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Abstract

This paper describes initial results for a laser-based aerial

mapping system. Our approach applies a real-time laser

scan matching algorithm to 2-D range data acquired by a

remotely controlled helicopter. Results obtain for urban and

natural terrain exhibit an unprecedented level of spatial de-

tail in the resulting 3-D maps.

1 Introduction

In recent years, a number of research teams have developed

robotic systems for mapping indoor [12, 20] and outdoor

environments [9]. Since sensing is usually confined to the

immediate vicinity of the vehicle, active sensors such as

sonars and laser range finders have become the technology

of choice [19]—albeit some notable exception using passive

cameras [16]. For the problem of acquiring accurate maps of

outdoor terrain, ground vehicles are limited in two aspects:

First, the ground has to be traversable by the vehicle itself.

Many environments are cluttered with obstacles that are dif-

ficult to negotiate [4]. Second, all important features in the

environment have to be perceivable from relatively low van-

tage points. Moreover, the set of vantage points that can be

attained usually lie on an approximate 2-D manifold paral-

lel to the ground surface, since most ground vehicle cannot

vary the height of their sensors. This is a severe limitation

that is particularly troublesome in complex, natural terrain.

In complimentary research, there exists a huge body of

literature on high aerial and satellite-based mapping (see

e.g., [2, 6, 11]). At high altitude, it is usually impossible

to deploy active range sensors; instead, these techniques

are commonly based on passive computer vision systems.

While traversability is not an issue for high aerial vehicles,

the relatively high vantage points makes it difficult to map

vertical structures, and it limits the resolution at which maps

can be acquired. Furthermore, clouds can cause obstruc-

tion or cast shadows in the imagery. And while air vehicles

can change altitude and are therefore not subject to the 2-D

manifold constraint characteristic of ground vehicles, such

changes have next-to-zero effect on the visual appearance of

the surface structure.

Low-flying air vehicles, such as helicopters, promise to

overcome these limitations: they are much less constraint

than ground vehicles with regards to their navigational capa-

bilities, yet they can fly low enough to acquire data of verti-

cal structures at high resolution. A seminal system by Miller

et al. [15, 14] has demonstrated the feasibility of acquiring

high-resolution ground models using active laser range sen-

sors on a low-flying helicopter platform.

This paper describes a similar system for acquiring high-

resolution 3-D models of urban and ground structures. The

system, shown in Figure 1, is based on a Bergen Industrial

Twin helicopter, equipped with a 2-D SICK range finder and

a suite of other sensors for position estimation. Figure 2

shows some of the computer equipment mounted on the ve-

hicle. The 2-D range finder provides the vehicle with 2-D

range slices at a rate of 75Hz, oriented roughly perpendic-

ular to the robot’s flight direction. The helicopter is flown

under manual control.

Building 3-D maps with centimeter resolution is difficult

primarily of two reasons:

1. Using GPS and other proprioceptive sensors, the location

and of the sensor platform can only be determined up to

several centimeters accuracy. Similar limitations apply

to the estimation of its angular orientation. The ground

position error induced by those angular errors are often

in the order of several meters. This is illustrated by the

ground model shown in Figure 3. Shown there is a 3-D

model reconstructed using the vehicle’s best estimates of

its position and orientation. These limitations mandate

the use of the range finder as a means for further reduc-

ing the errors in the vehicle pose estimate, and to jointly

solve the environment mapping the vehicle localization

problem.

2. The rich literature on simultaneous localization and map-

ping, or SLAM [7, 12], has developed extensive tech-

niques for simultaneously estimating the structure of the

environment (3-D model, or map) and the pose of the ve-

hicle. Range scan alignment techniques (applied in 2-D

in robotics[13] and in 3-D in object modeling [17]) over-

come this problem by cross-registering multiple scans.

To do so, these techniques rely on multiple sightings of

the same environmental feature. This is not the case for



Figure 1: Instrumented helicopter platform: The system is based on the

Bergen Industrial Twin, with a modified SICK LMS laser range finder, a

Crossbow IMU, a Honeywell 3-D compass, a Garmin GPS, and a Nikon

D100 digital camera. The system is equipped with onboard data collection

and processing capabilities and a wireless digital link to the ground station.

Figure 2: Some of the electronics onboard the helicopter: An Intel Stayton

board with a 400Mhz XScale processor interfaces to the SICK LMS laser

via a high speed RS422 serial link, and to all other devices (compass, GPS,

IMU) via RS232. The communication to the ground is established via a

802.11b wireless link.

a 2-D sensor that is moved through the environment in a

direction perpendicular to its own perceptive field: Here

consecutive measurements always correspond to differ-

ent things in the world.

We have developed a probabilistic SLAM algorithm that

addresses both of these problems. Our approach acquires

3-D models from 2-D scan data, GPS, and compass mea-

surements. The algorithm exploits a local smoothness as-

sumption for the surface that is being modeled, but simul-

taneously allows for the possibility of large discontinuities

of the mapped structure. By doing so, it can utilize range

scans for vehicle localization, and thereby simultaneously

improve both the pose estimate of the helicopter and the ac-

curacy of the resulting 3-D environment model.

We believe that the maps acquired by our system are sig-

nificantly more accurate and spatially consistent than previ-

ous maps acquired by helicopter systems. A key reason of

this increase in accuracy comes from the fact that scans are

used for the pose estimate of the vehicle’s sensor platform.

Figure 3: Raw data of a multi-storey building

2 3-D Modeling Approach

2.1 Vehicle Model

Let xt denote the pose of the sensor’s local coordinate sys-

tem at time t, relative to a global coordinate system of the

3-D model. This pose is specified by the three Cartesian co-

ordinates and the three Euler angles (roll, pitch, yaw). In

irregular intervals, we receive GPS and compass measure-

ments for the pose, denoted by yt. The probability of mea-

suring yt if the correct pose is xt is Gaussian and denoted

p(yt | xt):

p(yt | xt) ∝ exp− 1

2
(yt − xt)

T A−1 (yt − xt) (1)

Here A is the measurement covariance. Since all of these

sensors are subject to systematic error (e.g., drift), we also

employ a differential model p(∆yt | xt, xt−1) where ∆yt =
yt − yt−1 is the differential measurement (angles are trun-

cated in this subtraction).

p(∆yt | xt, xt−1) ∝ exp− 1

2
(∆yt − δ(xt, xt−1))

T

D−1 (∆yt − δ(xt, xt−1)) (2)

Here δ calculates the pose difference. The matrix D is the

covariance of the differential measurement noise, whose de-

terminant is smaller than that of A. This model is thus im-

plemented by a narrower Gaussian, accounting for the fact

that relative information is more accurate than absolute in-

formation. However, measurements yt alone are insufficient

for ground mapping as discussed above.



Figure 4: Helicopter flying by a building under manual remote control.

The image also shows the pilot.

2.2 Range Sensor Model

To localize the sensor based on range data, we need a model

of the range sensor. Most SLAM algorithms model the prob-

ability p(zt | m,xt) of a measurement zt, given the map m

and the pose xt. Such a generative model is the most gen-

eral approach to robotic mapping; however, it involves as

many variables as there are features in the map m; thus the

resulting likelihood functions would be difficult to optimize

in real-time.

For a forward-flying helicopter which never traverses the

same location twice, it is sufficient to model a relative proba-

bility of subsequent measurements conditioned on the pose:

p(zt | xt, xt−1, zt−1). This probability models the spatial

consistency of scan zt relative to the previous scans, zt−1,

assuming that those scans are taken at the global poses xt

and xt−1, respectively.

In our implementation, this model is defined as follows:

p(zt | xt, xt−1, zt−1)

∝
∏

i

exp− 1

2
min

[

α, min
j

{

(zi
t − f(zj

t−1
, xt−1, xt))

T

B−1 (zi
t − f(zj

t−1
, xt−1, xt))

}]

(3)

The index i iterates over individual beams in the scan zt,

and the function f projects measurements in scan j into the

local coordinate system of scan i. The argument of the ex-

ponential involves two minimizations. The inner minimiza-

tion identifies the index j of the measurement nearest to zi
t,

when projected into the local coordinate system of the scan

zt. The second minimization upper bounds this distance by

α. It is best thought of as an outlier detection mechanism.

The measurement covariance B is degenerate: it pos-

sesses infinite covariance in the direction of helicopter flight.

This degeneracy accounts for the fact that subsequent scans

carry no information about the forward motion of the vehi-

cle. The degeneracy implies that the rank of B−1 is five,

even though the matrix is six-dimensional.

2.3 Optimization

The resulting probabilistic model is proportional to the prod-

uct

p(yt | xt) p(∆yt | xt, xt−1) p(zt | xt, xt−1, zt−1) (4)

The negative log-likelihood is now given by the following

expression:

const. + 1

2

(

(yt − xt)
T A−1 (yt − xt)

+ (∆yt − δ(xt, xt−1))
T D−1 (∆yt − δ(xt, xt−1))

+
∑

i

min

[

α, min
j

{

(zi
t − f(zj

t−1
, xt−1, xt))

T

B−1 (zi
t − f(zj

t−1
, xt−1, xt))

}])

(5)

The map and the pose is recovered by minimizing this neg-

ative log-likelihood. We note that this problem combines a

continuous optimization problem that is quadratic in non-

linear functions of the pose xt, with a discrete one that in-

volves finding the corresponding z
j
t−1

for each measure-

ment beam zi
t. Following mainstream optimization in the

scan matching literature [3], our approach iterates a step in

which the minimization is solved for a fix pose xt, which

a step in which the optimal pose is determined for a fixed

setting of the minimizing indices. Both steps can be carried

out highly efficiently [10].

The result is an algorithm that implements the optimiza-

tion in an incremental fashion, in which the pose at time t is

calculated from the pose at time t − 1 under incorporation

of all scan measurements. While such an implementation

is subject to local minima, it can be performed in real-time

and works well, as long as the helicopter never traverses the

same area twice. The 3-D model is also obtained in real-

time, by using the corrected pose estimates to project mea-

surements into 3-D space. The model may simply be rep-

resented by a collection of scan points in 3-D, or a list of

polygons defined through sets of nearby scan points. Both

are computed in real-time.

3 Results

We have tested our approach in a number of different envi-

ronments, all of which involved significant vertical structure

that cannot easily be mapped by high-aerial vehicles. Fig-

ure 4 depicts the helicopter flying by a multi-storey build-

ing under manual control; it also depicts the pilot walking

behind the vehicle. The raw data acquired in this flight is

shown in Figure 3; this plot uses the helicopter’s best esti-

mate of its own pose for generating the map. These plots

clearly show significant error, caused by a lack of accurate

pose estimation.



Figure 5: Visualization of the mapping process, carried out in real-time. This figure shows a sequence of snapshots taken from the interactive ground

display, which displays the most recent scans with less than 0.5 seconds latency.

Figure 5 depicts a sequence of maps as they are being

generated in real-time. The latency between the data ac-

quisition and the display on the ground is less than half a

second. Snapshots of the final 3-D map are shown in Fig-

ure 6.

Figure 7 shows to maps acquired at a different urban site

(left image) and at an ocean cliff (right image). These maps

are represented by polygons that are defined over nearby

points. The search for such polygons is also carried out in

real-time, although rendering the final model requires sub-

stantially more time than rendering the multi-point model.

Unfortunately, we do not possess ground truth informa-

tion for the mapped structures. This makes it impossible

to assess the accuracy of the resulting models. However,

the models appear to be visually accurate, locally consis-

tent. The spatial resolution of these models in the centimeter

range.

4 Conclusion

This paper described initial results for an instrumented he-

licopter platform for 3-D ground modeling. A real-time al-

gorithm was developed that integrates pose estimates from

multiple sensors with range data, acquired by a 2-D laser

range finders oriented perpendicular to the vehicle’s flight

direction. The algorithm uses a fast optimization technique

to generate maps in real-time. Relative to prior work in [15,

14], our approach utilizes the range data for vehicle local-

ization, which results in maps that are spatially significantly

more consistent and—we suspect—more accurate. Exper-

imental results suggest that the maps acquired by our ap-

proach are of unprecedented detail and accuracy; however,

the exact accuracy is presently not known. Nevertheless, we

believe that the findings in this work are highly promising.

It is important to notice that this paper does not address

the popular topic of autonomous helicopter control, see [1,

5, 8, 18] for recent work in this area. However, an integra-

tion of accurate mapping and autonomous flight would make



Figure 6: Snapshots of the 3-D Map of the building shown in Figure 4. The map is represented as a VRML file and can be displayed using standards

visualization tools.



Figure 7: Multi-polygonal 3-D models of a different urban site with a smaller building, and a cliff at the pacific coast near Davenport, CA. The left diagram

also shows the vehicle’s estimated path.

it possible to operate autonomous helicopters in rugged ter-

rain, such as mountainous areas or caves. It would also open

the door to the important problem of selecting safe landing

pads in uneven terrain.

A second extension concerns the limitation that surfaces

are only sensed once. To enable the vehicle to integrate

data from multiple fly-overs would require a mechanism for

establishing correspondence to previously mapped terrain.

While a number of techniques exist that offer this capabil-

ity [19], it is unclear whether they can be executed in real-

time on a helicopter platform.
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