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ABSTRACT 

Network clustering (or graph partitioning) is an important task for 

the discovery of underlying structures in networks. Many 

algorithms find clusters by maximizing the number of intra-cluster 

edges. While such algorithms find useful and interesting 

structures, they tend to fail to identify and isolate two kinds of 

vertices that play special roles – vertices that bridge clusters 

(hubs) and vertices that are marginally connected to clusters 

(outliers).  Identifying hubs is useful for applications such as viral 

marketing and epidemiology since hubs are responsible for 

spreading ideas or disease.  In contrast, outliers have little or no 

influence, and may be isolated as noise in the data. In this paper, 

we proposed a novel algorithm called SCAN (Structural 

Clustering Algorithm for Networks), which detects clusters, hubs 

and outliers in networks. It clusters vertices based on a structural 

similarity measure. The algorithm is fast and efficient, visiting 

each vertex only once.  An empirical evaluation of the method 

using both synthetic and real datasets demonstrates superior 

performance over other methods such as the modularity-based 

algorithms. 

Categories and Subject Descriptors 

I.5.3 [PATTERN RECOGNITION]: Clustering – Algorithms, 

Similarity measures. 

General Terms 

Algorithms, Performance 

Keywords 

Network clustering, Graph partitioning, Community Structure, 

Hubs, Outliers 

1. INTRODUCTION 
Much data of current interest to the scientific community can be 

modeled as networks (or graphs). A network is sets of vertices, 

representing objects, connected together by edges, representing 

the relationship between objects. For example, a social network 

can be viewed as a graph where individuals are represented by 

vertices; and the friendship between individuals are edges [1].  

Similarly, the world-wide web can be modeled as a graph, where 

web pages are represented as vertices that are connected by an 

edge when one pages contains a hyperlink to another [2] [3]. 

Network clustering (or graph partitioning) is a fundamental 

approach for detecting hidden structures in networks that, because 

of many interesting applications, is drawing increased attention in 

computer science [4][5], physics [11], and bioinformatics [6]. 

Various methods have been developed.  These methods tend to 

cluster networks such that there are a dense set of edges within 

every cluster and few edges between clusters. Modularity-based 

algorithms [6][11][12] and normalized cut [4][5] are successful 

examples. However, they do not distinguish the roles of the 

vertices in the networks.  Some vertices are members of clusters; 

some vertices are hubs that bridge many clusters but don’t belong 

to any, and some vertices are outliers that have only a weak 

association with a particular cluster.   The situation is illustrated in 

Figure 1. 

 

Figure 1. A Network with 2 Clusters, a Hub and an Outlier. 

The existing methods such as modularity-based algorithm [12]  

will partition this example into two clusters: one consisting of 

vertices 0 to 6 and the other consisting of vertices 7 to 13.  They 

do not isolate vertex 6, a hub whose membership in either cluster 

is disputable, or vertex 13, which has only a single connection to 

the network.  

The identification and isolation of hubs is essential for many 

applications. As an example, the identification of hubs in the 

WWW improves the search for relevant authoritative web pages 

[7]. Furthermore, hubs are believed to play a crucial role in viral 

marketing [8] and epidemiology [9]. 

In this paper, we propose a new method for network clustering 

called SCAN (Structural Clustering Algorithm for Networks). The 

goal of our method is to find clusters, hubs, and outliers in large 

networks. To achieve this goal, we use the neighborhood of the 

vertices as clustering criteria instead of only their direct 

connections. Vertices are grouped into the clusters by how they 

share neighbors. Doing so makes sense when you consider the 

detection of communities in large social networks.  Two people 

who share many friends should be clustered in the same 

community. 

Refer again to the example in figure 1.  Consider vertices 0 and 5, 

which are connected by an edge.  Their neighborhoods are the 

vertex sets {0, 1, 4, 5, 6} and {0, 1, 2, 3, 4, 5}, respectively.  They 

share many neighbors and thus are reasonably grouped together in 

the same cluster.  In contrast, consider the neighborhoods of 
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vertex 13 and vertex 9.  These two vertices are connected, but 

share only two common neighbors, i.e. {9, 13}. Therefore, it is 

doubtful that they should be grouped into the same cluster. The 

situation for vertex 6 is a little different. It has many neighbors, 

but they are sparsely interconnected.  

Our method, SCAN, identifies two clusters, {0, 1, 2, 3, 4, 5} and 

{7, 8, 9, 10, 11, 12}, and isolates vertex 13 as an outlier and 

vertex 6 as a hub. 

SCAN has the following features: 

• It detects clusters, hubs, and outliers by using the 

structure and the connectivity of the vertices as 

clustering criteria. Through theoretical analysis and 

experimental evaluation we will demonstrate that SCAN 

can find meaningful clusters and identify hubs and 

outliers in very large networks. 

• It is fast. Its running time on a network with n vertices 

and m edges is O(m).  In contrast, the running time of 

the fast modularity-based algorithm [12], the fastest 

existing network clustering algorithm, is O(md log n). 

The paper is organized as follows. We review the related work for 

network clustering algorithms in section 2. We formulize the 

notion of structure-connected clusters in section 3. We describe 

the algorithm SCAN in section 4. We give a computation 

complexity analysis of SCAN in section 5. We compare SCAN to 

the fast modularity-based network clustering algorithm in section 

6. Finally, we present our conclusions and suggest future work in 

section 7. 

2. RELATED WORK 
Network clustering (or graph partitioning) is the division of a 

graph into a set of sub-graphs, called clusters. More specifically, 

given a graph G = {V, E}, where V is a set of vertices and E is a 

set of edges between vertices, the goal of graph partitioning is to 

divide G into k disjoint sub-graphs Gi = {Vi, Ei}, in which Vi ∩ Vj 

= Φ for any i≠j, and ∑
=

=
k

i

iVV
1

.  The number of sub-graphs, k, 

may or may not be known a priori. In this paper, we focus on 

simple, undirected, and un-weighted graphs.  

The problem of finding good clustering of networks has been 

studied for some decades in many fields, particularly computer 

science and physics.   Here we review some of the more common 

methods. 

The min-max cut method [4] seeks to partition a graph G={V, E} 

into two clusters A and B. The principle of min-max clustering is 

minimizing the number of connections between A and B and 

maximizing the number of connections within each.  A cut is 

defined the number of edges that would have to be removed to 

isolate the vertices in cluster A from those in cluster B. The min-

max cut algorithm searches for the clustering that creates two 

clusters whose cut is minimized and while maximizing the 

number of remaining edges.  

A pitfall of this method is that, if one cuts out a single vertex from 

the graph, one will probably achieve the optimum. Therefore, in 

practice, the optimization must be accompanied with some 

constraint, such as A and B should be of equal or similar size, or 

|A| ≈ |B|.  Such constraints are not always appropriate; for 

example, in social networks some communities are much larger 

than the others.  

To amend the issue, a normalized cut was proposed [5], which 

normalizes the cut by the total number connections between each 

cluster to the rest of the graph. Therefore, cutting out one vertex 

or some small part of the graph will no longer always yield an 

optimum.  

Both min-max cut and normalized cut methods partition a graph 

into two clusters. To divide a graph into k clusters, one has to 

adopt a top-down approach, splitting the graph into two clusters, 

and then further splitting these clusters, and so on, until k clusters 

have been detected. There is no guarantee of the optimality of 

recursive clustering.  There is no measure of the number of 

clusters that should be produced when k is unknown.  There is no 

indicator to stop the bisection procedure.   

Recently, modularity was proposed as a quality measure of 

network clustering [11]. For a clustering of graph with k clusters, 

the modularity is defined as: 

∑
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L is the number of edges in the graph, ls is the number of edges 

between vertices within cluster s, and ds is the sum of the degrees 

of the vertices in cluster s. The modularity of a clustering of a 

graph is the fraction of all edges that lie within each cluster minus 

the fraction that would lie within each cluster if the graph’s 

vertices were randomly connected. Optimal clustering is achieved 

when the modularity is maximized. Modularity is defined such 

that it is 0 for two extreme cases: when all vertices partitioned into 

a single cluster, and when the vertices are clustered at random. 

Note that the modularity measures the quality of any network 

clustering.  Normalized and min-max cut measures only the 

quality of a clustering of two clusters. 

Finding the maximum Q is NP-complete. Instead of performing 

an exhaustive search, various optimization approaches are 

proposed. For example, a greedy method based on a hierarchical 

agglomeration clustering algorithm is proposed in [12], which is 

faster than many competing algorithms: its running time on a 

graph with n vertices and m edges is O(md log n) where d is the 

depth of the dendrogram describing the hierarchical cluster 

structure.  Also, Guimera and Amaral [6] optimize modularity 

using simulated annealing. 

To summarize, the network clustering methods discussed in this 

section aim to find clusters such that there are many connections 

between vertices within the same clusters and few without. While 

all these network clustering methods successfully find clusters, 

they are generally unable to detect hubs and outliers like those in 

the example in Figure 1.  Such vertices invariably are included in 

one cluster or another. 

3. THE NOTION OF STRUCTURE-

CONNECTED CLUSTERS 
Our goal is both to cluster networks optimally and to identify and 

isolate hubs and outliers. Therefore, both connectivity and local 

structure is used in our definition of optimal clustering. In this 

section, we formulize the notion of a structure-connected cluster, 

which extends that of a density-based cluster [10] and can 

distinguish good clusters, hubs, and outliers in networks. In 

section 4, we present, SCAN, an efficient algorithm to find the 

optimal clustering of networks. 
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3.1 Structure-connected Clusters 
The existing network clustering methods reviewed in section 2 are 

designed to find optimal clustering of networks based on the 

number of edges between vertices or between clusters.  Direct 

connections are important, but they represent only one aspect of 

the network structure.  We think the neighborhood around two 

connected vertices is also important.  The neighborhood of a 

vertex includes all the vertices connected to it by an edge. When 

you consider a pair of connected vertices, their combined 

neighborhood reveals neighbors common to both vertices. 

Our method is based on common neighbors. Two vertices are 

assigned to a cluster according to how they share neighbors. This 

makes sense when you consider social communities.  People who 

share many friends create a community, and the more friends they 

have in common, the more intimate the community. But in social 

networks there are different kinds of actors.  There are also people 

who are outsiders (like hermits), and there are people who are 

friendly with many communities but belong to none (like 

politicians).  The latter play a special role in small-world networks 

as hubs [13].  Such a hub is illustrated by vertex 6 in Figure 1.   

In this paper, we focus on simple, undirected and un-weighted 

graph. Let G = {V, E} be a graph, where V is a set of vertices; and 

E is set of pairs (unordered) of distinct vertices, called edges.  

The structure of a vertex can be described by its neighborhood. A 

formal definition of vertex structure is given as follows. 

DEFINITION 1 (VERTEX STRUCTURE) 

Let v ∈ V, the structure of v is defined by its neighborhood, 

denoted by Γ(v) 

 Γ(v) = {w ∈ V | (v,w) ∈ E} ∪ {v} 

In Figure 1 vertex 6 is a hub sharing neighbors with two clusters. 

If we only use the number of shared neighbors, vertex 6 will be 

clustered into either of the clusters or cause the two clusters to 

merge. Therefore, we normalize the number of common neighbors 

by the geometric mean of the two neighborhoods’ size. 

DEFINITION 2 (STRUCTURAL SIMILARITY) 

|)(||)(|

|)()(|
),(

wv

wv
wv

ΓΓ
ΓΓ

=
Iσ  

When a member of a cluster shares a similar structure with one of 

its neighbors, their computed structural similarity will be large.  

We apply a threshold ε to the computed structural similarity when 

assigning cluster membership, formulized in the followingε.-
neighborhood definition. 

DEFINITION 3 (ε-NEIGHBORHOOD) 

}),(|)({)( εσε ≥Γ∈= wvvwvN  

When a vertex shares structural similarity with enough neighbors, 

it becomes a nucleus or seed for a cluster. Such a vertex is called a 

core vertex.  Core vertices are a special class of vertices that have 

a minimum of μ neighbors with a structural similarity that 

exceeds the threshold ε. From core vertices we grow the clusters.  

In this way the parameters μ and ε determine the clustering of 

networks. For a given ε, the minimal size of a cluster is 

determined by μ. 

DEFINITION 4 (CORE) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is called a core w.r.t. ε and 

μ, if its ε-neighborhood contains at least μ vertices, formally: 

μεμε ≥⇔ |)(|)(, vNvCORE  

We grow clusters from core vertices as follows.  If a vertex is in 

ε-neighborhood of a core, it should be also in the same cluster. 

They share a similar structure and are connected. This idea is 

formulized in the following definition of direct structure 

reachability. 

DEFINITION 5 (DIRECT STRUCTURE REACHABILITY) 

)()(),( ,, vNwvCOREwvDirREACH εμεμε ∈∧⇔  

Direct structure reachablility is symmetric for any pair of cores. 

However, it is asymmetric if one of the vertices is not a core. The 

following definition is a canonical extension of direct structure 

reachability. 

DEFINITION 6 (STRUCTURE REACHABILITY) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex w ∈ V is structure reachable from 

v ∈ V w.r.t ε and μ, if there is a chain of vertices v1,…,vn ∈ V, v1 = 

v, vn = w such that vi+1 is directly structure reachable from vi, 

formally: 

⇔),(, wvREACH με
 

∧=∧=∈∃ wvvvVvv nn 11 :,...  

).,(:}1,...,1{ 1, +−∈∀ ii vvDirREACHni με
 

The structure reachability is transitive, but it is asymmetric. It is 

only symmetric for a pair of cores. More specifically, the 

structure-reachability is a transitive closure of direct structure-

reachablility. 

Two non-core vertices in the same cluster may not be structure-

reachable because the core condition may not hold for them. But 

they still belong to the same cluster because they both are 

structure reachable from the same core. This idea is formulized in 

the following definition of structure connectivity. 

DEFINITION 7 (STRUCTURE CONNECTIVITY) 

Let ε ∈ ℜ and μ ∈ ℵ. A vertex v ∈ V is structure-connected to a 

vertex w ∈ V w.r.t ε and μ, if there is a vertex u ∈ V such that 

both v and w are structure reachable from u, formally: 

⇔),(, wvCONNECT με
 

).,(),(: ,, wuREACHvuREACHVu μεμε ∧∈∃  

The structure connectivity is a symmetric relation. For the 

structure reachable vertices, it is also reflective. 

Now we are ready to define a cluster as structure-connected 

vertices, which is maximal w.r.t. structure reachability. 

DEFINITION 8 (STRUCTURE-CONNECTED CLUSTER) 

Let ε ∈ ℜ and μ ∈ ℵ. A non-empty subset C ⊆ V is called a 

structure-connected cluster w.r.t ε and μ, if all vertices in C are 

structure-connected and C is maximal w.r.t structure reachability, 

formally: 

⇔)(, CCLUSTER με
 

(1) Connectivity:  
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),(:, , wvCONNECTCwv με∈∀  

(2) Maximality: 

CwwvREACHCvVwv ∈⇒∧∈∈∀ ),(:, ,με
 

Now we can define a clustering of a network G w.r.t. the given 

parameters ε and μ as all structure-connected clusters in G. 

DEFINITION 9 (CLUSTERING) 

Let ε ∈ ℜ and μ ∈ ℵ. A clustering P of network G = <V, E> 

w.r.t. ε and μ consists of all structure-connected clusters w.r.t. ε 
and μ in G, formally: 

CLUSTERINGε,μ(P) ⇔ P = {C ⊆ V | CLUSTERε,μ(C)} 

A vertex is either a member of a structure-connected cluster, or it 

is isolated, i.e. it does not belong to any of the structure-connected 

cluster. If a vertex is not a member of any structure-connected 

clusters, it is either a hub or an outlier, depending on its 

neighborhood.  

DEFINITION 10 (HUB) 

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e. 

CLUSTERINGε,μ(P), if an isolated vertex v ∈ V has neighbors 

belonging to two or more different clusters w.r.t. ε and μ, it is a 

hub (it bridges different clusters) w.r.t. ε and μ, formally, 

HUB∈,μ(v) ⇔ 

(1) v is not a member of any cluster: 

∀ C ∈ P: v ∉ C  

(2) v bridges different clusters: 

∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X  ∧  q ∈ Y. 

DEFINITION 11 (OUTLIER) 

Let ε ∈ ℜ and μ ∈ ℵ. For a given clustering P, i.e. 

CLUSTERINGε,μ(P), an isolated vertex v ∈ V is an outlier if and 

only if all its neighbors either belong to only one cluster or do not 

belong to any cluster, formally, 

OUTLIER∈,μ(v) ⇔ 

(1) v is not a member of any cluster: 

∀ C ∈ P: v ∉ C  

(2) v does not bridge different clusters: 

¬∃ p, q ∈ Γ(v): ∃ X, Y ∈ P: X ≠ Y ∧ p ∈ X  ∧  q ∈ Y. 

In practice, the definition of a hub and an outlier is flexible.  It 

may be more useful to regard hubs as a special kind of outlier, 

since both are isolated vertices.  The more clusters in which an 

outlier has neighbors, the more strongly that vertex acts as a hub 

between those clusters.  This point will be discussed further when 

we consider actual networks. 

The following lemmas are important for validating the correctness 

of our proposed algorithm. Intuitively, the lemmas mean the 

following. Given a graph G=<V,E> and two parameters ε and μ, 

we can find structure-connected clusters in a two-step approach. 

First, choose an arbitrary vertex from V satisfying the core 

condition as a seed. Second, retrieve all the vertices that are 

structure reachable from the seed to obtain the cluster grown from 

the seed. 

LEMMA 1. 

Let v∈V. If v is a core, then the set of vertices, which are structure 

reachable from v is a structure connected cluster, formally:  

)},(|{)( ,, wvREACHVwCvCORE μεμε ∈=∧  

)(, CPARTITION με⇒  

PROOF: 

(1) C ≠ 0: 

By assumption, COREε,μ(v) and thus, REACHε,μ(v,v) ⇒ v ∈ C. 

(2) Maximality: 

Let p ∈ C and q ∈ V and REACHε,μ(p,q). 

⇒ REACHε,μ(v,p) ∧ REACHε,μ(p,q) 

⇒ REACHε,μ(v,q), since structure reachability is transitive. 

⇒ q ∈ C. 

(3) Connectivity: 

∀ p, q ∈ C: REACHε,μ(v,p) ∧ REACHε,μ(v,q) 

⇒ CONNECTε,μ(p,q), via v.  

Furthermore, a structure-connected cluster C with respect to ε, μ 

is uniquely determined by any of its cores, i.e., each vertex in C is 

structure reachable from any of the cores of C and, therefore, a 

structure-connected cluster C contains exactly the vertices which 

are structure reachable from an arbitrary core of C. 

LEMMA 2. 

Let C ⊆ V be a structure-connected cluster. Let p ∈ C be a core. 

Then, C equals the set of vertices, which are structure reachable 

from p, formally: 

CLUSTERε,μ(C) ∧ p ∈ C ∧ COREε,μ(p) 

⇒ C = {v ∈ V | REACHε,μ(p,v)} 

PROOF: 

Let Ĉ = {v ∈ V | REACHε,μ(p,v)}. We have to show that C = Ĉ: 

(1) Ĉ ⊆ C: it is obvious from the definition of Ĉ. 

(2) C ⊆ Ĉ: Let q ∈ C. By assumption, p ∈ C ∧  

CLUSTERε,μ(C). 

⇒ ∃ u ∈ C: REACHε,μ(u,p) ∧ REACHε,μ(u,q) 

⇒ REACHε,μ(p,u), since both u and p are cores; and structure 

reachability is symmetric for cores. 

⇒ REACHε,μ(p,q), since structure reachability is transitive. 

⇒  q ∈ Ĉ.   

4. ALGORITHM SCAN 
In this section, we describe the algorithm SCAN which 

implements the search for clusters, hubs and outliers.  As 
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mentioned in section 3.1, the search begins by first visiting each 

vertex once to find structure-connected clusters, and then visiting 

the isolated vertices to identify them as either a hub or an outlier.  

The pseudo code of the algorithm SCAN is presented in Figure 2. 

SCAN performs one pass of a network and finds all structure-

connected clusters for a given parameter setting. At the beginning 

all vertices are labeled as unclassified. The SCAN algorithm 

classifies each vertex either a member of a cluster or a non-

member. For each vertex that is not yet classified, SCAN checks 

whether this vertex is a core (STEP 1 in Figure 2). If the vertex is 

a core, a new cluster is expanded from this vertex (STEP 2.1 in 

Figure 2). Otherwise, the vertex is labeled as a non-member 

(STEP 2.2 in Figure 2). To find a new cluster, SCAN starts with 

an arbitrary core v and search for all vertices that are structure-

reachable from v in STEP 2.1. This is sufficient to find the 

complete cluster containing vertex v, due to lemma 2. In STEP 

2.1, a new cluster ID is generated which will be assigned to all 

vertices found in STEP 2.1. SCAN begins by inserting all vertices 

in ε-neighborhood of vertex v into a queue. For each vertex in the 

queue it computes all directly reachable vertices and inserts those 

vertices into the queue which are still unclassified. This is 

repeated until the queue is empty. 

 

Figure 2. The Pseudo Code of the Algorithm SCAN 

The non-member vertices can be further classified as hubs or 

outliers in STEP 3. If an isolated vertex has edges to two or more 

clusters, it is may be classified as a hub. Otherwise, it is an outlier.  

This final classification is done according to what is appropriate 

for the network.  As mentioned earlier, the more clusters in which 

an outlier has neighbors, the more strongly that vertex acts as a 

hub between those clusters.  Likewise, a vertex might bridge only 

two clusters, but how strongly it is viewed as a hub may depend 

on how aggressively it bridges them. 

As discussed in Section 3, the results of SCAN do not depend on 

the order of processed vertices, i.e. the obtained clustering of 

network (number of clusters and association of cores to clusters) 

is determinate. 

5. COMPLEXITY ANALYSIS 
In this section, we present an analysis of the computation 

complexity of the algorithm SCAN. Given a graph with m edges 

and n vertices, SCAN first finds all structure-connected clusters 

w.r.t. a given parameter setting by checking each vertex of the 

graph (STEP 1 in Figure 2). This entails retrieval of all the 

vertex’s neighbors. Using an adjacency list, a data structure where 

each vertex has a list of which vertices it is adjacent to, the cost of 

a neighborhood query is proportional to the number of neighbors, 

that is, the degree of the query vertex. Therefore, the total cost is 

O(deg(v1)+deg(v2)+…deg(vn)), where deg(vi), i = 1,2,…,n is the 

degree of vertex vi. If we sum all the vertex degrees in G, we 

count each edge exactly twice: once from each end. Thus the 

running time is O(m).  

We also derive the running time in terms of the number of 

vertices, should the number of edges be unknown.  In the worst 

case, each vertex connects to all the other vertices for a complete 

graph. The worst case total cost, in terms of the number of 

vertices, is O(n(n-1)), or O(n2). However, real networks generally 

have sparser degree distributions. In the following we derive the 

complexity for an average case, for which we know the 

probability distribution of the degrees. One type of network is the 

random graph, studied by Erdös and Rényi [20].   Random graphs 

are generated by placing edges randomly between vertices. 

Random graphs have been employed extensively as models of real 

world networks of various types, particularly in epidemiology. 

The degree of a random graph has a Poisson distribution:  

!
)1()(

k

ez
pp

k

n
kp

zk
knk ≈−⎟⎟
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⎞
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⎝

⎛
= −  

which indicates that most nodes have approximately the same 

number of links (close to the average degree E(k)=z). In the case 

of random graphs the complexity of SCAN is O(n).  

Many real networks, such as social networks, biological networks 

and the WWW follow a power-law degree distribution.  The 

probability that a node has k edges,P(k), is on the order k-α, where 

α is the degree exponent. A value between 2 and 3 was observed 

for the degree exponent for most biological and non-biological 

networks studied by the Faloutsos brothers [21] and Barabási and 

Oltvai [22]. The expected value of degree is E(k)= α/(α-1). In this 

case the average cost of SCAN is again O(n). 

Therefore, the complexity in terms of the number of edges in the 

graph for SCAN algorithm is in general linear. The complexity in 

terms of the number of vertices is quadratic in the worst case of a 

complete graph. For real networks like social networks, biological 

networks and computer networks, SCAN expects linear 

complexity with respect to the number of vertices. This is 

confirmed by our empirical study described in the next section. 

ALGORITHM SCAN(G=<V, E>, ε, μ) 

// all vertices in V are labeled as unclassified; 

for each unclassified vertex v ∈ V do 

// STEP 1. check whether v is a core; 

if COREε,μ(v) then 

// STEP 2.1. if v is a core, a new cluster is expanded; 

generate new clusterID; 

insert all x ∈ Nε (v) into queue Q; 

while Q ≠ 0 do 

 y = first vertex in Q; 

 R = {x ∈ V | DirREACHε,μ(y, x)}; 

 for each x ∈ R do 

 if x is unclassified or non-member then 

 assign current clusterID to x; 

 if x is unclassified then 

 insert x into queue Q; 

 remove y from Q; 

else 

// STEP 2.2. if v is not a core, it is labeled as non-member 

 label v as non-member; 

end for. 

// STEP 3. further classifies non-members 

for each non-member vertex v do 

 if ( ∃ x, y ∈ Γ(v) ( x.clusterID ≠ y.clusterID) then 

 label v as hub 
 else 
 label v as outlier; 
end for. 

end SCAN. 

828

Research Track Paper



6. EVALUATION 
In this section we evaluate the algorithm SCAN using both 

synthetic and real datasets. The performance of SCAN is 

compared with FastModularity, a fast modularity-based network 

clustering algorithm proposed by Clauset et al in [12], which is 

faster than many competing algorithms: its running time on a 

graph with n vertices and m edges is O(md log n) where d is the 

depth of the dendrogram describing the hierarchical cluster 

structure. We implemented SCAN in C++. We used the original 

source code of FastModularity by Clauset et al [17]. All the 

experiments were conducted on a PC with a 2.0 GHz Pentium 4 

processor and 1 GB of RAM. 

6.1 Efficiency 
To evaluate the computational efficiency of the proposed 

algorithm we generate ten graphs with the number of vertices 

ranging from 1,000 to 1,000,000 and the number of edges ranging 

from 2,182 to 2,000,190.  We adapted the construction as used in 

[11] as follows: first we generate clusters such that each vertex 

connects to vertices within the same cluster with a probability Pi, 

and connects to vertices outside its cluster with a probability 

Po<Pi. Next we add a number of hubs and outliers. An example of 

a generated graph is presented in Figure 3.  

The running time for FastModularity and SCAN on the synthetic 

graphs are plotted in Figure 4 and 5, respectively.  Running time 

is plotted in both as a function of the number of nodes and the 

number of edges.  Figure 5 shows that SCAN’s performance is in 

fact linear w.r.t. to the number of vertices and the number of 

edges, while FastModularity’s performance is basically quadratic 

and scales poorly for large graphs.  Note the difference in scale 

for the y-axis between the two figures. 

6.2 Effectiveness 
To evaluate the effectiveness of network clustering, we use real 

datasets whose clusters are known a priori. These real datasets 

include American College Football and Books about US politics. 

We also apply the clustering algorithm to customer segmentation. 

We use adjusted Rand index (ARI) [15] as a measure of 

effectiveness of network clustering algorithms in addition to 

visually comparing the generated clusters to the actual. 

 

Figure 3. A Synthetic Graph with 1,000 Vertices 

 

Figure 4. Running Time for FastModularity 

 

Figure 5. Running Time for SCAN 

6.2.1 Adjusted Rand Index 
A measure of agreement is needed when comparing the results of 

a network clustering algorithm to the expected clustering. Rand 

Index [14] serves this purpose. One problem with the Rand Index 

is that the expected value when comparing two random clustering 

is not constant.  An Adjusted Rand Index was proposed by Hubert 

and Arabie [15] to fix this problem. The Adjusted Rand Index 

(ARI) is defined as follows: 

 

where ni,j is the number of vertices in both cluster xi and yj; and ni,⋅ 

and n⋅,j is the number of vertices in cluster xi and yj respectively.  

Milligan and Cooper [16] evaluated many different indices for 

measuring agreement between two network clustering with 

different numbers of clusters and recommend the Adjusted Rand 

Index as the measure of choice. We adopt the Adjusted Rand 

Index as our measure of agreement between the network 

clustering result and the true clustering of the network. 

6.2.2 College Football 
The first real dataset we examine is the 2006 NCAA Football 

Bowl Subdivision (formerly Division 1-A) football schedule.  

This example is inspired by the set studied by Newman and 

Girvan [11], who consider contests between Div. 1-A teams in 

2000.  Our set is more complex, considering all contests of the 
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Bowl Subdivision schools including those against schools in 

lower divisions.   

The challenge is to discover the underlying structure of this 

network – the college conference system.  The National Collegiate 

Athletic Association (NCAA) divides 115 schools into eleven 

conferences.  In addition there are four independent schools at this 

top level: Army, Navy, Temple, and Notre Dame. Each Bowl 

Subdivision school plays against schools within their own 

conference, against schools in other conferences, and against 

lower division schools.  The network contains 180 vertices (119 

Bowl Subdivision schools and 61 lower division schools) 

interconnected by 787 edges.  Figure 6 shows this network with 

schools in the same conference identified by color. 

 Figure 6. NCAA Football Bowl Subdivision schedule as a 

network, showing the 12 conferences in color, independent 

schools in black, and lower division schools in white. 

This example illustrates kinds of structures that our method seeks 

to address.  Schools in the same conference are clusters.  The four 

independent schools play teams in many conferences but belong 

to none; they are hubs.  The lower division schools are only 

weakly connected to the clusters in the network; they are outliers. 

First we cluster this network by using the FastModularity 

algorithm.  The results, for which the modularity is 0.599 is 

shown in Figure 7. Maximizing Newman’s modularity gives a 

satisfying network clustering, identifying nine clusters. All 

schools in the same conference are clustered together. However, 

two of the conferences are merged (the Western Athletic and 

Mountain West conferences and the Mid-American and Big Ten 

conferences), the four independent schools are classified into 

various conferences despite their hub-like properties. All lower 

division teams are assigned to clusters. 

Next we cluster the network using our SCAN algorithm, using the 

parameters (ε= 0.5, μ = 2).  This partition succeeds in capturing 

all the features of the graph. Eleven clusters are identified, 

corresponding exactly to the eleven conferences.  All schools in 

the same conference are clustered together.  The independent 

schools and the lower division schools are unclassified – they 

stand apart from the clusters.  The four independent schools show 

strong properties as hubs; they have inactive edges that connect 

them to a large number of clusters – at minimum five. In contrast 

the lower division schools have only week connections to clusters 

– one or two, and in a single case three.  They are true outliers.  

This partition matches perfectly the underlying structure shown in 

Figure 6. 

 

Figure 7. NCAA Football Bowl Subdivision schedule as 

clustered by FastModularity Algorithm. 

6.2.3 Books about US politics 
The second example is the classification of books about US 

politics. We use the dataset of Books about US politics compiled 

by Valdis Krebs [18]. The vertices represent books about US 

politics sold by the online bookseller Amazon.com.  The edges 

represent frequent co-purchasing of books by the same buyers, as 

indicated by the "customers who bought this book also bought 

these other books" feature on Amazon. The vertices have been 

given values "l", "n", or "c" to indicate whether they are "liberal", 

"neutral", or "conservative".  These alignments were assigned 

separately by Mark Newman [19] based on a reading of the 

descriptions and reviews of the books posted on Amazon. The 

political books graph is illustrated in Figure 8. The 

“conservative”, “neutral” and “liberal” books are represented by 

red, gray and blue respectively.  

First we apply the SCAN algorithm to the political books graph, 

using the parameters (ε= 0.35, μ = 2). Our goal is to find clusters 

that represent the different political orientations of the books. The 

result is presented in Figure 9. SCAN successfully finds three 

clusters representing “conservative”, “neutral” and “liberal” books 

respectively. The SCAN clusters are illustrated using three 

different shapes: squares for “conservative” books and triangles 

for “neutral” books and circles for “liberal” books. Additionally, 

each vertex is labeled with the book title. 

The result for the FastModularity algorithm is presented in Figure 

10.  FastModularity found 4 clusters, presented using circles, 

triangles, squares, and hexagons. Although two dominant clusters, 

represented by circles and squares, align well with the 

“conservative” and “liberal” classes, the “neutral” class is mostly 

misclassified. This demonstrates again that FastModularity 

handles poorly vertices that bridge clusters. 
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Figure 8. Political Book Graph. 

 

Figure 9. The Result of SCAN on Political Book Graph. 

 

Figure 10. The Result of FastModularity on Political Book 

Graph. 

6.2.4 Customer Segmentation 
Finally we apply network clustering algorithms to detecting 

groups of records for the same individual, a problem called 

Customer Data Integration (CDI). Records consisting of names 

and addresses are matched against each other using techniques 

that record with similar information despite variations in the 

names and addresses. If two records match we connect them with 

an edge. From a large file we extract sets of interconnected 

records for study.  We test two graphs, CG1 and CG2, (shown in 

Figure 11). Graph CG1 represents data for two individuals and 

two poor-quality records that represent no true individual. Graph 

CG2 represents four individuals, one of whom is represented by a 

single instance. 

 CG1    CG2 

Figure 11. Customer Graphs CG1 and CG2. 

The clustering results of SCAN, using the parameters (ε= 0.7, μ = 

2), are presented in Figure 12. The results demonstrate that SCAN 

successfully found all the clusters and outliers. 

 

 

       CG1                       CG2 

Figure 12. The Result of SCAN on CG1 and CG2. 

The results of FastModularity are presented in Figure 13. It is 

clear that FastModularity failed to identify any outliers. 

 
 

 CG1    CG2 

Figure 13. The Result of FastModularity on CG1 and CG2. 

6.2.5 Adjusted Rand Index Comparison 
As mentioned in Section 6.2.1, the Adjust Rand Index is an 

effective measure of the similarity of a clustering result to the true 
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clustering. The results for College Football, Political Books, CG1 

and CG2 are presented in Table 1. 

The ARI results clearly demonstrate that SCAN outperforms 

FastModularity at producing clustering that resemble the true 

clustering of the real world networks in our study. 

Table 1. Adjust Rand Index Comparison. 

 SCAN FastModularity 

College football 1 0.24 

Political books 0.71 0.64 

CG1 1 0.85 

CG2 1 0.68 

6.2.6 Input Parameters 
SCAN algorithm uses two parameters: ε and μ. To choose them 

we adapted the heuristic suggested for DBSCAN in [10]. This 

involves making a k-nearest neighbor query for a sample of 

vertices and noting the nearest structural similarity as defined in 

Section 3.1. The query vertices are then sorted in ascending order 

of nearest structural similarity. A typical k-nearest similarity plot 

is shown in Figure 14. The knee indicated by a vertical line shows 

that an appropriate ε value for this graph is 0.7.  This knee 

represents a separation of vertices belonging to clusters to the 

right from hubs and outliers to the left. Usually a sample of 10% 

of the vertices is sufficient to locate the knee.  In the absence of 

such an analysis, an ε value between 0.5 and 0.8 is normally 

sufficient to achieve a good clustering result. We recommend a 

value for μ, of 2. 

 

Figure 14. Sorted k-Nearest Structural Similarity. 

7. CONCLUSIONS 
Network clustering is a fundamental task in many fields of science 

and engineering. Many algorithms have been proposed from 

practitioners in different disciplines including computer science 

and physics. Successful examples are Min-Max Cut [4] and 

Normalized Cut [5], as well as Modularity-based algorithms 

[6][11][12]. While such algorithms can successfully detect 

clusters in networks, they tend to fail to identify and isolate two 

kinds of vertices that play special roles – vertices that bridge 

clusters (hubs) and vertices that are marginally connected to 

clusters (outliers).  Identifying hubs is essential for applications 

such as viral marketing and epidemiology. As vertices that bridge 

clusters, hubs are responsible for spreading ideas or disease.  In 

contrast, outliers have little or no influence, and may be isolated 

as noise in the data.  

In this paper, we proposed a method called SCAN (Structural 

Clustering Algorithm for Networks) to detect clusters, hubs and 

outliers in networks. SCAN clusters vertices based on their 

common neighbors. Two vertices are assigned to a cluster 

according to how they share neighbors. This makes sense when 

you consider social communities.  People who share many friends 

create a community, and the more friends they have in common, 

the more intimate the community. But in social networks there are 

different kinds of actors.  There are also people who are outsider 

(like hermits), and there are people who are friendly with many 

communities but belong to none (like politicians).  The latter play 

a special role in small-world networks as hubs [13].  

We applied SCAN to some real world networks including finding 

conferences using only the NCCA College Football schedule, 

grouping political books based on co-purchasing information, and 

customer data integration. In addition, we compared SCAN with 

the fast modularity-based algorithm in terms of both efficiency 

and effectiveness. The theoretical analysis and empirical 

evaluation demonstrate superior performance over the modularity-

based network clustering algorithms. 

In the future we plan to apply SCAN to analyze biological 

networks such as metabolic networks and gene co-expression 

networks. 
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