tom.Schweiger@acxiom.com

ABSTRACT

Network clustering (or graph partitioning) is an important task for

the discovery of underlying structures in networks. Many

algorithms find clusters by maximizing the number of intra-cluster

edges. While such algorithms find useful and interesting

structures, they tend to fail to identify and isolate two kinds of

vertices that play special roles – vertices that bridge clusters

(hubs) and vertices that are marginally connected to clusters

(outliers). Identifying hubs is useful for applications such as viral

marketing and epidemiology since hubs are responsible for

spreading ideas or disease. In contrast, outliers have little or no

influence, and may be isolated as noise in the data. In this paper,

we proposed a novel algorithm called SCAN (Structural

Clustering Algorithm for Networks), which detects clusters, hubs

and outliers in networks. It clusters vertices based on a structural

similarity measure. The algorithm is fast and efficient, visiting

each vertex only once. An empirical evaluation of the method

using both synthetic and real datasets demonstrates superior

performance over other methods such as the modularity-based

algorithms.

Categories and Subject Descriptors

I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms,

Similarity measures.

General Terms

Algorithms, Performance

Keywords

Network clustering, Graph partitioning, Community Structure,

Hubs, Outliers

1. INTRODUCTION
Much data of current interest to the scientific community can be

modeled as networks (or graphs). A network is sets of vertices,

representing objects, connected together by edges, representing

the relationship between objects. For example, a social network

can be viewed as a graph where individuals are represented by

vertices; and the friendship between individuals are edges [1].

Similarly, the world-wide web can be modeled as a graph, where

web pages are represented as vertices that are connected by an

edge when one pages contains a hyperlink to another [2] [3].

Network clustering (or graph partitioning) is a fundamental

approach for detecting hidden structures in networks that, because

of many interesting applications, is drawing increased attention in

computer science [4][5], physics [11], and bioinformatics [6].

Various methods have been developed. These methods tend to

cluster networks such that there are a dense set of edges within

every cluster and few edges between clusters. Modularity-based

algorithms [6][11][12] and normalized cut [4][5] are successful

examples. However, they do not distinguish the roles of the

vertices in the networks. Some vertices are members of clusters;

some vertices are hubs that bridge many clusters but don’t belong

to any, and some vertices are outliers that have only a weak

association with a particular cluster. The situation is illustrated in

Figure 1.

Figure 1. A Network with 2 Clusters, a Hub and an Outlier.

The existing methods such as modularity-based algorithm [12]

will partition this example into two clusters: one consisting of

vertices 0 to 6 and the other consisting of vertices 7 to 13. They

do not isolate vertex 6, a hub whose membership in either cluster

is disputable, or vertex 13, which has only a single connection to

the network.

The identification and isolation of hubs is essential for many

applications. As an example, the identification of hubs in the

WWW improves the search for relevant authoritative web pages

[7]. Furthermore, hubs are believed to play a crucial role in viral

marketing [8] and epidemiology [9].

In this paper, we propose a new method for network clustering

called SCAN (Structural Clustering Algorithm for Networks). The

goal of our method is to find clusters, hubs, and outliers in large

networks. To achieve this goal, we use the neighborhood of the

vertices as clustering criteria instead of only their direct

connections. Vertices are grouped into the clusters by how they

share neighbors. Doing so makes sense when you consider the

detection of communities in large social networks. Two people

who share many friends should be clustered in the same

community.

Refer again to the example in figure 1. Consider vertices 0 and 5,

which are connected by an edge. Their neighborhoods are the

vertex sets {0, 1, 4, 5, 6} and {0, 1, 2, 3, 4, 5}, respectively. They

share many neighbors and thus are reasonably grouped together in

the same cluster. In contrast, consider the neighborhoods of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

KDD’07, August 12–15, 2007, San Jose, California, USA.

Copyright 2007 ACM 978-1-59593-609-7/07/0008...$5.00.

824

Research Track Paper

vertex 13 and vertex 9. These two vertices are connected, but

share only two common neighbors, i.e. {9, 13}. Therefore, it is

doubtful that they should be grouped into the same cluster. The

situation for vertex 6 is a little different. It has many neighbors,

but they are sparsely interconnected.

Our method, SCAN, identifies two clusters, {0, 1, 2, 3, 4, 5} and

{7, 8, 9, 10, 11, 12}, and isolates vertex 13 as an outlier and

vertex 6 as a hub.

SCAN has the following features:

• It detects clusters, hubs, and outliers by using the

structure and the connectivity of the vertices as

clustering criteria. Through theoretical analysis and

experimental evaluation we will demonstrate that SCAN

can find meaningful clusters and identify hubs and

outliers in very large networks.

• It is fast. Its running time on a network with n vertices

and m edges is O(m). In contrast, the running time of

the fast modularity-based algorithm [12], the fastest

existing network clustering algorithm, is O(md log n).

The paper is organized as follows. We review the related work for

network clustering algorithms in section 2. We formulize the

notion of structure-connected clusters in section 3. We describe

the algorithm SCAN in section 4. We give a computation

complexity analysis of SCAN in section 5. We compare SCAN to

the fast modularity-based network clustering algorithm in section

6. Finally, we present our conclusions and suggest future work in

section 7.

2. RELATED WORK
Network clustering (or graph partitioning) is the division of a

graph into a set of sub-graphs, called clusters. More specifically,

given a graph G = {V, E}, where V is a set of vertices and E is a

set of edges between vertices, the goal of graph partitioning is to

divide G into k disjoint sub-graphs Gi = {Vi, Ei}, in which Vi ∩ Vj

= Φ for any i≠j, and ∑
=

=
k

i

iVV
1

. The number of sub-graphs, k,

may or may not be known a priori. In this paper, we focus on

simple, undirected, and un-weighted graphs.

The problem of finding good clustering of networks has been

studied for some decades in many fields, particularly computer

science and physics. Here we review some of the more common

methods.

The min-max cut method [4] seeks to partition a graph G={V, E}

into two clusters A and B. The principle of min-max clustering is

minimizing the number of connections between A and B and

maximizing the number of connections within each. A cut is

defined the number of edges that would have to be removed to

isolate the vertices in cluster A from those in cluster B. The min-

max cut algorithm searches for the clustering that creates two

clusters whose cut is minimized and while maximizing the

number of remaining edges.

A pitfall of this method is that, if one cuts out a single vertex from

the graph, one will probably achieve the optimum. Therefore, in

practice, the optimization must be accompanied with some

constraint, such as A and B should be of equal or similar size, or

|A| ≈ |B|. Such constraints are not always appropriate; for

example, in social networks some communities are much larger

than the others.

To amend the issue, a normalized cut was proposed [5], which

normalizes the cut by the total number connections between each

cluster to the rest of the graph. Therefore, cutting out one vertex

or some small part of the graph will no longer always yield an

optimum.

Both min-max cut and normalized cut methods partition a graph

into two clusters. To divide a graph into k clusters, one has to

adopt a top-down approach, splitting the graph into two clusters,

and then further splitting these clusters, and so on, until k clusters

have been detected. There is no guarantee of the optimality of

recursive clustering. There is no measure of the number of

clusters that should be produced when k is unknown. There is no

indicator to stop the bisection procedure.

Recently, modularity was proposed as a quality measure of

network clustering [11]. For a clustering of graph with k clusters,

the modularity is defined as:

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

k

s

ss

L

d

L

l
Q

1

2

2

L is the number of edges in the graph, ls is the number of edges

between vertices within cluster s, and ds is the sum of the degrees

of the vertices in cluster s. The modularity of a clustering of a

graph is the fraction of all edges that lie within each cluster minus

the fraction that would lie within each cluster if the graph’s

vertices were randomly connected. Optimal clustering is achieved

when the modularity is maximized. Modularity is defined such

that it is 0 for two extreme cases: when all vertices partitioned into

a single cluster, and when the vertices are clustered at random.

Note that the modularity measures the quality of any network

clustering. Normalized and min-max cut measures only the

quality of a clustering of two clusters.

Finding the maximum Q is NP-complete. Instead of performing

an exhaustive search, various optimization approaches are

proposed. For example, a greedy method based on a hierarchical

agglomeration clustering algorithm is proposed in [12], which is

faster than many competing algorithms: its running time on a

graph with n vertices and m edges is O(md log n) where d is the

depth of the dendrogram describing the hierarchical cluster

structure. Also, Guimera and Amaral [6] optimize modularity

using simulated annealing.

To summarize, the network clustering methods discussed in this

section aim to find clusters such that there are many connections

between vertices within the same clusters and few without. While

all these network clustering methods successfully find clusters,

they are generally unable to detect hubs and outliers like those in

the example in Figure 1. Such vertices invariably are included in

one cluster or another.

3. THE NOTION OF STRUCTURE-

CONNECTED CLUSTERS
Our goal is both to cluster networks optimally and to identify and

isolate hubs and outliers. Therefore, both connectivity and local

structure is used in our definition of optimal clustering. In this

section, we formulize the notion of a structure-connected cluster,

which extends that of a density-based cluster [10] and can

distinguish good clusters, hubs, and outliers in networks. In

section 4, we present, SCAN, an efficient algorithm to find the

optimal clustering of networks.

825

Research Track Paper

3.1 Structure-connected Clusters
The existing network clustering methods reviewed in section 2 are

designed to find optimal clustering of networks based on the

number of edges between vertices or between clusters. Direct

connections are important, but they represent only one aspect of

the network structure. We think the neighborhood around two

connected vertices is also important. The neighborhood of a

vertex includes all the vertices connected to it by an edge. When

you consider a pair of connected vertices, their combined

neighborhood reveals neighbors common to both vertices.

Our method is based on common neighbors. Two vertices are

assigned to a cluster according to how they share neighbors. This

makes sense when you consider social communities. People who

share many friends create a community, and the more friends they

have in common, the more intimate the community. But in social

networks there are different kinds of actors. There are also people

who are outsiders (like hermits), and there are people who are

friendly with many communities but belong to none (like

politicians). The latter play a special role in small-world networks

as hubs [13]. Such a hub is illustrated by vertex 6 in Figure 1.

In this paper, we focus on simple, undirected and un-weighted

graph. Let G = {V, E} be a graph, where V is a set of vertices; and

E is set of pairs (unordered) of distinct vertices, called edges.

The structure of a vertex can be described by its neighborhood. A

formal definition of vertex structure is given as follows.

DEFINITION 1 (VERTEX STRUCTURE)

Let v ∈ V, the structure of v is defined by its neighborhood,

denoted by Γ(v)

 Γ(v) = {w ∈ V | (v,w) ∈ E} ∪ {v}

In Figure 1 vertex 6 is a hub sharing neighbors with two clusters.

If we only use the number of shared neighbors, vertex 6 will be

clustered into either of the clusters or cause the two clusters to

merge. Therefore, we normalize the number of common neighbors

by the geometric mean of the two neighborhoods’ size.

DEFINITION 2 (STRUCTURAL SIMILARITY)

|)(||)(|

|)()(|
),(

wv

wv
wv

ΓΓ
ΓΓ

=
Iσ

When a member of a cluster shares a similar structure with one of

its neighbors, their computed structural similarity will be large.

We apply a threshold ε to the computed structural similarity when

assigning cluster membership, formulized in the followingε.-
neighborhood definition.

DEFINITION 3 (ε-NEIGHBORHOOD)

}),(|)({)(εσε ≥Γ∈= wvvwvN

When a vertex shares structural similarity with enough neighbors,

it becomes a nucleus or seed for a cluster. Such a vertex is called a

core vertex. Core vertices are a special class of vertices that have

a minimum of μ neighbors with a structural similarity that

exceeds the threshold ε. From core vertices we grow the clusters.

In this way the parameters μ and ε determine the clustering of

networks. For a given ε, the minimal size of a cluster is

determined by μ.

DEFINITION 4 (CORE)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is called a core w.r.t. ε and

μ, if its ε-neighborhood contains at least μ vertices, formally:

μεμε ≥⇔ |)(|)(, vNvCORE

We grow clusters from core vertices as follows. If a vertex is in

ε-neighborhood of a core, it should be also in the same cluster.

They share a similar structure and are connected. This idea is

formulized in the following definition of direct structure

reachability.

DEFINITION 5 (DIRECT STRUCTURE REACHABILITY)

)()(),(,, vNwvCOREwvDirREACH εμεμε ∈∧⇔

Direct structure reachablility is symmetric for any pair of cores.

However, it is asymmetric if one of the vertices is not a core. The

following definition is a canonical extension of direct structure

reachability.

DEFINITION 6 (STRUCTURE REACHABILITY)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex w ∈ V is structure reachable from

v ∈ V w.r.t ε and μ, if there is a chain of vertices v1,…,vn ∈ V, v1 =

v, vn = w such that vi+1 is directly structure reachable from vi,

formally:

⇔),(, wvREACH με

∧=∧=∈∃ wvvvVvv nn 11 :,...

).,(:}1,...,1{ 1, +−∈∀ ii vvDirREACHni με

The structure reachability is transitive, but it is asymmetric. It is

only symmetric for a pair of cores. More specifically, the

structure-reachability is a transitive closure of direct structure-

reachablility.

Two non-core vertices in the same cluster may not be structure-

reachable because the core condition may not hold for them. But

they still belong to the same cluster because they both are

structure reachable from the same core. This idea is formulized in

the following definition of structure connectivity.

DEFINITION 7 (STRUCTURE CONNECTIVITY)

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is structure-connected to a

vertex w ∈ V w.r.t ε and μ, if there is a vertex u ∈ V such that

both v and w are structure reachable from u, formally:

⇔),(, wvCONNECT με

).,(),(: ,, wuREACHvuREACHVu μεμε ∧∈∃

The structure connectivity is a symmetric relation. For the

structure reachable vertices, it is also reflective.

Now we are ready to define a cluster as structure-connected

vertices, which is maximal w.r.t. structure reachability.

DEFINITION 8 (STRUCTURE-CONNECTED CLUSTER)

Let ε ∈ ℜ and μ ∈ ℵ. A non-empty subset C ⊆ V is called a

structure-connected cluster w.r.t ε and μ, if all vertices in C are

structure-connected and C is maximal w.r.t structure reachability,

formally:

⇔)(, CCLUSTER με

(1) Connectivity:

826

Research Track Paper

),(:, , wvCONNECTCwv με∈∀

(2) Maximality:

CwwvREACHCvVwv ∈⇒∧∈∈∀),(:, ,με

Now we can define a clustering of a network G w.r.t. the given

parameters ε and μ as all structure-connected clusters in G.

DEFINITION 9 (CLUSTERING)

Let ε ∈ ℜ and μ ∈ ℵ. A clustering P of network G = <V, E>

w.r.t. ε and μ consists of all structure-connected clusters w.r.t. ε
and μ in G, formally:

CLUSTERINGε,μ(P) ⇔ P = {C ⊆ V | CLUSTERε,μ(C)}

A vertex is either a member of a structure-connected cluster, or it

is isolated, i.e. it does not belong to any of the structure-connected

cluster. If a vertex is not a member of any structure-connected

clusters, it is either a hub or an outlier, depending on its

neighborhood.

DEFINITION 10 (HUB)

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e.

CLUSTERINGε,μ(P), if an isolated vertex v ∈ V has neighbors

belonging to two or more different clusters w.r.t. ε and μ, it is a

hub (it bridges different clusters) w.r.t. ε and μ, formally,

HUB∈,μ(v) ⇔

(1) v is not a member of any cluster:

∀ C ∈ P: v ∉ C

(2) v bridges different clusters:

∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X ∧ q ∈ Y.

DEFINITION 11 (OUTLIER)

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e.

CLUSTERINGε,μ(P), an isolated vertex v ∈ V is an outlier if and

only if all its neighbors either belong to only one cluster or do not

belong to any cluster, formally,

OUTLIER∈,μ(v) ⇔

(1) v is not a member of any cluster:

∀ C ∈ P: v ∉ C

(2) v does not bridge different clusters:

¬∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X ∧ q ∈ Y.

In practice, the definition of a hub and an outlier is flexible. It

may be more useful to regard hubs as a special kind of outlier,

since both are isolated vertices. The more clusters in which an

outlier has neighbors, the more strongly that vertex acts as a hub

between those clusters. This point will be discussed further when

we consider actual networks.

The following lemmas are important for validating the correctness

of our proposed algorithm. Intuitively, the lemmas mean the

following. Given a graph G=<V,E> and two parameters ε and μ,

we can find structure-connected clusters in a two-step approach.

First, choose an arbitrary vertex from V satisfying the core

condition as a seed. Second, retrieve all the vertices that are

structure reachable from the seed to obtain the cluster grown from

the seed.

LEMMA 1.

Let v∈V. If v is a core, then the set of vertices, which are structure

reachable from v is a structure connected cluster, formally:

)},(|{)(,, wvREACHVwCvCORE μεμε ∈=∧

)(, CPARTITION με⇒

PROOF:

(1) C ≠ 0:

By assumption, COREε,μ(v) and thus, REACHε,μ(v,v) ⇒ v ∈ C.

(2) Maximality:

Let p ∈ C and q ∈ V and REACHε,μ(p,q).

⇒ REACHε,μ(v,p) ∧ REACHε,μ(p,q)

⇒ REACHε,μ(v,q), since structure reachability is transitive.

⇒ q ∈ C.

(3) Connectivity:

∀ p, q ∈ C: REACHε,μ(v,p) ∧ REACHε,μ(v,q)

⇒ CONNECTε,μ(p,q), via v.

Furthermore, a structure-connected cluster C with respect to ε, μ

is uniquely determined by any of its cores, i.e., each vertex in C is

structure reachable from any of the cores of C and, therefore, a

structure-connected cluster C contains exactly the vertices which

are structure reachable from an arbitrary core of C.

LEMMA 2.

Let C ⊆ V be a structure-connected cluster. Let p ∈ C be a core.

Then, C equals the set of vertices, which are structure reachable

from p, formally:

CLUSTERε,μ(C) ∧ p ∈ C ∧ COREε,μ(p)

⇒ C = {v ∈ V | REACHε,μ(p,v)}

PROOF:

Let Ĉ = {v ∈ V | REACHε,μ(p,v)}. We have to show that C = Ĉ:

(1) Ĉ ⊆ C: it is obvious from the definition of Ĉ.

(2) C ⊆ Ĉ: Let q ∈ C. By assumption, p ∈ C ∧

CLUSTERε,μ(C).

⇒ ∃ u ∈ C: REACHε,μ(u,p) ∧ REACHε,μ(u,q)

⇒ REACHε,μ(p,u), since both u and p are cores; and structure

reachability is symmetric for cores.

⇒ REACHε,μ(p,q), since structure reachability is transitive.

⇒ q ∈ Ĉ.

4. ALGORITHM SCAN
In this section, we describe the algorithm SCAN which

implements the search for clusters, hubs and outliers. As

827

Research Track Paper

mentioned in section 3.1, the search begins by first visiting each

vertex once to find structure-connected clusters, and then visiting

the isolated vertices to identify them as either a hub or an outlier.

The pseudo code of the algorithm SCAN is presented in Figure 2.

SCAN performs one pass of a network and finds all structure-

connected clusters for a given parameter setting. At the beginning

all vertices are labeled as unclassified. The SCAN algorithm

classifies each vertex either a member of a cluster or a non-

member. For each vertex that is not yet classified, SCAN checks

whether this vertex is a core (STEP 1 in Figure 2). If the vertex is

a core, a new cluster is expanded from this vertex (STEP 2.1 in

Figure 2). Otherwise, the vertex is labeled as a non-member

(STEP 2.2 in Figure 2). To find a new cluster, SCAN starts with

an arbitrary core v and search for all vertices that are structure-

reachable from v in STEP 2.1. This is sufficient to find the

complete cluster containing vertex v, due to lemma 2. In STEP

2.1, a new cluster ID is generated which will be assigned to all

vertices found in STEP 2.1. SCAN begins by inserting all vertices

in ε-neighborhood of vertex v into a queue. For each vertex in the

queue it computes all directly reachable vertices and inserts those

vertices into the queue which are still unclassified. This is

repeated until the queue is empty.

Figure 2. The Pseudo Code of the Algorithm SCAN

The non-member vertices can be further classified as hubs or

outliers in STEP 3. If an isolated vertex has edges to two or more

clusters, it is may be classified as a hub. Otherwise, it is an outlier.

This final classification is done according to what is appropriate

for the network. As mentioned earlier, the more clusters in which

an outlier has neighbors, the more strongly that vertex acts as a

hub between those clusters. Likewise, a vertex might bridge only

two clusters, but how strongly it is viewed as a hub may depend

on how aggressively it bridges them.

As discussed in Section 3, the results of SCAN do not depend on

the order of processed vertices, i.e. the obtained clustering of

network (number of clusters and association of cores to clusters)

is determinate.

5. COMPLEXITY ANALYSIS
In this section, we present an analysis of the computation

complexity of the algorithm SCAN. Given a graph with m edges

and n vertices, SCAN first finds all structure-connected clusters

w.r.t. a given parameter setting by checking each vertex of the

graph (STEP 1 in Figure 2). This entails retrieval of all the

vertex’s neighbors. Using an adjacency list, a data structure where

each vertex has a list of which vertices it is adjacent to, the cost of

a neighborhood query is proportional to the number of neighbors,

that is, the degree of the query vertex. Therefore, the total cost is

O(deg(v1)+deg(v2)+…deg(vn)), where deg(vi), i = 1,2,…,n is the

degree of vertex vi. If we sum all the vertex degrees in G, we

count each edge exactly twice: once from each end. Thus the

running time is O(m).

We also derive the running time in terms of the number of

vertices, should the number of edges be unknown. In the worst

case, each vertex connects to all the other vertices for a complete

graph. The worst case total cost, in terms of the number of

vertices, is O(n(n-1)), or O(n2). However, real networks generally

have sparser degree distributions. In the following we derive the

complexity for an average case, for which we know the

probability distribution of the degrees. One type of network is the

random graph, studied by Erdös and Rényi [20]. Random graphs

are generated by placing edges randomly between vertices.

Random graphs have been employed extensively as models of real

world networks of various types, particularly in epidemiology.

The degree of a random graph has a Poisson distribution:

!
)1()(

k

ez
pp

k

n
kp

zk
knk ≈−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

which indicates that most nodes have approximately the same

number of links (close to the average degree E(k)=z). In the case

of random graphs the complexity of SCAN is O(n).

Many real networks, such as social networks, biological networks

and the WWW follow a power-law degree distribution. The

probability that a node has k edges,P(k), is on the order k-α, where

α is the degree exponent. A value between 2 and 3 was observed

for the degree exponent for most biological and non-biological

networks studied by the Faloutsos brothers [21] and Barabási and

Oltvai [22]. The expected value of degree is E(k)= α/(α-1). In this

case the average cost of SCAN is again O(n).

Therefore, the complexity in terms of the number of edges in the

graph for SCAN algorithm is in general linear. The complexity in

terms of the number of vertices is quadratic in the worst case of a

complete graph. For real networks like social networks, biological

networks and computer networks, SCAN expects linear

complexity with respect to the number of vertices. This is

confirmed by our empirical study described in the next section.

ALGORITHM SCAN(G=<V, E>, ε, μ)

// all vertices in V are labeled as unclassified;

for each unclassified vertex v ∈ V do

// STEP 1. check whether v is a core;

if COREε,μ(v) then

// STEP 2.1. if v is a core, a new cluster is expanded;

generate new clusterID;

insert all x ∈ Nε (v) into queue Q;

while Q ≠ 0 do

 y = first vertex in Q;

 R = {x ∈ V | DirREACHε,μ(y, x)};

 for each x ∈ R do

 if x is unclassified or non-member then

 assign current clusterID to x;

 if x is unclassified then

 insert x into queue Q;

 remove y from Q;

else

// STEP 2.2. if v is not a core, it is labeled as non-member

 label v as non-member;

end for.

// STEP 3. further classifies non-members

for each non-member vertex v do

 if (∃ x, y ∈ Γ(v) (x.clusterID ≠ y.clusterID) then

 label v as hub
 else
 label v as outlier;
end for.

end SCAN.

828

Research Track Paper

6. EVALUATION
In this section we evaluate the algorithm SCAN using both

synthetic and real datasets. The performance of SCAN is

compared with FastModularity, a fast modularity-based network

clustering algorithm proposed by Clauset et al in [12], which is

faster than many competing algorithms: its running time on a

graph with n vertices and m edges is O(md log n) where d is the

depth of the dendrogram describing the hierarchical cluster

structure. We implemented SCAN in C++. We used the original

source code of FastModularity by Clauset et al [17]. All the

experiments were conducted on a PC with a 2.0 GHz Pentium 4

processor and 1 GB of RAM.

6.1 Efficiency
To evaluate the computational efficiency of the proposed

algorithm we generate ten graphs with the number of vertices

ranging from 1,000 to 1,000,000 and the number of edges ranging

from 2,182 to 2,000,190. We adapted the construction as used in

[11] as follows: first we generate clusters such that each vertex

connects to vertices within the same cluster with a probability Pi,

and connects to vertices outside its cluster with a probability

Po<Pi. Next we add a number of hubs and outliers. An example of

a generated graph is presented in Figure 3.

The running time for FastModularity and SCAN on the synthetic

graphs are plotted in Figure 4 and 5, respectively. Running time

is plotted in both as a function of the number of nodes and the

number of edges. Figure 5 shows that SCAN’s performance is in

fact linear w.r.t. to the number of vertices and the number of

edges, while FastModularity’s performance is basically quadratic

and scales poorly for large graphs. Note the difference in scale

for the y-axis between the two figures.

6.2 Effectiveness
To evaluate the effectiveness of network clustering, we use real

datasets whose clusters are known a priori. These real datasets

include American College Football and Books about US politics.

We also apply the clustering algorithm to customer segmentation.

We use adjusted Rand index (ARI) [15] as a measure of

effectiveness of network clustering algorithms in addition to

visually comparing the generated clusters to the actual.

Figure 3. A Synthetic Graph with 1,000 Vertices

Figure 4. Running Time for FastModularity

Figure 5. Running Time for SCAN

6.2.1 Adjusted Rand Index
A measure of agreement is needed when comparing the results of

a network clustering algorithm to the expected clustering. Rand

Index [14] serves this purpose. One problem with the Rand Index

is that the expected value when comparing two random clustering

is not constant. An Adjusted Rand Index was proposed by Hubert

and Arabie [15] to fix this problem. The Adjusted Rand Index

(ARI) is defined as follows:

where ni,j is the number of vertices in both cluster xi and yj; and ni,⋅

and n⋅,j is the number of vertices in cluster xi and yj respectively.

Milligan and Cooper [16] evaluated many different indices for

measuring agreement between two network clustering with

different numbers of clusters and recommend the Adjusted Rand

Index as the measure of choice. We adopt the Adjusted Rand

Index as our measure of agreement between the network

clustering result and the true clustering of the network.

6.2.2 College Football
The first real dataset we examine is the 2006 NCAA Football

Bowl Subdivision (formerly Division 1-A) football schedule.

This example is inspired by the set studied by Newman and

Girvan [11], who consider contests between Div. 1-A teams in

2000. Our set is more complex, considering all contests of the

829

Research Track Paper

Bowl Subdivision schools including those against schools in

lower divisions.

The challenge is to discover the underlying structure of this

network – the college conference system. The National Collegiate

Athletic Association (NCAA) divides 115 schools into eleven

conferences. In addition there are four independent schools at this

top level: Army, Navy, Temple, and Notre Dame. Each Bowl

Subdivision school plays against schools within their own

conference, against schools in other conferences, and against

lower division schools. The network contains 180 vertices (119

Bowl Subdivision schools and 61 lower division schools)

interconnected by 787 edges. Figure 6 shows this network with

schools in the same conference identified by color.

 Figure 6. NCAA Football Bowl Subdivision schedule as a

network, showing the 12 conferences in color, independent

schools in black, and lower division schools in white.

This example illustrates kinds of structures that our method seeks

to address. Schools in the same conference are clusters. The four

independent schools play teams in many conferences but belong

to none; they are hubs. The lower division schools are only

weakly connected to the clusters in the network; they are outliers.

First we cluster this network by using the FastModularity

algorithm. The results, for which the modularity is 0.599 is

shown in Figure 7. Maximizing Newman’s modularity gives a

satisfying network clustering, identifying nine clusters. All

schools in the same conference are clustered together. However,

two of the conferences are merged (the Western Athletic and

Mountain West conferences and the Mid-American and Big Ten

conferences), the four independent schools are classified into

various conferences despite their hub-like properties. All lower

division teams are assigned to clusters.

Next we cluster the network using our SCAN algorithm, using the

parameters (ε= 0.5, μ = 2). This partition succeeds in capturing

all the features of the graph. Eleven clusters are identified,

corresponding exactly to the eleven conferences. All schools in

the same conference are clustered together. The independent

schools and the lower division schools are unclassified – they

stand apart from the clusters. The four independent schools show

strong properties as hubs; they have inactive edges that connect

them to a large number of clusters – at minimum five. In contrast

the lower division schools have only week connections to clusters

– one or two, and in a single case three. They are true outliers.

This partition matches perfectly the underlying structure shown in

Figure 6.

Figure 7. NCAA Football Bowl Subdivision schedule as

clustered by FastModularity Algorithm.

6.2.3 Books about US politics
The second example is the classification of books about US

politics. We use the dataset of Books about US politics compiled

by Valdis Krebs [18]. The vertices represent books about US

politics sold by the online bookseller Amazon.com. The edges

represent frequent co-purchasing of books by the same buyers, as

indicated by the "customers who bought this book also bought

these other books" feature on Amazon. The vertices have been

given values "l", "n", or "c" to indicate whether they are "liberal",

"neutral", or "conservative". These alignments were assigned

separately by Mark Newman [19] based on a reading of the

descriptions and reviews of the books posted on Amazon. The

political books graph is illustrated in Figure 8. The

“conservative”, “neutral” and “liberal” books are represented by

red, gray and blue respectively.

First we apply the SCAN algorithm to the political books graph,

using the parameters (ε= 0.35, μ = 2). Our goal is to find clusters

that represent the different political orientations of the books. The

result is presented in Figure 9. SCAN successfully finds three

clusters representing “conservative”, “neutral” and “liberal” books

respectively. The SCAN clusters are illustrated using three

different shapes: squares for “conservative” books and triangles

for “neutral” books and circles for “liberal” books. Additionally,

each vertex is labeled with the book title.

The result for the FastModularity algorithm is presented in Figure

10. FastModularity found 4 clusters, presented using circles,

triangles, squares, and hexagons. Although two dominant clusters,

represented by circles and squares, align well with the

“conservative” and “liberal” classes, the “neutral” class is mostly

misclassified. This demonstrates again that FastModularity

handles poorly vertices that bridge clusters.

830

Research Track Paper

Figure 8. Political Book Graph.

Figure 9. The Result of SCAN on Political Book Graph.

Figure 10. The Result of FastModularity on Political Book

Graph.

6.2.4 Customer Segmentation
Finally we apply network clustering algorithms to detecting

groups of records for the same individual, a problem called

Customer Data Integration (CDI). Records consisting of names

and addresses are matched against each other using techniques

that record with similar information despite variations in the

names and addresses. If two records match we connect them with

an edge. From a large file we extract sets of interconnected

records for study. We test two graphs, CG1 and CG2, (shown in

Figure 11). Graph CG1 represents data for two individuals and

two poor-quality records that represent no true individual. Graph

CG2 represents four individuals, one of whom is represented by a

single instance.

 CG1 CG2

Figure 11. Customer Graphs CG1 and CG2.

The clustering results of SCAN, using the parameters (ε= 0.7, μ =

2), are presented in Figure 12. The results demonstrate that SCAN

successfully found all the clusters and outliers.

 CG1 CG2

Figure 12. The Result of SCAN on CG1 and CG2.

The results of FastModularity are presented in Figure 13. It is

clear that FastModularity failed to identify any outliers.

 CG1 CG2

Figure 13. The Result of FastModularity on CG1 and CG2.

6.2.5 Adjusted Rand Index Comparison
As mentioned in Section 6.2.1, the Adjust Rand Index is an

effective measure of the similarity of a clustering result to the true

831

Research Track Paper

clustering. The results for College Football, Political Books, CG1

and CG2 are presented in Table 1.

The ARI results clearly demonstrate that SCAN outperforms

FastModularity at producing clustering that resemble the true

clustering of the real world networks in our study.

Table 1. Adjust Rand Index Comparison.

 SCAN FastModularity

College football 1 0.24

Political books 0.71 0.64

CG1 1 0.85

CG2 1 0.68

6.2.6 Input Parameters
SCAN algorithm uses two parameters: ε and μ. To choose them

we adapted the heuristic suggested for DBSCAN in [10]. This

involves making a k-nearest neighbor query for a sample of

vertices and noting the nearest structural similarity as defined in

Section 3.1. The query vertices are then sorted in ascending order

of nearest structural similarity. A typical k-nearest similarity plot

is shown in Figure 14. The knee indicated by a vertical line shows

that an appropriate ε value for this graph is 0.7. This knee

represents a separation of vertices belonging to clusters to the

right from hubs and outliers to the left. Usually a sample of 10%

of the vertices is sufficient to locate the knee. In the absence of

such an analysis, an ε value between 0.5 and 0.8 is normally

sufficient to achieve a good clustering result. We recommend a

value for μ, of 2.

Figure 14. Sorted k-Nearest Structural Similarity.

7. CONCLUSIONS
Network clustering is a fundamental task in many fields of science

and engineering. Many algorithms have been proposed from

practitioners in different disciplines including computer science

and physics. Successful examples are Min-Max Cut [4] and

Normalized Cut [5], as well as Modularity-based algorithms

[6][11][12]. While such algorithms can successfully detect

clusters in networks, they tend to fail to identify and isolate two

kinds of vertices that play special roles – vertices that bridge

clusters (hubs) and vertices that are marginally connected to

clusters (outliers). Identifying hubs is essential for applications

such as viral marketing and epidemiology. As vertices that bridge

clusters, hubs are responsible for spreading ideas or disease. In

contrast, outliers have little or no influence, and may be isolated

as noise in the data.

In this paper, we proposed a method called SCAN (Structural

Clustering Algorithm for Networks) to detect clusters, hubs and

outliers in networks. SCAN clusters vertices based on their

common neighbors. Two vertices are assigned to a cluster

according to how they share neighbors. This makes sense when

you consider social communities. People who share many friends

create a community, and the more friends they have in common,

the more intimate the community. But in social networks there are

different kinds of actors. There are also people who are outsider

(like hermits), and there are people who are friendly with many

communities but belong to none (like politicians). The latter play

a special role in small-world networks as hubs [13].

We applied SCAN to some real world networks including finding

conferences using only the NCCA College Football schedule,

grouping political books based on co-purchasing information, and

customer data integration. In addition, we compared SCAN with

the fast modularity-based algorithm in terms of both efficiency

and effectiveness. The theoretical analysis and empirical

evaluation demonstrate superior performance over the modularity-

based network clustering algorithms.

In the future we plan to apply SCAN to analyze biological

networks such as metabolic networks and gene co-expression

networks.

8. REFERENCES
[1] S. Wasserman and K. Faust, “Social Network Analysis.”

Cambridge University Press, Cambridge (1994).

[2] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the

world-wide web.” Nature 401, 130–131 (1999).

[3] J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan,

and A. Tomkins, “The Web as a graph: Measurements,

models and methods.” In Proceedings of the International

Conference on Combinatorics and Computing, number 1627

in Lecture Notes in Computer Science, pp. 1–18, Springer,

Berlin (1999).

[4] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A min-max

cut algorithm for graph partitioning and data clustering”,

Proc. of ICDM 2001.

[5] J. Shi and J. Malik, “Normalized cuts and image

segmentation”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol 22, No. 8, 2000.

[6] R. Guimera and L. A. N. Amaral, “Functional cartography of

complex metabolic networks.” Nature 433, 895–900 (2005).

[7] J. Kleinberg. “Authoritative sources in a hyperlinked

environment.” Proc. 9th ACM-SIAM Symposium on

Discrete Algorithms, 1998.

[8] P. Domingos and M. Richardson, “Mining the Network

Value of Customers”, Proc. 7th ACM SIGKDD, pp. 57 – 66,

2001.

[9] Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos,

“Epidemic Spreading in Real Networks: An Eigenvalue

Viewpoint”, SRDS 2003 (pages 25-34), Florence, Italy

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. "A Density-

Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise". In Proc. 2nd Int. Conf. on Knowledge

Discovery and Data Mining (KDD'96), Portland, OR, pages

291-316. AAAI Press, 1996.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Rank of Vertices

k
-n

e
a

re
s

t
s

im
il

a
ri

ty

Hubs/Outliers Clusters

832

Research Track Paper

[11] M. E. J. Newman and M. Girvan, “Finding and evaluating

community structure in networks”, Phys. Rev. E 69, 026113

(2004).

[12] A. Clauset, M. E. J. Newman, and C. Moore, “Finding

community in very large networks”, Physical Review E 70,

066111 (2004).

[13] D. J. Watts and S. H. Strogatz, “Collective dynamics of

'small-world' networks,” Nature, 393:440-442 (1998)

[14] W. M. Rand, “Objective criteria for the evaluation of

clustering methods.” Journal of the American Statistical

Association, 66, pp846–850 (1971).

[15] L. Hubert and P. Arabie, “Comparing Partitions”. Journal of

Classification, 193–218, 1985.

[16] G. W. Milligan and M. C. Cooper, “A study of the

comparability of external criteria for hierarchical cluster

analysis”, Multivariate Behavioral Research, 21, 441–458,

1986.

[17] http://cs.unm.edu/~aaron/research/fastmodularity.htm.

[18] http://www.orgnet.com/.

[19] http://www-personal.umich.edu/~mejn/netdata/.

[20] P. Erdös and A. Rényi, Publ. Math. (Debrecen) 6, 290

(1959).

[21] M. Faloutsos, P. Faloutsos and C. Faloutsos, On Power-Law

Relationships of the Internet Topology, SIGCOMM 1999.

[22] A.-L. Barabási and Z. N. Oltvai, Nature Reviews Genetics 5,

101-113 (2004).

833

Research Track Paper

