SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853-3801

TECHNICAL REPORT NO. 993

December 1991

SCAN-FIRST SEARCH AND SPARSE
CERTIFICATES: AN IMPROVED
PARALLEL ALGORITHM FOR K-VERTEX
CONNECTIVITY
by
Joseph Cheriyanl, Ming-Yang Kao?2
and Ramakrishna Thurimella3

1Research supported in part by the NSF, the AFOSR, and the ONR, through NSF grant
DMS-8920550, and by the ESPRIT II Basic Research Actions Program of the EC under
contract No. 3075 (project ALCOM).

2Department of Computer Science, Duke University, Durham, NC 27706. Research
supported in part by NSF Grant CCR-9101385.

3Department of Mathematics and Computer Science, University of Denver, Denver, CO
80208. This work was done while this author was with UMIACS, University of
Maryland at College Park, College Park, MD 20742.

SCAN-FIRST SEARCH AND SPARSE CERTIFICATES: AN
IMPROVED PARALLEL ALGORITHM FOR K-VERTEX
CONNECTIVITY

JOSEPH CHERIYAN*, MING-YANG KAO! AND RAMAKRISHNA THURIMELLA!

Abstract. Given a graph G = (V, E), a certificate of k-vertex connectivity is an edge subset
E' C E such that the subgraph (V, E’) is k-vertex connected if and only if G is k-vertex connected.
Let n and m denote the number of vertices and edges. A certificate is called sparse if it contains O(kn)
edges.

For undirected graphs, we introduce a graph search called the scan-first search, and show that
a certificate with at most k(n — 1) edges can be computed by executing scan-first search k times in
sequence on subgraphs of G. For each of the parallel, distributed and sequential models of computation,
the complexity of scan-first search matches the best complexity of any graph search on that model. In
particular, the parallel scan-first search runs in O(logn) time using C(n, m) processors on a CRCW
PRAM, where C(n,m) is the number of processors needed to find a spanning tree in each connected
component in O(log n) time, and the parallel certificate algorithm runs in O(k log n) time using C(n,m)
processors. Our parallel certificate algorithm can be employed to test the k-vertex connectivity of
an undirected graph in O(k?logn) time using k-n-C(n,kn) processors on a CRCW PRAM. For all
combinations of n, m, and k > 3, both the running time and the number of processors either improve
on or match those of all known deterministic parallel algorithms.

We also obtain an online algorithm for computing an undirected graph certificate with at most 2kn
edges, and a sequential algorithm for computing a directed graph certificate with at most 2k%n edges.

1. Introduction. Graph connectivity is one of the most fundamental properties
in graph theory [4] . Given a positive integer k, an undirected (respectively, directed)
graph G = (V, E) with at least k + 1 vertices is called k-vertez connected if the deletion
of any k — 1 vertices leaves the graph connected (respectively, strongly connected). A
certificate for the k-vertex connectivity of G is a subset E’ of E such that the subgraph
(V,E') is k-vertex connected if and only if G is k-vertex connected. Let n = V]
and m = |E|. Note that kn/2 is a trivial lower bound on the number of edges in a
certificate for a k-vertex connected graph. For general k, it is not obvious that there
is any upper bound strictly less than m on the number of edges in a certificate for k-
vertex connectivity; however, nonconstructive results of Mader imply an upper bound of
O(kn) for undirected graph certificates [5]. We call a certificate for k-vertex connectivity
sparse if it has O(kn) edges. For instance, a spanning tree is a sparse certificate for the
1-vertex connectivity of a connected undirected graph.

Sparse certificates have applications in diverse areas of computer science. For ex-
ample, they can be used for message-efficient fault-tolerant protocols in distributed

* 0. R. and L. E., Cornell University, Ithaca, NY 14853. Research supported in part by the NSF,
the AFOSR, and the ONR, through NSF grant DMS-8920550, and by the ESPRIT II Basic Research
Actions Program of the EC under contract No. 3075 (project ALCOM).

t Department of Computer Science, Duke University, Durham, NC 27706. Research supported in
part by NSF Grant CCR-9101385.

t Department of Mathematics and Computer Science, University of Denver, Denver CO 80208. This

work was done while this author was with UMIACS, University of Maryland at College Park, College
Park, MD 20742.

computing [20], [21]. Also, they are useful for improving existing graph k-vertex con-
nectivity algorithms. The k-vertex connectivity of a graph can be tested in two stages.
Stage 1 computes a sparse certificate of the input graph. Stage 2 applies a given k-vertex
connectivity algorithm to the certificate obtained in Stage 1. Because a certificate pre-
serves the k-vertex connectivity of the input graph, Stage 1 ensures the correctness of
the test. Stage 2 can potentially improve the complexity of the test by reducing the size
of the input to the given k-vertex connectivity algorithm.

For sequential computing, Nagamochi and Ibaraki have presented an algorithm
for sparse undirected graph certificates that runs in O(m + n) time [26]. For testing
the k-vertex connectivity of undirected graphs, this gives sequential running times of
O(k*n?) for k < \/n and of O(k®n!®) for k > \/n when their sparse-certificate algorithm
is combined with Galil’s k-vertex connectivity algorithm [17]. Independently, another
sequential algorithm for k-vertex connectivity with the same complexity for k < /n was
reported in preliminary versions of this paper [9], [8], the stated bound being achieved
in the latter [8]. It is now clear that the work of Nagamochi and Ibaraki [26] was the
earlier result, although unknown to us at the time of our work.

We present an algorithm for finding sparse certificates for undirected graphs, using
a new graph search procedure called the scan-first search. This search procedure has
surprisingly efficient implementations in the parallel, distributed and sequential models
of computation. Consequently, our certificate algorithm also has efficient implementa-
tions in all these three models. Below we list the complexity of scan-first search on the
three models. Note that the complexity of scan-first search on each model matches the
best complexity of any graph search on that model.

e Parallel Computing. Scan-first search runs in O(logn) time using C (n,m)
processors on a CRCW PRAM, where C(n,m) is the number of processors used
to compute a spanning tree in each connected component in O(log n) time. For
deterministic algorithms, Cole and Vishkin have shown [11] that C(n,m) =
O((m + n)a(n,m)/ logn), where a(n,m) is the inverse of Ackerman’s function
and has an extremely slow growth rate [12]. For randomized algorithms, Gazit
has shown [18] that C(n,m) achieves the optimal bound of ©((m +n)/log n).

e Distributed Computing. Scan-first search runs in O(d-log®n) time using
O(m + nlog®n) messages, where d is the diameter of the input graph.

¢ Sequential Computing. Scan-first search runs in O(m + n) time.

The advantage of scan-first search over the two most well-known graph search pro-
cedures is easy to see. Depth-first search runs in optimal linear time on the sequential
model [27] but has no known parallel implementation that is efficient [1], [2]. Breadth-
first search runs efficiently on the sequential and the distributed models [14], [3] but
currently the best parallel implementation is no more efficient than matrix multiplica-
tion [19].

For undirected graphs, we show that a sparse certificate can be computed by exe-
cuting scan-first search k times in sequence on subgraphs of G; moreover, the resulting
certificate has at most k(n — 1) edges, only a factor of two away from the trivial lower
bound (see Theorem 2.4). Combining this result with the above implementations of

2

scan-first search shows that the complexity of our sparse-certificate algorithm on the
three models is as follows: O(klogn) time using C(n,m) processors on the parallel
model, O(k-n- log® n) time using O(k(m +n log® n)) messages on the distributed model,
and O(k(m + n)) time on the sequential model.

Consider the problem of testing an undirected graph for k-vertex connectivity.
Using the method sketched above, our certificate algorithm can be used as a pre-
processing step, both with Khuller and Schieber’s parallel algorithm [24], and with
Even’s sequential algorithm [13]. This gives a parallel running time of O(k?logn) us-
ing k-n-C(n,min{kn,m}) processors, and sequential running times of O(k*n?) when
k < \/n and of O(k*n!®) when & > \/n.

For general k, there are no previous parallel or distributed algorithms for sparse
certificates. The best previous parallel algorithm for (undirected) k-vertex connectivity,
due to Khuller and Schieber [24], runs in O(k?log n) time and uses k-n-C(n,m) proces-
sors. For m > kn, our algorithm uses fewer processors than their algorithm. For dense
graphs and for k = O(1), our algorithm runs in O(log n) time and has a time-processor
product that is within an alpha-factor of the trivial lower bound of Q(n?).

We also obtain the following results. For undirected graphs, we give an online algo-
rithm that computes a certificate with at most 2kn edges. This algorithm is parallelized
to run probabilistically in O(log? n) time using m-P(n,m) processors, where P(n,m) is
the number of processors needed to find a maximum matching in O(log® n) time with
high probability. Currently, the best value known for P(n,m) is O(m-n*%*) [25]. For
directed graphs, we show that a certificate with at most 2k%n edges can be computed
in O(k-m-max{n, ky/n}) sequential time.

The above discussion has highlighted the results of this paper. The following sec-
tions proceed to detail those results. Section 2 discusses scan-first search and the
algorithm for computing undirected graph certificates in the three models. Section 3
presents the online algorithm for undirected graph certificates and its parallelization.
Section 4 describes the sequential algorithm for directed graph certificates. Section 5
concludes the paper with open problems.

2. Scan-first search and sparse undirected graph certificates. The main
result of this section is that a sparse certificate for undirected k-vertex connectivity
can be found by iteratively performing k scan-first searches on subgraphs of the input
graph.

Section 2.1 defines scan-first search and discusses how to perform the search effi-
ciently in the parallel, distributed, and sequential models of computation. Section 2.2
states the main certificate theorem based on scan-first search and discusses its algorith-

mic implications. Section 2.3 proves the main certificate theorem, and Section 2.4 gives
a generalization of the theorem.

2.1. Scan-first search. Given a connected undirected graph and a specified ver-
tex, a scan-first search in the graph starting from the specified vertex is a systematic
way of marking the vertices. The main marking step is called scan: to scan a marked
vertex means to mark all previously unmarked neighbors of that vertex. At the be-

3

Subroutine PARALLEL SCAN-FIRST SEARCH
Input: a connected undirected graph G = (V, E) and a vertex r.
Output: a scan-first search spanning tree T of G rooted at r.
begin
Find a spanning tree 7" of G rooted at r;
Assign a preorder numbering to the vertices in T7;
For each vertex v € T' with v # r, let b(v) denote the neighbor of v in G with
the smallest preorder number;

Let T be the tree formed by the edges {v, b(v)} for all v # r;
end.

F1G. 1. Computing a scan-first search spanning tree in parallel.

ginning of the search, only the specified starting vertex is marked. Then, the search
iteratively scans a marked and unscanned vertex until all vertices are scanned.

A scan-first search in a connected undirected graph produces a spanning tree de-
fined as follows. At the beginning of the search, the tree is empty. Then, for each
vertex z in the graph, when z is scanned, all the edges between z and its previously un-
marked neighbors are added to the tree; the edges between z and its previously marked
neighbors are not added to the tree.

For an undirected graph that may or may not be connected, a scan-first search can
be performed by applying the above search procedure to each connected component (as
well as to each isolated vertex). The search produces a spanning forest with a spanning
tree in each connected component.

Notice that scan-first search is more general than sequential breadth-first search
[14]. In other words, all sequential breadth-first search trees are scan-first search trees
but some scan-first search trees are not breadth-first search trees. For example, let C
be an undirected graph consisting of a five-vertex cycle i, z2, z3, 24, T5. Let e; denote
the edge {z;,zi4+1}. Then, C — {ey}, C — {e3}, C — {e4} are the scan-first search trees
of C rooted at z;. However, C — {e3} is the only breadth-first search tree rooted at .

THEOREM 2.1. For an undirected graph with n vertices and m edges, a scan-first
search spanning forest can be found in O(logn) time using C(n,m) processors on a
CRCW PRAM, where C(n,m) is the number of processors used to compute a spanning
tree in each connected component in O(logn) time.

Proof. Let G be the input graph. Without loss of generality, assume that G is
connected. Let r be a given starting vertex in . To prove the theorem, Figure 1
describes an algorithm for finding a scan-first search spanning tree T of G rooted at the
vertex r.

T is a scan-first search spanning tree of G rooted at r for the following reasons. T
corresponds to a scan-first search in G starting at r with the preorder of T” being the
scanning order. T is a spanning tree because every vertex except r has a neighbor with
a smaller preorder number in 7"

T can be found in O(logn) time using C(n,m) processors on a CRCW PRAM as
follows. By the definition of C(n,m), T’ can be found in O(logn) time using C(n,m)

4

processors. By standard parallel algorithmic techniques [23], the preorder numbers and
the neighbors &(v) in Figure 1 can be computed in O(log n) time using O((n+m)/logn)
processors. Because C(n,m) = Q((n+m)/logn), the total complexity is O(log n) time
using C(n,m) processors. [I

To find a scan-first search tree on the distributed model, we simply use the best
distributed breadth-first search algorithm currently known, that of Awerbuch and Peleg
3]

THEOREM 2.2. For an undirected graph with diameter d, n vertices, and m edges,
a scan-first search spanning forest can be found in O(d-log®n) distributed time using
O(m + nlog®n) messages.

Proof. The distributed breadth-first search algorithm of Awerbuch and Peleg [3]
runs in O(d-log® n) distributed time using O(m + nlog®n) messages. We first execute
their algorithm, and then modify the resulting breadth-first search forest to give a
scan-first search forest within the same complexity bounds. O

THEOREM 2.3. For an undirected graph with n vertices and m edges, a scan-first
search spanning forest can be found in O(n + m) sequential time.

Proof. Easy. O

2.2. The main certificate theorem and its algorithmic implications. The
next theorem shows that sparse certificates for the k-vertex connectivity of undirected
graphs can be computed efficiently.

THEOREM 2.4 (THE MAIN CERTIFICATE THEOREM). Let G = (V,E) be an
undirected graph and let n denote the number of vertices. Let k be a positive integer.
For i = 1,2,.-- k, let E; be the edge set of a scan-first search forest in the graph
Gie1 = (V,E — (EyU---UE;_1)). Then E;U---U Ey is a certificate for the k-vertez
connectivity of G, and this certificate has at most k(n — 1) edges.

Theorem 2.4 has algorithmic consequences for the parallel, distributed and sequen-
tial models of computation.

THEOREM 2.5. For an undirected graph with n vertices and m edges, a sparse
certificate for k-vertez connectivity with at most k(n—1) edges can be found in O(klogn)
time using C'(n,m) processors on a CRCW PRAM.

Proof. By Theorems 2.4 and 2.1. 0O

The next theorem improves on the best previous parallel algorithms for testing
the k-vertex connectivity of undirected graphs, namely, the algorithm in Khuller and
Schieber [24] and the one in the preliminary version of this paper [10].

THEOREM 2.6. For an undirected graph with n vertices and m edges, the k-verter
connectivity can be tested in O(k? logn) time using k-n-C(n, kn) processors on a CRCW
PRAM.

Proof. The k-vertex connectivity is tested in two steps. Step 1: Compute a
sparse certificate for the k-vertex connectivity of the input graph via Theorem 2.5.
Step 2: Apply the k-vertex connectivity algorithm of Khuller and Schieber [24] to
the certificate found in the first step. Step 1 runs in O(klogn) time using C(n,m)
processors. Step 2 runs in O(k?*logn) time using k-n-C(n,kn) processors. Because
k-n-C(n,kn) > C(n,m), the total complexity is as stated. O

b)

The main certificate theorem also gives an efficient algorithm on the distributed
model of computation. For general k, the first distributed algorithm for undirected
sparse certificates was presented in the preliminary version of this paper [10]. For
k = 2, Itai and Rodeh have previously given a distributed algorithm for undirected
sparse certificates [21].

THEOREM 2.7. For an undirected graph with n vertices and m edges, a sparse cer-
tificate for k-vertex connectivity with at most k(n—1) edges can be found in O(k-n-: log®n)
distributed time using O(k(m + nlog®n)) messages.

Proof. Follows from Theorems 2.4 and 2.2. For ¢ > 1, notice that the diameter of
G;-1 may increase to {}(n). O

For sequential computation, linear-time algorithms for sparse certificates for the 2-
vertex connectivity and the 3-vertex connectivity of undirected graphs have been given
by Itai and Rodeh [21] and Cheriyan and Maheshwari [7], respectively. For general k,
Nagamochi and Ibaraki have recently given a linear-time algorithm for sparse certificates
for undirected graphs [26]. The main certificate theorem gives a slower sequential
algorithm for general k.

THEOREM 2.8. For an undirected graph with n vertices and m edges, a sparse
certificate for k-vertex connectivity with at most k(n—1) edges can be found in O(k(m +
n)) sequential time.

Proof. By Theorems 2.4 and 2.3. O

For testing the k-vertex connectivity of undirected graphs, sequential running times
of O(k*n?) for k < y/n and of O(k®*n'?®) for k£ > \/n have been reported in Nagamochi
and Ibaraki [26]. The main certificate theorem gives the same sequential complexity,
when combined with Even’s k-vertex connectivity algorithm [13].

THEOREM 2.9. The k-vertez connectivity of an n-verter undirected graph can be
tested in O(k?n?) sequential time for k < \/n and in O(k®n'3) sequential time for
k> /n.

Proof. First use Theorem 2.8 to find a sparse certificate. Then run the k-vertex
connectivity algorithm of Even [13], [14]. O

COROLLARY 2.10. For k = O(1), the k-verter connectivity of an n-verter undi-
rected graph can be tested in O(n?) sequential time.

Proof. Follows from Theorem 2.9. 0O

2.3. The proof of the main certificate theorem. The main certificate theorem
states that a certificate with at most k(n — 1) edges can be computed by successively
finding the edge set E; of a scan-first search spanning forest of Go = G, the edge set
E, of a scan-first search spanning forest of Gy = (V, E — E;), ..., the edge set Ej of a
scan-first search spanning forest of G4_; = (V, E — (E; U---U Ex_1)), and taking their
union E; U ---U Fy_;.

Fori = 1,---,k, let F; denote the spanning forest computed by the ith scan-first
search (i.e., F; has edge set E;), and let H; denote the subgraph (V,(E; U ---U E))).
See Figure 4 for an example illustrating the definitions of G;, F; and H;. Clearly, the
theorem holds if Hy is k-vertex connected. To prove the theorem by contradiction,
suppose that Hj is not k-vertex connected, and that G is k-vertex connected. Then

6

there is a subset S of at most k& — 1 vertices such that H; — S is disconnected, by
Menger’s theorem. The next lemma shows that at least one tree of the last scan-first
search forest F) must contain vertices of two or more connected components of Hy — S.
LEMMA 2.11. Suppose that Hy is not k-vertex connected, and that G is k-vertex
connected. Then the following two statements hold.
1. There is a subset S C V with |S| < k such that Hy — S is disconnected.
2. Fy contains a simple tree path Py, whose two endpoints are in different connected
components of Hy — 5.

Proof. Focus on the second statement. By the k-vertex connectivity of G, the
graph G — S obtained by deleting S from G is connected because S contains k — 1 or
fewer vertices. Because Hy — S is disconnected and G — S is connected, there exists
an edge e in G whose endpoints are in two different connected components of H; — S.
The edge € is not in Hy, and so is not in E; U--- U E;_;. Hence the edge e is in
Gi-1 = (V,E — (Ey U--- U Ei_1)), and so the two endpoints of e are in the same
connected component of Gx_;. Because F} is a scan-first search forest in Gi_1, the
forest Fi has a spanning tree for the connected component in Gx_; that contains e.
Therefore, F contains a simple tree path P, between the two endpoints of e. This
shows that the second statement holds. 0O

To finish the proof of Theorem 2.4, the following discussion proceeds to show that
the path P, of Lemma 2.11 cannot exist, yielding the desired contradiction.

A few definitions are in order. Let w denote the size of S. The proof of Theorem
2.4 makes crucial use of the following indexing scheme of S. Let s1,- -+, s, denote the
vertices of S such that s; is the first vertex in S — {s1,---, s;—1} that is scanned by the
ith search. Because w < k by the first statement of Lemma 2.11, this indexing scheme
is well-defined and establishes a one-to-one onto correspondence between the vertices
in S and the forests Fy,---, F,.

For each s; in S, the home component of s; is defined as follows. In the forest F;,
let r be the root of the tree that contains s;. There are three cases. Case (1): If r & S,
then the home component of s; is the connected component in Hy — S that contains r.
Case (2): If r € S and r # s;, then the home component of s; is the home component
of r. Case (3): If r = s;, then s; has no home component.

Figure 5 illustrates the definition of home components. The next lemma shows that
the definition is consistent.

LEMMA 2.12. For each s; € S, if s; satisfies case (1) or case (2) of the above
definition, then the home component of s; is a connected component of Hy — S. If s;
satisfies case (3), then s; has no home component.

Proof. The lemma is obviously true if s; satisfies case (1) or case (3) of the definition.
For case (2), the lemma is shown by induction on the indices of S.

Induction Hypothesis: For all j < 1, if s; satisfies case (2) of the above definition,
then the home component of s; is a connected component of Hy — 5.

Induction Step: The goal is to show that s; has a home component. Because s;

satisfies case (2), the root of the tree in F; that contains s; is some s, € S.
CLAaM 1. h <.

-

Note that i # h because s # s; by the definition of case (2). To prove this claim
by contradiction, assume that & > . Then, s, € S — {51, -, Si—1}. Moreover, because
s; is a descendant of s, in F}, the ith search scans the vertex s, before s;. Thus, the
vertex s; should not have been indexed i. This is a contradiction. Consequently, 2 must
be smaller than . This finishes the proof of Claim 1.

CLAIM 2. No tree of F}, has s, as its root.

To prove this claim by contradiction, assume that s, is a root in Fj. Then the
edges in G that are adjacent to s, and are not in Fi,-- -, Fj_1 would all be included in
Fy. Consequently, s, would be an isolated vertex in Gi. Because 7 > h by Claim 1, s
would be an isolated vertex in F;. This contradicts the fact that s; is a descendant of
sy in F:. Therefore, sy, is not a root in Fj. This finishes the proof of Claim 2.

To show that s; has a home component, by the definition of case (2), it suffices to
prove that s, has a home component. If case (1) holds for s, then by definition, s
has a home component. If case (2) holds for sj, then by Claim 1 and the induction
hypothesis, s, has a home component. Case (3) cannot hold for s; by Claim 2. This
finishes the proof of the lemma. O ‘

To describe the key properties of scan-first search, more definitions are needed. For
each vertex s € S if s has a home component, let hce(s) denote the home component of
s; if s has no home component, let hcc(s) denote s itself. Moreover, for each v € V — S,
let hee(v) denote the connected component in Hy — S that contains v.

Given a forest F;, a jump of F; is a simple tree path Q = vy,---,v, of F; with
hee(vy) # hee(vg).

For each vertex s € S, the edges incident with s in G are classified into three types
as follows. The back edges of s are those between s and its home component. The side
edges of s are those between s and S — {s}. The rest of the edges incident with s are
the forward edges. Note that if s does not have a home component, then it has no back
edges. Refer to Figure 5 for an illustration of these definitions.

The next lemma shows a key property of the first scan-first search, and the following
lemma, which is the critical one for the proof of the main certificate theorem, generalizes
the key property to the first : scan-first searches for all 7 € {1,2,---,w}.

LEMMA 2.13. The following two statements are true.

1. Every jump of Fy contains at least one vertex of S.
2. The scan-first search forest Fy contains all the forward edges of si.

Proof. To prove the first statement by contradiction, assume that Fy has a jump
Q = vy,---,v, which contains no vertices from S. Then, vi,v, € V = 5. By the
definition of hce, hec(vy) and hec(v,) are connected components in Hy — S. By the
definition of a jump, hce(vy) # hee(v,y). In sum, @ is a path in Hy that connects two
different connected components of Hy —S. Therefore, () must contain a vertex from .5,
contradicting the assumption of the proof. This finishes the proof of the first statement.

To prove the second statement, note that F) is a tree because Go = G is connected.
Let r be the root of Fi. Then there are two cases: eitherr € Sorr ¢ S.

Case (1): 7 € S. By the definition of the indexing scheme of S, r = s;. When the
first search scans s;, none of the neighbors of s; in G have been marked. Consequently,

8

Fy includes all edges incident with s; in G, and hence the lemma holds for this case.

Case (2): r ¢ S. Refer to Figure 6(ii) for an illustration of this case. By definition,
sy has a home component and hce(r) = hee(s;). To prove this case by contradiction,
assume that there is a forward edge e = {s;,z} ¢ F;. This can happen only if the
first search marks z before it scans s;. Focus on the tree path, say, @ of Fy from r
to z. Because e is a forward edge, hcc(sy) # hec(x). Therefore, hee(r) # hec(z) and
the path Q is a jump of F;. By the first statement of this lemma, () contains a vertex
s € S. Because s is an ancestor of z in Fy, the first search scans s before or when it
marks z. Hence the first search scans s before it scans s;. However, this contradicts the
definition of the indexing scheme of S, because s; should have received a higher index.
This finishes the proof of case (2) of the second statement, and completes the proof of
the lemma. 0O

LEMMA 2.14. For eachi € {1,2,---,w}, the following statements are true.

1. Every jump of F; contains at least one vertex in S — {s1,+*,Si-1}-
2. Fy,---, F; contain the following edges of G:

(a) all forward edges of s;, and

(b) all side edges {s;,s;} with i > j and hcc(s;) # hee(s;).

Proof. This lemma is proved by induction on ¢ as follows. The base step follows
from Lemma 2.13; note that Statement 2(b) holds vacuously for ¢ = 1. The induction
hypothesis is that the lemma holds for i = t. The induction step is to show that the
lemma holds for ¢ = ¢ + 1. This is proved by the following three claims.

CLAIM 3. Statement 1 holds fori =1+ 1.

To prove the above claim by contradiction, assume that Fi;; has a jump Q =
v1,- -+, v, which contains no vertices from S — {s1,---,s:}. Refer to Figure 6(i) for an
illustration. Let W be the set of vertices that are in both @ and S. Let Uy be the set of
edges in @ that each have two endpoints in Hy — S. Let U; be the set of edges in) that
each have one endpoint in W and the other endpoint in Hy — S. Let U; be the set of
edges in Q that each have two endpoints in W. Observe that for all edges {z,y} € U,
hee(z) = hee(y). Next, from the assumption of the proof, W C {sy,---,s:}. Therefore.
from statement 2(a) of the induction hypothesis, the edges in U; cannot be forward
edges and hence for all edges {z,y} € Uy, hee(z) = hec(y). Furthermore, because the
edges in U, are side edges, from statement 2(b) of the induction hypothesis, for all
edges {z,y} € U,, hee(z) = hee(y). Hence, for all vertices z,y € Q, hee(z) = hee(y).
In particular, hce(v;) = hee(v,), contradicting the assumption that @ is a jump. This
finishes the proof of Claim 3.

CLAIM 4. Statement 2(a) holds fori =1t + 1.

To prove the above claim, let T be the tree of Fi,; that contains s;4y and let 7 be
the root of T'. Then there are two cases: (1) 7 # s¢41 or (2) 7 = St41.

Case (1): 7 # si41. Refer to Figure 6(ii) for an illustration of this case. By
definition, s¢4; has a home component and hec(r) = hce(si41). To prove this case by
contradiction, assume that there is a forward edge ¢ = {si41,2} ¢ Fiy1. This can
happen only if the (¢ + 1)-th search marks z before it scans s,41. From the existence
of e, the tree T contains z. So T contains a tree path @ from r to z. Because e is

9

a forward edge, hcc(siy1) # hee(x). Therefore, hec(r) # hee(z) and @Q is a jump of
Fi41. By Claim 3, Q contains a vertex s € S — {s1,---,s¢}. Notice that = # s because
¢ € Hy — S. Therefore, s is an ancestor of z in T. Consequently, the (¢ + 1)-th search
scans s before or when it marks z. Thus, the (¢ + 1)-th search scans s before it scans
s¢41. Therefore, s;4; should not have been indexed by ¢ + 1, contradicting the indexing
scheme of S. This finishes the proof of case (1) of Claim 4.

Case (2): r = s¢p1. Notice that when the (¢ + 1)-th search scans s¢11, none of
the neighbors of s,4; in G have been marked. So Fi4; includes all edges incident with
sip1 in Gy. Consequently, Fy,---, Fiyy include all edges incident with s,4; in G and
statement 2(a) holds for case (2). This finishes the proof of case (2) of Claim 4 and the
proof of Claim 4.

CLAIM 5. Statement 2(b) holds fori =1t + 1.

To prove the above claim, let T' be the tree of Fyy; that contains s;41 and let r be
the root of T'. Then there are two cases: (1) r # s441 Or (2) 7 = S¢41.

Cases (1): r # si41. Refer to Figure 6(iii) for an illustration of this case. By
definition, s,;4; has a home component and hcc(r) = hce(si41). To prove this case by
contradiction, assume that there is a side edge € = {s¢41,5;} & Fi41 such that t+1> 7
and hce(sepr) # hee(s;). This can happen only if the (¢ + 1)-th search marks s; before
it scans s;41. From the existence of e, the tree T' contains s;. So T' contains a tree path
@ from r to s;. Notice that hece(r) = hee(seq1) # hee(s;). Therefore, Q) is a jump of
Fiy1. Next, let W be the set of vertices that are in both S and Q. Notice that s; € W.
Also, s; is a proper descendant of all vertices in W — {s;}, and the (¢ + 1)-th search
scans W — {s;} before it marks s;. In sum, the (¢ 4 1)-th search scans W — {s;} before
it scans s;41. Then, by the indexing scheme of S, W — {s;} C {s1,---,s:}. By the
assumption of the proof, s; € {sy,---,s;}. Hence, W C {s1,---,5¢}; by Claim 3, this
contradicts the assumption that Q is a jump of Fi4;. This finishes the proof of case (1)
of Claim 5.

Case (2): 7 = s¢q. This case is exactly the same as case (2) of Claim 4. This
finishes the proof of case (2) of Claim 5, the proof of Claim 5, and the proof of the
induction step. 0O

To complete the proof of the main certificate theorem, recall our assumption that H
is not k-vertex connected, while G is k-vertex connected. Then Lemma 2.11 shows that
F, must contain a path P, whose endpoints are in two different connected components
of Hy — S, where S is a subset of V with |S| < k whose deletion disconnects Hy. The
next lemma shows that the path P, cannot exist, using the same argument as in the
proof of Claim 3 in Lemma 2.14, and thus completes the proof of Theorem 2.4.

LEMMA 2.15. The path Py of the second statement of Lemma 2.11 cannot ezist.

Proof. To prove the lemma by contradiction, assume that Pj exists. Let Pr =
vy, ,v,. Refer to Figure 6(i) for an illustration. Because the two endpoints of Py are
in two different connected components of Hy — S, hec(v1) # hec(vg) and the path P
is a jump of Fi. Let W be the set of vertices that are in both P, and S. Let Up be
the set of edges in P; that each have two endpoints in Hy — S. Let U; be the set of
edges in P, that each have one endpoint in W and the other endpoint in Hy — S. Let

10

U, be the set of edges in Py that each have two endpoints in W. Observe that for all
edges {z,y} € Us, hee(z) = hee(y). Next, because W C S = {s1,---, 8.}, by statement
2(a) of Lemma 2.14, the edges in U; cannot be forward edges and hence for all edges
{z,y} € Uy, hee(z) = hee(y). Furthermore, because the edges in U, are side edges, from
statement 2(b) of Lemma 2.14, for all edges {x,y} € Uz, hee(z) = hec(y). In sum, for
all vertices z,y € P, hee(z) = hee(y). In particular, hee(vy) = hee(vy), contradicting
the assumption that Py is a jump. This finishes the proof of lemma 2.15. O

2.4. A generalization of the main certificate theorem. This section gives a
generalization of the main certificate theorem, and discusses its applications.

For two distinct vertices z and y in G, the local connectivity of z and y, denoted
k(z,y), is the maximum number of internally vertex-disjoint paths between z and y in
G. A certificate of local connectivity k for G is a subset E’ of E such that for every two
distinct vertices z and y, «'(z,y) > min{k, x(z,y)} where '(z,y) denotes x(z,y) for
the subgraph (V, E’). A certificate of local connectivity k is said to be sparse if it has
O(kn) edges.

THEOREM 2.16 (THE GENERALIZED CERTIFICATE THEOREM). Let G = (V, E)
be an undirected graph and let n denote the number of vertices. Let k be a positive
integer. Fori = 1,2,---,k, let E; be the edge set of a scan-first search forest in the
graph Gi_y = (V,E — (B4 U---U E;_)). Then Ey U ---U Ey is a certificate of local
connectivity k for G, and this certificate has at most k(n — 1) edges.

Proof. The proof is essentially the same as that of the main certificate theorem.
Let Hj be the subgraph (V,(E, U---U E})), and let k¢(z,y) denote «(z,y) for Hi. To
prove the theorem by contradiction, assume that xx(u,w) < min{k, &(u,w)} for some
two vertices u,w € V with u # w.

Although Lemma 2.11 does not apply now because it supposes that G is k-vertex
connected, we first show that the two statements in Lemma 2.11 hold under the as-
sumption that &¢(u,w) < min{k, k(u,w)} for some two vertices u,w € V with u # w.
By Menger’s theorem, there exist two vertices u/,w’ € V and a set S C V — {u/,w'}
such that (1) |S] = kx(u,w), (2) v’ and w' are in different connected components of
Hi — S, and (3) «’ and w' are in the same connected component of G— S. By properties
(1) and (2), there is a subset S C V with |S| < k such that H; — S is disconnected.
By property (3), there exists an edge e in G — S whose endpoints are in two different
connected components of Hy — S. Clearly, the edge e is not in Hj, and hence e is in
Gr-1 =(V,E—(E,U---UE)_;)). So the two endpoints of e are in the same connected
component of G;_;. Because F} is a scan-first search forest in G_;, the forest Fy has a
spanning tree for the connected component in Gy_; that contains e. Therefore, F} con-
tains a simple tree path P, whose two endpoints are in different connected components
of Hy — 5. This finishes the proof of the two statements in Lemma 2.11.

With the two statements in Lemma 2.11 proven, we can complete the proof of this
theorem by using Lemmas 2.13, 2.14, and 2.15 to show that the above path P; cannot
exist. O

The next corollary is useful for computing the k-separators of a graph. For a
positive integer k, a k-separator of GG is a set S of k vertices such that G — S has more

11

connected components than G.

COROLLARY 2.17. For a positive integer k < n and for all i € {1,---,k—1}, G
and Hy = (V,(E1 U --- U Ey)) have the same i-separators.

Proof. Straightforward by Theorem 2.16. O

Some of the recent algorithmic research on k-connected graphs has focussed on
highly efficient parallel algorithms for finding k-vertex connected components and k-
separators for small k, namely, £ = 2, 3 and 4. Theorem 2.16 and Corollary 2.17,
when combined with Theorem 2.5, yield immediate improvements to several of these
algorithms.

An undirected graph is said to be bridge-connected if for each edge the deletion
of that edge leaves the graph connected. For a bridge-connected graph, Fussell and
Thurimella [16] have given an algorithm for finding an open ear decomposition for each
biconnected component on an O(y/n/logn x /n/logn) mesh of trees architecture in
O(log® n) time. We improve the running time to O(log® n) by first finding a sparse cer-
tificate of local connectivity 2 for the input graph, and then running their algorithm on
the subgraph induced by the certificate. The main bottleneck of the original algorithm
[16] is to compute, for a given spanning tree T of the input graph, the nearest common
ancestor in T of all nontree edges. Note that by executing their algorithm on a sparse
certificate, the worst-case number of nontree edges decreases from 2(n?) to O(n).

THEOREM 2.18. Let G = (V, E) be a bridge-connected graph and let n denote the
number of vertices. An open ear decomposition for each biconnected component of G
can be found on an O(\/n/logn x \/n/logn) mesh of trees architecture in O(log* n)
time.

Fussell, Ramachandran and Thurimella [15] have given an algorithm for computing
the triconnected components of an undirected graph in O(logn) time with a time-
processor product of O((m + n)loglogn). We obtain the following improvement by
first finding a sparse certificate of local connectivity 3 for the input graph, and then
running their algorithm on the subgraph induced by the certificate.

THEOREM 2.19. Let G = (V, E) be an undirected biconnected graph, and let n and
m denote the number of vertices and edges. The 3-vertez connected components of G
can be found on an ARBITRARY-CRCW PRAM in O(logn) time with a time-processor
product of O(m-a(n,m) + n-loglogn).

For an undirected triconnected graph, Kanevsky and Ramachandran [22] have given
an algorithm for finding a compact representation of all the 3-separators. Their algo-
rithm runs in O(log? n) time with a time-processor product of O(n? log?n). We obtain
the following improvement in two steps. First, find a sparse certificate £’ of local con-
nectivity 4 for the input graph G = (V, E). Then, for each vertex v, use the algorithm of
Fussell, Ramachandran and Thurimella [15] to find all the 2-separators of (V, E’) — {v}.

THEOREM 2.20. Let G = (V,E) be an undirected triconnected graph and let n
denote the number of vertices. An O(n?) representation for all the 3-separators of G
can be found on an ARBITRARY-CRCW PRAM in O(logn) time with a time-processor
product of O(n®-loglogn).

The algorithm of Kanevsky and Ramachandran [22] also tests the input graph for

12

4

Subroutine ONLINE CERTIFICATE

Input: the edges of an undirected graph G = (V, E) given one at a time in an arbitrary
order ey, -+, €m.

Output: a sparse certificate F' C E for the k-vertex connectivity of G.

begin
F.=1{;
fori=1tomdo
begin
Let v and w denote the endpoints of e;;
Let k; denote the maximum number of vertex-disjoint paths between v
and w in (V, F);
if k; < k then F := F U {e;} else F remains unchanged;
end
end.

Fia. 2. Computing a sparse certificate online.

4-vertex connectivity in O(log?n) time using O(n?) processors. Note that for test-
ing 4-vertex connectivity, our Theorem 2.6 gives a running time of O(logn) using
4.n-C(n,4n) = O(n*a(n,4n)/log n) processors.

3. An online algorithm for sparse undirected graph certificates and its
parallelization. We first present a sequential online algorithm for finding sparse cer-
tificates for the k-vertex connectivity of undirected graphs. Then we parallelize the
algorithm to obtain a randomized NC algorithm with a complexity independent of .

Let G = (V, E) denote the input undirected graph to our online certificate algo-
rithm. Let n and m denote the numbers of vertices and edges of G. G is given one
edge at a time; the input order ey, -+, e, of the edges is arbitrary. Upon recelving an
edge €;, the online certificate algorithm must decide whether to include e; in the final
certificate F C E. Once an edge is included, it cannot be deleted from F' at a later
step; similarly, if an edge is not included, it cannot be added to F later. Initially, F’ is
empty. Our online algorithm incrementally updates F' by examining each input edge
{v,w} and including {v,w} in F if and only if the subgraph induced by the current
has at most k& — 1 vertex-disjoint paths between v and w.

The detailed description of our online certificate algorithm is given in Figure 2. For
an example, refer to Figure 7. The next lemma shows that the F' output by the online
certificate algorithm is indeed a certificate of k-vertex connectivity.

LEMMA 3.1. If G = (V, E) is k-vertez connected, then the final subgraph (V, F') is
also k-vertez connected.

Proof. To prove the lemma by contradiction, suppose that G is k-vertex connected
but (V, F) is not k-vertex connected. Then, there is a set S of less than k vertices such
that (V, F) — S is disconnected. Let I be a connected component of (V, F') — 5. Since
G — S is connected, G has an edge {v,w} with v € and w € V — (I U S). Because
(V, F) has at most |S| vertex-disjoint paths between v and w and because |S| < k, the

13

online certificate algorithm would have added the edge {v,w} to F when it examined
{v,w}. This contradicts the assumption of the proof. Thus the lemma is true.

Next we prove that the final F has at most 2kn edges by combining the following
lemma with a theorem due to Mader.

LEMMA 3.2. The final subgraph (V, F) does not contain any subgraph that is (k+1)-
vertex connected.

Proof. To prove the lemma by contradiction, suppose that (V, F') contains a (k+1)-
vertex connected subgraph J. Let e; = {v,w} be the edge with the largest index among
all the edges in J. In other words, e; is the last edge added to J by the online certificate
algorithm. Then J — {e;} has k vertex-disjoint paths between v and w because J — {e;}
is k-vertex connected. Therefore, when the algorithm examined e;, it would not have
added e; to F. This contradicts the assumption of the proof and finishes the proof the
lemma. O

THEOREM 3.3 (MADER [5]). For an integer k > 1, if an undirected graph has at
least 2k — 1 vertices and at least (2k — 1)(n — k) + 1 edges, where n denotes the number
of vertices, then it contains a (k + 1)-vertez connected subgraph.

LEMMA 3.4. The final F' has at most 2kn edges.

Proof. If n > 2k — 1, then the lemma follows from Lemma 3.2 and Theorem 3.3. If
n < 2k — 1, then F contains at most n(n — 1)/2 edges, which is less than 2kn. 0O

The next theorem summarizes the discussion of the online certificate algorithm.

THEOREM 3.5. Let G be an n-verter undirected graph. Assume that the edges of
G are given one at a time. Then a certificate for the k-vertex connectivity of G with at
most 2kn edges can be computed on line in O(k?n) time per input edge.

Proof. The correctness of the online certificate algorithm follows from Lemmas 3.1
and 3.4. As for the running time, note that for each edge e;, the algorithm attempts
to find k vertex-disjoint paths between the endpoints of e; in (V, F'). This takes time
proportional to k times the size of (V, F') [14]. Therefore, the running time for examining
one edge is O(k?*n). O

A fast parallel version of the online certificate algorithm can be obtained by a
parallel greedy method as follows. Let Ey = . Fori = 1,---,m, let E; denote the edge
set {e1,€3,---,€;}. Fori = 1,--- m, test in parallel whether the graph (V, Ei_;) has
at least k vertex-disjoint paths between the endpoints of e;. The certificate F' contains
exactly those edges e; that fail the test.

Notice that the main difference in the computations executed by the above parallel
algorithm and the online one is that the maximum number of vertex-disjoint paths
between the endpoints of e; is found in the subgraph (V, E;_;) by the parallel algorithm
and in (V, F) by the online algorithm. The next lemma shows that this difference does
not affect F'.

LEMMA 3.6. The online certificate algorithm and its parallel version compute the
same final F'.

Proof. For t = 1,---,m, let F, denote the F' found by the online algorithm after
it processes e;, and let F denote the empty set. Also, let C, and C, denote the final
F computed by the parallel algorithm and the online algorithm, respectively. The goal

14

Subroutine FIND-H
Input: a digraph G = (V, E) and a vertex z € V with kg(z,v) > k for allv € V —{z}.
Output: a minimum-size subgraph H = (V, E') with kg(z,v) = kfor all v € V — {z}.
begin

Let E’ be obtained from E by removing all incoming edges of z;

Let vy, vq, -+, vn—1 be the vertices in V — {z};
fori=1ton~—1do
begin

Find k internally vertex-disjoint directed paths from z to v; in the sub-
graph (V, E');
Delete from E’ all incoming edges of v; except the k incoming edges in
the k paths just found above;
end
end.

Fig. 3. Computing a subgraph H of Lemma 4.3.

is show that C, = C,. Observe that C, C C, because F;_; C E,; for all t. Thus,
to prove the lemma by contradiction, it suffices to assume that there exists an edge
e; = {v,w} € C, — C,. Then, by definition, there are at least k vertex-disjoint paths
between v and w in (V, E;_1) and there are less than k vertex-disjoint paths between v
and w in (V, F;_;). Therefore, there exists a set S C V — {v,w} with |S| < k such that
(1) v and w are disconnected in (V, F;_;)—S, and (2) there exists an edge e; € E;_1—Fi1
whose endpoints are in two different connected components of (V, F;_1) —S. Notice that
j < i—1because ¢; € E;_;. Moreover, ¢; ¢ F; because e; € F;_, and F; C F;_;. On the
other hand, observe that (V, F;_;) contains less than k vertex-disjoint paths between
the endpoints of e;. Then, because F;_; C Fi_;, (V, F;_1) also contains less than &
vertex-disjoint paths between the endpoints of e;. But then the online algorithm would
have included e; in F;. This contradicts the earlier conclusion that e; ¢ F;. Therefore,
the assumption of the proof is incorrect and the lemma is correct. [

The next theorem summarizes the discussion of the parallelization of the online
certificate algorithm. Let P(n,m) denote the number of processors needed to find a
maximum matching in O(log?n) time with high probability. Currently, the best value
known for P(n,m) is O(m-n>38) [25].

THEOREM 3.7. Given an undirected graph with n vertices and m edges, a certificate
for k-vertex connectivity with at most 2kn edges can be found by a randomized algorithm
in O(log? n) time using m-P(n,m) processors on a CRCW PRAM.

Proof. The correctness of the above parallel algorithm follows from Lemmas 3.6,
3.1, and 3.4. As for the complexity, to test in parallel for the existence of k vertex-
disjoint paths between two vertices, we use the well-known method of transforming this
problem to the maximum matching problem [6]. O

4. A sequential algorithm for small certificates for directed graphs. The
main result of this section is stated in the following theorem.

15

THEOREM 4.1. Let G = (V, E) be a directed graph with n vertices and m edges.
A certificate for the k-vertex connectivity of G with at most 2k*n edges can be found in
O(k-m- max{n, k\/n}) sequential time.

Notice that the running time of our directed graph certificate algorithm is the same
as the best time complexity known for testing directed k-vertex connectivity [17]. In
contrast with certificates for undirected graphs, relatively little is known about certifi-
cates for directed graphs. Ignoring algorithmic issues, to the best of our knowledge, no
O(kn) upper bound is known for the minimum size of a certificate for directed k-vertex
connectivity. In fact, our algorithm gives the smallest bound known for the minimum
size of a certificate. Also, for k > 1, our directed graph certificate algorithm is the best
algorithm known for finding a certificate of size at most n-k°().

Our proof of Theorem 4.1 is based on the next lemma. It allows certain edges of a
vertex to be deleted without affecting the connectivity elsewhere. For a directed graph
G and for every two distinct vertices z,y € G, let kg(z, y) denote the maximum number
of internally vertex-disjoint directed paths from z to y in G.

LEMMA 4.2. Let G = (V, E) be a directed graph. Let z,u,v be vertices in G. Let e
be an incoming edge of u in G. Let H = (V,E—{e}). If ku(z,u) > k and ka(z,v) 2 k,
then kgy(z,v) 2 k.

Proof. To prove the lemma by contradiction, assume that xg(z,v) < k. Then, to
derive a contradiction by Menger’s theorem, it suffices to show that for every vertex
subset S C V — {z,v} with |S| < k, there exists a directed path in H — S from z to v.

Because £g(z,v) > k, G contains k internally vertex-disjoint directed paths Py, - - -, Pk
from z to v. Because ky(z,v) < k, the edge e must be in one of the P;’s. Without loss
of generality, assume that e is in P;. Let L be the subpath of P; from u to v. Note that
L is a directed path in H. Also, note that because the P;’s are internally vertex-disjoint,
P,,---,Pi._; cannot contain e and therefore remain directed paths in H.

There are two cases based on whether L and S intersect.

Case (1): LNS # 0. Note that |S— L| < k—2. Because Py, - - -, Px_; are internally
vertex-disjoint in H, at least one of those P;’s does not contain any vertices from S,
and remains a directed path from z to v in H — S. This is a desired contradiction and
thus completes the proof of case (1).

Case (2): LN S = 0. Note that L is directed path in H — S from u to v. Because
t#(z,u) > k, H contains k internally vertex-disjoint directed paths Q1,---, Q% from z
to u. Because Q1,- -, @ are internally vertex-disjoint and |S| < k — 1, at least some
Q; does not contain any vertices from S. Then Q; remains a directed path from z to u
in H — S. Therefore, the directed path formed by Q; and L is a directed path from 2
to v in H —S. This is a desired contradiction and thus finishes the proof of case (2). O

The next lemma uses Lemma 4.2 to compute an important subset of a desired
certificate for a directed graph. In the lemma, let G = (V, E) be a directed graph with
n vertices and m edges. Let z be a vertex in G.

LEMMA 4.3. Assume that kg(z,v) > k for all v € V — {z}. Then there exists a
subgraph H = (V, E') computable in O(k-m-n) time with the following properties:

1. forallveV —{z}, kp(z,v) =k,

16

2. the indegree of z in H s zero, and

3. for allv € V — {z}, the indegree of v in H is ezactly k.

Note that because of the indegree constraints, H is a minimum-size subgraph with
kg(z,v) =k for allv € V — {z}.

Proof. H can be computed by the algorithm FIND-H given in Figure 3. Note
that deleting the incoming edges of 2z does not affect «(z,v). Then, the correctness
of FIND-H follows directly from repeated applications of Lemma 4.2. As for the time
complexity, each iteration of the do loop takes O(k-m) time [14]. So the total runing
time is O(k-m-n) O

Our directed graph certificate combines the subroutine FIND-H and the classic
k-vertex connectivity algorithm of Even [14]. The certificate algorithm computes a
certificate F' for the input graph G in five steps as follows:

1. Test the k-vertex connectivity of G. If G is not k-vertex connected, then let
F = (and stop; otherwise, continue the computation.

2. Pick k arbitrary vertices z;,---,zx € V. For all z; and z; with ¢z < j, compute
k internally vertex-disjoint directed paths in G from z; to z; and k internally
vertex-disjoint directed paths from z; to z;. Let Ey denote the set of the edges
in all those paths.

3. Let G* be the graph constructed by adding to G a new vertex z and 2k new
edges (z,21),- -, (2,z%) and (21, 2),-- -, (zk, 2)-

4. Use FIND-H to find a subgraph H; = (V U {2}, E;) for G* and z. Symmet-
rically, find a subgraph H, = (V U {z}, E,) for Gt and z with respect to the
reverse edge and path directions.

5. Let the final certificate F be Eq U E; U E, without the edges incident with z.

The next two lemmas show the correctness of the above certificate algorithm.

LEMMA 4.4. If G is k-verter connected, then the subgraph (V, F) computed above
is k-vertex connected.

Proof. Let C = (V,F). Let C* = (V U {z}, Eo U E; U E;). Note that C* is the
graph constructed by adding to C the vertex z and the 2k edges (z,z1), -, (2, z&) and
(z1,2),--+, (2,). Next, because E, U E, is included in C*, by Lemma 4.3, kc+(z, v) =
k and Ko+ (v,2) > k for all v € V. Because Eq is included in C, for all z; and z; with
i < j, ko(zi,z;) > k and wko(zj,x;) > k. Therefore, by the classic argument of Even
for his k-vertex connectivity algorithm, (V, F) is indeed k-vertex connected. [

LEMMA 4.5. |F| < 2k’n.

Proof. If G is not k-vertex connected, then |F| = 0. Otherwise, the upper bound
of |F| follows from the facts that |E;| = |Eq| = kn and |Eo] < k(k—1)(n—2+k). O

The next lemma finishes the proof of Theorem 4.1.

LEMMA 4.6. The above certificate algorithm runs in O(k-m-max{n, k\/n}) time.

Proof. Testing k-vertex connectivity takes O(k-m- max{n,k+/n}) time [14]. Com-
puting Ey takes O(k?-m-min{k, \/n}) time. By Lemma 4.3, computing E; and E; takes
O(k-m-n) time. These three steps dominate the time complexity. Therefore, the total
running time is O(k-m- max{n, k\/n}). O

17

5. Conclusions and open problems. Designing graph search procedures that
are efficient in several major models of computation is an important issue in algorith-
mic graph theory. We have shown that scan-first search can be performed extremely
efficiently in the parallel, the distributed, and the sequential models. Based on this

unusual efficiency, it is worth further research to find other applications for scan-first
search.

We conclude with two open problems concerning graph connectivity. The first is
whether the k-vertex connectivity of an n-vertex directed graph can be tested in k9(n?
sequential time. The second is whether a sparse certificate for the k-vertex connectivity
of an n-vertex undirected graph can be found deterministically in time polylogarithmic
both in k and n, using a number of processors polynomial both in k and n.

Acknowledgements. The authors wish to thank Martin Farach, Hillel Gazit,
Samir Khuller, John Reif, Sandeep Sen, and Eva Tardos for helpful discussions.

REFERENCES

[1] A. AGGARWAL AND R. J. ANDERSON, A random NC algorithm for depth first search, Combina-
torica, 8 (1988), pp. 1-12.

[2] A. AGGARWAL, R. J. ANDERSON, AND M. Y. Kao, Parallel depth-first search in general directed
graphs, SIAM J. Comput., 19 (1990), pp. 397-409. Also appeared in the Proceedings of the
21st ACM Symposium on Theory of Computing, Seattle, Washington, May 15-17, 1989, pages
297-308.

[3] B. AWERBUCH AND D. PELEG, Network synchronization with polylogarithmic overhead, in Pro-

ceedings of the 31th Annual IEEE Symposium on Foundations of Computer Science, 1990,
pp. 514-522.

. BERGE, Graphs, North-Holland, New York, second revised ed., 1985.

. BoLLoBAS, Eztremal Graph Theory, Academic Press, London, 1978.

. BOorODIN, J. vON ZUR GATHEN, AND J. HoPCROFT, Fast parallel matriz and gcd compu-
tations, in Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science, 1982, pp. 65-71.

[7] J. CHERIYAN AND S. N. MAHESHWARI, Finding nonseparating induced cycles and independent

spanning trees in 3-connected graphs, Journal of Algorithms, 9 (1988), pp. 507-537.
[8] J. CHERIYAN AND R. THURIMELLA, Finding sparse spanning subgraphs efficiently. Preprint,

ey oy
=N

2&‘4!——4
O

Aug. 1990.
[9] ———, On determining vertez connectivity, Technical Report UMIACS-TR-90-79 CS-TR-2485,
University of Maryland, College Park, Maryland, June 1990.
[10) ——, Algorithms for parallel k-verter comnectivity and sparse certificates, in Proceedings of

the 23rd Annual ACM Symposium on Theory of Computing, 1991.

[11] R. CoLE AND U. VISHKIN, Approzimate and ezact parallel scheduling with applications to list,
iree and graph problems, in Proceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, 1986, pp. 478-491.

[12] T. H. CorMEN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, The MIT
Press, 1990.

[13] S. EVEN, An algorithm for delermining wheiher the connectivity of a graph is at least k, STAM
J. Comput., 4 (1975), pp. 393-396.

[14] ——, Graph Algorithms, Computer Science Press, 1979.

(15] D. FusseLL, V. RAMACHANDRAN, AND R. THURIMELLA, Finding triconnected components

by local replacements, in Proceedings of the 16th International Colloquium on Automata,
Languages, and Programming, 1989.

18

N

= o > < m

. FUsseLL AND R. THURIMELLA, Successive approzimation in parallel graph algorithms, The-

oretical Comput. Sci., 74 (1990), pp. 19-35.

. GALIL, Finding the vertez connectivity of graphs, SIAM J. Comput., 9 (1980), pp. 197-199.
. GAZIT, An optimal randomized parallel algorithm for finding connected components in a graph,

Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science,
(1986), pp. 492 - 501.

. GAZIT AND G. L. MILLER, An improved parallel algorithm that computes the BFS numbering

of a directed graph, Information Processing Letters, 28 (1988), pp. 61-65.

. HapzIiLACOS, Connectivily requirements for byzantine agreement under restricted types of

failures, Distributed Computing, 2 (1987), pp. 95-103.

. ITAI AND M. RODEH, The multi-tree approach to reliability in distributed networks, Informa-

tion and Computation, 79 (1988), pp. 43-59.

. KANEVSKY AND V. RAMACHANDRAN, Improved algorithms for graph four-connectivity, Jour-

nal of Computer and System Sciences, 42 (1991), pp. 288-306.

. KARP AND V. RAMACHANDRAN, A survey of parallel algorithms for shared-memory machines,

Tech. Rep. UCB/CSD 88/408, Computer Science Division, EECS, University of California
at Berkeley, Mar. 1988. To appear in the Handbook of Theoretical Computer Science by
North-Holland.

. KHULLER AND B. SCHIEBER, Efficient parallel algorithms for testing connectivity and find-

ing disjoint s-t paths in graphs, in Proceedings of the 30th Annual IEEE Symposium on
Foundations of Computer Science, 1989, pp. 288-293.

. MULMULEY, U. V. VAZIRANI, AND U. V. VAZIRANI, Matching is as easy as matriz inversion,

Combinatorica, 7 (1987), pp. 105-114.

. NagamocH!l AND T. IBARAKI, Linear time algorithms for finding k-edge-connected and k-

node-connected spanning subgraphs, Technical Report #89006, Dept. of Applied Mathematics
& Physics, Faculty of Engineering, Kyoto University, 1989. Also, to appear in Algorithmica.

. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146-

160.

19

a r=a a
% 0 ®
«é« b » € b S ¢
=
£ & * &
d e d e d e
Go=G Fy H;
a a a
© (] ®
ﬁv* r=bg o ¢ a‘a
D 4 3
e d e d e
Gi=G—F Fy Hy = FyUFy
a a a
(] (%} 2
b@ o € b@ a7 =¢ (}g‘*
9& @ P L) 5
d e d e d e
G2=G—(F1UF2) F3 Hy=FiUF,UF3

FI1G. 4. An erample illustrating the definitions of Gy, F;, and H; when G is Ks.

home
component

F1G. 5. Illustration of definitions of home components, and of forward, back, and side edges (of vertez

S,‘).

21

home
component V1

of vy

home
component

of r and s;
A

7

)
T)

home
component

of z

home
component

of v,

home
component
of r and s;

component
of s 7

(iii)
FI1G. 6. Proof of the main certificate theorem. (i) Proof of Claim 3 (in Lemma 2.14) and Lemma 2.15.
(ii) Proof of Lemma 2.13 and Claim 4 (in Lemma 2.14). (iii) Proof of Claim § (in Lemma 2.14).

22

F Fe

F1G. 7. Using the online algorithm to find a certificate for 2-verter connectivity. The edge ordering
is e1,€3, -+, e10. F does not contain ez, for ezample, because in Fg = {e1,e2,---,es} there are two
vertez-disjoint paths between the endpoints of eq.

23

