
Scan Chain Organization for Embedded Diagnosis

Melanie Elm, Hans-Joachim Wunderlich
Institut für Technische Informatik

Universität Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany

{elm, wu}@iti.uni-stuttgart.de

Abstract

Keeping diagnostic resolution as high as possible while
maximizing the compaction ratio is subject to research since
the advent of embedded test. In this paper, we present a
novel scan design methodology to maximize diagnostic res-
olution when compaction is employed. The essential idea
is to consider the diagnostic resolution during the cluster-
ing of scan elements to scan chains. Our methodology does
not depend on a fault model and is helpful with any type of
compactor.

A linear time heuristic is presented to solve the scan
chain clustering problem. We evaluate our approach for
industrial and academic benchmark circuits. It turns out to
be superior to both random and to layout driven scan chain
clustering. The methodology is applicable to any gate-level
design and fits smoothly into an industrial design flow.

Keywords — Design for diagnosis, embedded test, scan

design

1. Introduction

The central challenges in test and diagnosis of nano-

scaled multi-million gate cores are twofold. On the one

hand, an increasing amount of test data has to be applied

to the core under test (CUT) and an increasing amount of

test responses has to be evaluated. This task requires imple-

menting embedded test techniques which may reach from

test data compression schemes [22, 18, 8, 4] to complete

built-in self-test (BIST) methods [29, 9].

On the other hand, design for manufacturing and yield

ramp require detailed internal information for design vali-

dation, process monitoring and quality assurance. Thus, a

strong request for any test data compression technique is to

provide sufficiently detailed diagnostic information.

The basic structure used for embedded testing is shown

in figure 1 [23]. A decompressor circuit transforms external

data into wide test vectors, and a compactor transforms the

test response vectors into narrow external data. If both de-

compressor and compactor work in an autonomous mode,

the structure turns into the STUMPS scheme for BIST [1].

Figure 1. Embedded test scheme with k scan
chains of maximum size t.

Up to now, the goal of compressing test data while keep-

ing the diagnostic information has been achieved by using

sophisticated test data compaction techniques, by modify-

ing automatic test pattern generation (ATPG) algorithms, or

by a combination of both.

Mainly three types of compactors can be found, which

keep the diagnostic resolution: Those based on error cor-

recting codes like X-compact [19] and its variations, con-

volutional compactors as in [24], or those using signature

registers with scan chain masking and repetition as in [15].

These techniques have in common that they are efficient,

if the number of flipflops which carry erroneous informa-

tion is limited per scan-vector. For instance, the Saluja-

Karpovsky code [26, 21] may identify up to two failing scan

chains per vector. Thus the number of failing flipflops per

978-3-9810801-3-1/DATE08 © 2008 EDAA

scan vector has a great influence on the fault aliasing and

fault cancellation probability.

For signature registers and convolutional compactors

used in BIST, sophisticated techniques have been devel-

oped to reconstruct those flipflops from the signature which

carry erroneous information. In [2], a dynamic partitioning

scheme of the scan cells and test repetition are presented.

The location of faulty flipflops in the scan vector determines

the number of repetitions and thereby influences the test

time.

For convolutional compactors, [20] proposed a back-

tracking algorithm to identify failing flipflops. In this case

the amount of failing flipflops in a scan vector has impact

on the efficiency of the search in the backtracking tree.

For stuck-at faults, ATPG can be controlled to make the

failing outputs diagnosable [27] and in many cases, stuck-

at faults can be identified without modifying ATPG [28].

Unfortunately, stuck-at faults are not the main subject of

diagnosis for nano scaled circuits. In contrast, innovative

diagnostic techniques analyze the circuit responses without

the assumption of any fault model in order to identify the

suspect regions of a circuit [12, 7, 11]. For each failing

vector to be analyzed, they need to know exactly the set

of failing flipflops, and ATPG based on a specific model

cannot help.

In this paper, for the first time a method and an algo-

rithm are presented to configure scan chains for improving

diagnosability. The approach is not restricted to stuck-at

faults like ATPG-based methods and is compatible with the

state-of-the-art test compactors. In addition, the algorithm

just generates configuration files for standard scan synthesis

tools, does not require reordering of scan flipflops and fits

into commercial tool chains without further modifications.

After the introduction we present the target scan chain

structure for improving diagnosability. In the third section,

scan synthesis is mapped to a graph partitioning problem.

As the partitioning problem turns out to be NP-complete, an

efficient heuristic is presented in section 4. The experimen-

tal results discussed in section 5 are obtained by evaluating

large industrial designs. They show that the partitioning al-

gorithm improves diagnosability significantly compared to

both random and layout based scan insertion.

2. Diagnosable scan chain structures.

Each single line fault in a combinational network can

only affect primary outputs which are part of its output

cone, i.e. there is a topological path from the fault site to the

primary outputs. The output cone of any single line fault is

completely contained in any output cone of a primary input

which is a predecessor of the fault line (figure 2).

fault

Pseudo-primary inputs

Pseudo-primary outputs

Figure 2. Output and super cone of a fault.

Scan design maps flipflops to pseudo-primary outputs

and inputs, and if the flipflops of an output cone of a pseudo-

primary input are included in a single scan chain, each re-

sponse vector will contain at most one erroneous flipflop.

If a vector contains at most one error bit, any re-

sponse compaction technique based on single error correct-

ing codes like X-compact can identify the error location

[19]. Unfortunately, the circuit structure may prevent that

all output cones are mapped to single scan chains. Hence,

we want to limit the number c of scan chains which cover

a single output cone. If the output compressor is a simple

parity checker, we have to select c = 1 even to avoid fault

cancellation as shown in figure 3. The fault information is

canceled out in the first shift cycle and it is preserved in the

second.

CUT

C
om

pa
ct

or

...

Figure 3. Fault cancellation in a parity tree:
The gray scan elements contain the fault in-
formation.

If an output cone is distributed between c = 2 scan

chains, all the errors are located by compactors based on

the Saluja-Karpovsky code [21]. In general a BCH code

will work for c > 1 [16, 25]. However, with increasing c
the compactor size will increase exponentially, and it will

be necessary to limit c.

Our optimization goal is to limit the number of scan

chains covering an output cone by c for as many output

cones as possible. Figure 4 shows a random scan organi-

zation vs. a diagnosable scan organization for c = 1.

CUT CUT

Figure 4. Ordinary scan chain organization
(left) and scan chain organization for diagno-
sis (right).

The scan organization described above does not only

support diagnosing single line faults. Even more complex

cells and circuit areas are covered, as the outputs of these

cells are completely contained in the output cones of the cell

inputs. If lines of two different output cones are interacting,

they still remain diagnosable in most cases. Standard bridg-

ing faults and crosstalks usually change the behavior of one

line but not both per pattern, and are visible only in one cone

at a time. However, byzantine faults which may be caused

by some resistive bridges for instance [17] could affect two

cones at the same time. This requires more diagnostic effort

during analysis, which is beyond the scope of this paper.

3. Scan chain organization and graph parti-
tioning

In order to obtain independence of any fault model, not

the output cones of faulty lines, but the output cones of pri-

mary inputs and pseudo-primary inputs are considered. Our

goal is to distribute most of the output cones over a number

of scan chains not exceeding c. We achieve this by mod-

eling output cones of primary inputs (PIs) and pseudo pri-

mary inputs (PPIs) in a hypergraph. Let H = (V,E) with

V = {v1, v2, v3, . . . , vn} be the set of scan elements in a

circuit c. Let E ⊆ P(V) — a subset of the power set of V
— be the set of hyperedges. Each hyperedge represents the

scan elements of one output cone.

Additionally, let k be the maximum number of scan

chains, and t be the maximum number of scan elements in

one scan chain (figure 1). Let c be the maximum amount

of faulty inputs the applied compactor can correct respec-

tively detect. As already discussed, c ∈ {1, 2, 3} are realis-

tic choices.

By partitioning the hypergraph into k disjoint sets of ver-

tices not bigger than t, where the amount of hyperedges

spanning more than c partitions is minimized, we solve the

aliasing problem for the chosen compactor optimally. In

the following sections, we will use Π(H) = {p1, . . . , pk}
to denote the partitioning.

Unfortunately, the problem of partitioning a graph into

k balanced sets of vertices while minimizing the edge cut

is NP-complete [3]. Let n be the number of vertices in a

graph G = (V,E). By setting c = 1 and t = �n/k� we can

map the balanced k-way graph partitioning problem to our

k-way hypergraph partitioning problem in O(1). Thus the

latter is NP-complete as well.

We do not try to solve an NP-complete problem exactly

for multi-million gate circuits. Instead we present an effi-

cient heuristic procedure in the next section.

There exists a variety of heuristics to solve the graph par-

titioning problem and related problems. Spectral methods

find the eigenvalues and eigenvectors of the graph’s Lapla-

cian matrix and partition the vertices according to some

heuristic derived from the eigenvectors [5]. Other heuristics

calculate an initial partitioning and improve it by swapping

vertices to other partitions [10, 14].

The multilevel hypergraph partitioning introduced by

Kumar and Karypis first coarsens the hypergraph according

to several topologically motivated heuristics [13]. After an

initial partitioning they use a modified version of the Fiduc-

cia Mattheyses algorithm [10] to return to the initial graph.

These popular heuristics to solve the hypergraph parti-

tioning problem, generalize the problem to an extent, which

does not fit to our instance. Instead of finding the global

minimum edge cut, we are satisfied with minimizing the

amount of edges cut more than c times. It makes no dif-

ference, if an edge cuts c + 1 or even c + x partitions. In

addition, these general heuristics do not target such large

problem instances as introduced by nano scaled circuits.

A heuristic and implementation is necessary which

works out fast for several hundred thousands of vertices and

hyperedges, or even more as circuits will be growing. We

will now introduce a linear time heuristic for partitioning a

hypergraph into k partitions each of size not bigger than t,
where the optimization goal is to minimize the number of

hyperedges spanning more than c partitions.

4. Heuristic hypergraph partitioning

The linear time partitioning procedure implements a

divide-&-conquer approach. It consists of three main steps.

4.1. Connected components

Each of the connected components of the hypergraph can

be dealt with independently. The independent solutions for

the components can then be combined to form the global

solution.

Let H1 = (V 1, E1), . . . , Hm = (V m, Em) be the con-

nected components of the hypergraph H , and let Π(Hi) =
(pi

1, . . . , p
i
k) be the corresponding partitions as determined

below. Now the set P := {pi
j |i = 1, . . . ,m; j = 1, . . . , k}

has to be partitioned into k sets P1, . . . , Pk ⊂ P in such

a way that each Ph, h = 1, . . . , k represents at most t ver-

tices, i.e.
∑

p∈Ph
|p| ≤ t.

If t is sufficiently large, this is nearly always possible.

In rare cases, the partitioning for each component Hi has

to be solved for some t′ < t. For t′ = t/m, a solution is

guaranteed. For the rest of this section we assume now, that

the hypergraph is connected.

4.2. Initial states

The main algorithm takes one vertex in each step and de-

cides to which partition this vertex should be put. The initial

state of the algorithm puts just one vertex into each of the

partitions. In the course of the algorithm, a state is a parti-

tioning of a subgraph, and the initial state is the partitioning

of a subgraph with k vertices.

States are evaluated by a cost function, which on the one

hand should display the quality of the recent partitioning

and on the other hand the difficulty to calculate the next

states of the algorithm. This is achieved by assigning a la-

bel L(e) to each hyperedge e ∈ E and a label L(v) to each

vertex v ∈ V . The label of an edge is the amount of parti-

tions this edge is spanning at the current state. If an edge is

spanning more than c partitions it is marked as inactive and

is no longer considered when calculating the cost function.

This reduces the computational complexity on the one hand

and gives chance to distribute those ”broken” edges over as

many scan chains as possible on the other hand.

The label of a vertex is the maximum label of all the

edges incident to this vertex. Additionally for each vertex

we need A(v), which is the amount of edges incident to v
with this maximum label.

Let h be the number of inactive hyperedges in the cur-

rent state of the algorithm. The following cost function puts

penalty h2 to broken edges and evaluates with L(v) how

many partitions already were used.

C(Π) = h2 +
∑

v∈V

L(v) · A(v) (1)

Initially the cost function is used to evaluate the two

states described below and to select the best of them:

• The k most distant vertices with maximum incidence,

and

• the k hyperedges with highest incidence which don’t

share any incident hyperedges.

The run time of the prepartition step is in any of the two

cases linear. Each edge respectively vertex is touched at

most once, and only the incident vertices respectively edges

have to be marked. Thus if n is the number of edges respec-

tively vertices and q is the maximum incidence of an edge

respectively vertex, then the prepartitioning can be done in

O(n · q).

4.3. Main Algorithm

The main algorithm adds one vertex after the other to

the state obtained so far. For each vertex it is evaluated by

the cost function, to which of the k partitions it should be

added.

After the best partition has been found, the vertex is as-

signed to this partition and the labels and cost function are

updated.

Not only the choice of the initial partitioning is impor-

tant, but also the order in which the vertices are processed.

We always choose the one with the highest label. As the

label can not grow bigger than c, we can find the next crit-

ical vertex fast by sorting the vertices to buckets according

to their label. The sorting can be done during the update of

the label.

Up to this point we have linear run time. Again each

vertex is touched once and, only those labels of edges and

vertices have to updated which are incident to the current

vertex. Again the complexity is O(n · q).

5. Experimental results

The quality of a scan chain configuration is evaluated by

using the concept of c-diagnosability. An output cone is

called c-diagnosable (c ∈ N), if it is distributed to not more

than c scan chains. In order to be completely independent

of any fault model we consider the output cones of flipflops.

The approach presented here is only required and de-

signed for large circuits. For this reason, only the large

ITC99 benchmark circuits are investigated [6]. In addition,

the results for large industrial designs provided by NXP are

reported.

As the ITC benchmark circuits do not come with scan

chain information, we construct a random configuration and

compare our results. However, for the industrial designs the

original scan chain information is available. The original

configuration was generated by industrial tools taking into

account both layout and RTL information.

Table 1 shows the percentage of cones which are c-

diagnosable (c = 2, 3) for a random configuration, for the

original configuration and for the optimal configuration of

the industrial designs. The results for c = 1 are exemplar-

ily depicted in figure 5. The results for the biggest ITC 99

benchmarks are reported in table 2.

Circuit c = 2 c = 3
Random Original New Random Original New

p35k 11,35 98,79 99,39 13,13 98,79 99,96

p45k 17,05 29,09 95,85 23,18 65,09 98,29

p77k 33,09 65 82,35 47,88 79,77 97,79

p78k 9,49 99,56 97,44 12,76 96,46 96,46

p81k 3,89 49,65 66,76 8,21 70,57 76,92

p89k 28,06 66,95 76,21 37,77 78,09 94,69

p100k 45,66 84,49 94,98 52,26 92,43 98,87

p141k 12,74 26,98 42,19 17,44 45,13 56,51

p239k 40,58 72,16 84,16 46,54 86,71 95,72

p259k 43,91 72,83 89,33 49,89 86,78 97,99

p267k 23,16 46,72 65,01 34,15 64,95 84,82

p269k 23,47 46,72 64,36 35,08 64,95 85,22

p279k 25,03 49,42 54,7 35,25 56,62 62,57

p286k 29,68 53,21 55,26 39,47 60,16 64,02

p295k 30,57 72,72 78,52 47,83 96 98,98

p330k 22,61 56,35 56,71 29,74 68,31 73,29

p378k 9,37 99,56 98,73 12,51 96,46 96,46

p388k 36,18 83,89 85,75 46,75 88,71 90,18

p418k 23,01 74,49 83,82 37,26 89,82 92,27

p483k 34,46 87,69 94,69 47,63 97,42 99,01

p500k 21,79 80,64 83,37 34,99 91,03 93,61

p533k 43,39 88,56 93,57 57,23 97,57 99,08

p951k 51,53 69,21 87,32 56,13 77,7 92,35

p1522k 15,26 50,41 75,05 75,05 56,25 90,61

Table 1. Results for NXP benchmarks.

All the percentages are calculated with respect to those

cones not bigger than c · t. Thus, in some cases the c-

diagnosability for c = 2 is lower than that for c = 1.

Circuit c = 1 c = 2 c = 3
Random New Random New Random New

b12 15,56 72,22 60,18 93,81 61,86 81,36

b13 4,44 60 31,11 95,56 64,44 100

b14 0 61,11 0 65,38 0 20,65

b17 1,1 42,11 18,71 66,67 20,81 49,95

b18 0,75 40,09 9,76 39,69 11,46 82,21

b19 0,35 44,31 11,52 48,3 13,51 92,48

b20 0 51,82 0 14,63 0,26 52,34

b21 0 49,64 0 15,13 0 33,07

b22 0 47,64 0 27,1 0 78,01

Table 2. Results for ITC 99 benchmarks.

Random configurations lead to a rather poor diagnosabil-

ity, which is lower than that of the original configurations

for the industrial circuits. However, the clustering presented

so far outperforms the original configurations significantly

0% 10% 20% 30% 40% 50% 60% 70%

p35k
p45k
p77k
p78k
p81k
p89k

p100k
p141k
p239k
p259k
p267k
p269k
p279k
p286k
p295k
p330k
p378k
p388k
p418k
p483k
p500k
p533k
p951k

p1522k

Random Original New

Figure 5. Results of NXP circuits for c = 1.

especially in those cases, where the original diagnosability

is low.

In those cases where the original diagnosability is high,

the new clustering method is able to find a similar solution

in linear time and without considering layout information.

To summarize, the proposed algorithm improves the di-

agnosability of large areas of the circuits. This is obtained

just by passing clustering information to the scan synthesis

tool by using a constraint file, for instance.

6. Conclusions

For the first time, flipflops are clustered to scan chains

in a way that the diagnostic resolution is improved during

output compression. The approach fits into the standard tool

chain of scan synthesis. For realistic industrial circuits, the

partitioning procedure provides significantly better results

than the layout and RTL based configurations.

Acknowledgment

The work has been funded by the DFG under contract

WU 245/4-1. We would like to thank Alejandro Cook for

his support on the implementation and Christian Zöllin for

enlightening discussions.

References

[1] P. Bardell and W. McAnney. Self-testing of multichip logic

modules. In Proc. IEEE International Test Conference,

pages 200–204, 1982.

[2] I. Bayraktaroglu and A. Orailoglu. Deterministic partition-

ing techniques for fault diagnosis in scan-based BIST. In

Proceedings International Test Conference, 3-5 Oct. 2000,
Atlantic City, NJ, USA, pages 273–282, 2000.

[3] T. N. Bui and B. R. Moon. Genetic algorithm and graph

partitioning. IEEE Transactions on Computers, 45(7):841–

855, July 1996.

[4] K. Chakrabarty. Design of optimal linear space compactors

for built-in self test. In Conference Proceedings. IEEE
Instrumentation and Measurement Technology Conference,
18-21 May 1998, St. Paul, MN, volume 1, pages 413–418,

1998.

[5] P. K. Chan, M. Schlag, and J. Zien. Spectral k-way ratio-cut

partitioning and clustering. In 30th Conference on Design
Automation, 14-18 June 1993, pages 749–754, 1993.

[6] F. Corno, M. Reorda, and G. Squillero. RT-Level ITC 99

benchmarks and first ATPG Results., 2000.

[7] R. Desineni, O. Poku, and R. D. Blanton. A logic diagno-

sis methodology for improved localization and extraction of

accurate defect behavior. In IEEE International Test Con-
ference, Oct. 2006, pages 1–10, 2006.

[8] R. Dorsch and H.-J. Wunderlich. Reusing scan chains for

test pattern decompression. In IEEE European Test Work-
shop, May 29 - Jun. 1, 2001, pages 124–132, 2001.

[9] E. Eichelberger and E. Lindbloom. Random-pattern cov-

erage enhancement and diagnosis for LSSD logic self-test.

IBM Journal of Research and Development, 27(3), 1983.

[10] C. Fiduccia and R. Mattheyses. A linear-time heuristic for

improving network partitions. In 19th Conference on Design
Automation, 14-16 June 1982, pages 175–181, 1982.

[11] S. Holst and H.-J. Wunderlich. Adaptive debug and diagno-

sis without fault dictionaries. In 12th European Test Sympo-
sium (ETS 2007), 20 May 2007, Freiburg, Germany, pages

7–12. IEEE Computer Society, 2007.

[12] L. M. Huisman. Diagnosing arbitrary defects in logic de-

signs using single location at a time (SLAT). IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 23(1):91–101, January 2004.

[13] G. Karypis and V. Kumar. Multilevel k-way hypergraph par-

titioning. In Proceedings 36th Design Automation Confer-
ence, 21-25 June 1999, New Orleans, LA, USA, pages 343–

348, 1999.

[14] B. W. Kernighan and S. Lin. An efficient heuristic proce-

dure for partitioning graphs. Bell System Technical Journal,
February 1970, 49(2):291–307, 1970.

[15] A. Leininger, M. Goessel, and P. Muhmenthaler. Diagnosis

of scan-chains by use of a configurable signature register and

error-correcting codes. In Proceedings Design, Automation
and Test in Europe Conference and Exhibition, 16-20 Feb.
2004, volume 2, pages 1302–1307, 2004.

[16] S. Lin and J. Daniel J. Costello. Error Control Coding. Pear-

son Education, Inc., 2004.
[17] P. Maxwell and R. Aitken. Biased voting: A method for sim-

ulating cmos bridging faults in the presence of variable gate

logic thresholds. In Proceedings.International Test Confer-
ence, 17-21 Oct. 1993, Baltimore, MD, USA, pages 63–72,

1993.
[18] E. McCluskey, D. Burek, B. Koenemann, S. Mitra, J. Pa-

tel, J. Rajski, and J. Waicukauski. Test data compression.

Design & Test of Computers, IEEE, 20(2):76–87, 2003.
[19] S. Mitra and K. S. Kim. X-compact: an efficient response

compaction technique for test cost reduction. In Proceed-
ings on International Test Conference, 7-10 Oct. 2002, pages

311–320, 2002.
[20] G. Mrugalski, A. Pogiel, J. Rajski, J. Tyszer, and C. Wang.

Fault diagnosis with convolutional compactors. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 26(8):1478–1494, 2007.

[21] J. Patel, S. Lumetta, and S. Reddy. Application of Saluja-

Karpovsky compactors to test responses with many un-

knowns. In Proceedings on 21st VLSI Test Symposium, 27
April-1 May 2003, pages 107–112, 2003.

[22] J. Rajski and J. Tyszer. Test data compression and com-

paction for embedded test of nanometer technology designs.

In Proceedings on 21st International Conference on Com-
puter Design, 13-15 Oct. 2003, pages 331–336, 2003.

[23] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee.

Embedded deterministic test. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,

23(5):776–792, 2004.
[24] J. Rajski, J. Tyszer, C. Wang, and S. Reddy. Finite mem-

ory test response compactors for embedded test applications.

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(4):62–634, 2005.

[25] T. Reungpeerakul, X. Qian, and S. Mourad. BCH-based

compactors of test responses with controllable masks. In

15th Asian Test Symposium, 2006. ATS ’06, Nov. 2006,
Fukuoka, pages 395–401, 2006.

[26] K. K. Saluja and M. Karpovsky. Testing computer hard-ware

through data compression in space and time. In Proceedings
IEEE International Test Conference (ITC), 1983, page 8389,

1983.
[27] H. Tang, C. Wang, J. Rajski, S. Reddy, J. Tyszer, and

I. Pomeranz. On efficient X-handling using a selective com-

paction scheme to achieve high test response compaction

ratios. In 18th International Conference on VLSI Design,

pages 59–64, 2005.
[28] H. Vranken, S. Kumar Goel, A. Glowatz, J. Schloeffel, and

F. Hapke. Fault detection and diagnosis with parity trees for

space compaction of test responses. In 43rd ACM/IEEE De-
sign Automation Conference, 24-28 July 2006, pages 1095–

1098, 2006.
[29] H.-J. Wunderlich. BIST for systems-on-a-chip. Integration,

the VLSI Journal, 26(1-2):55–78, 1998.

