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Motivation

= Raw compute power and bandwidth of GPUs
increasing rapidly

= Move to general-purpose applications on GPU

= Lack of efficient, general data-parallel primitives
and algorithms




Motivation

e Current efficient algorithms either have streaming
access

e 1:1 relationship between input and output element
* Or have small “neighborhood” access

= k:1 relationship between input and output element where
k is a small constant

= Example, image convolution

Motivation

= However interesting problems require more
general access patterns

= Output depends on arbitrary number of inputs

e Stream Compaction
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Motivation

Common scenarios in parallel computing
= Variable output per thread

= Threads want to perform a split — radix sort

“What came before/after me?”

“Where do | start writing my data?”

Scan answers these questions

Scan (aka prefix sum)

e Each element is a sum of all the elements to the
left of it (Exclusive)
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e Each element is a sum of all the elements to the
left of i\and itself (Inclusive)
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Scan - the implementation

e O(n) algorithm — same work complexity as the
serial version

= Space efficient — needs O(n) storage

= Has two stages — reduce and down-sweep

Scan - Reduce Stage
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Scan - Reduce Stage

0 1 2 3 4 5 6 7
|3la[7]ola]1]6]

\\)G'B \)é \)é \) * Work halves each step
s ~d

11\_)%;1

25

* log n steps

o
=
w

b <
~ <€
o <
© <

« O(n) total work

<&
<

Scan - Reduce Stage
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= In place, space efficient
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Scan - Down Sweep Stage
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Scan - Implementation
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Scan - Large Input
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Segmented Scan

e Input - array broken into segments
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e Scan within each segment in parallel

e Qutput
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Segmented Scan - Challenges

e Representing segments

= Efficiently storing and propagating information
about segments

= Scans over all segments in parallel

= Overall work and space complexity should be O(n)
regardless of the number of segments

15

Representing Segments

= Vector of flags: 1 if segment head, O if not
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= Store one flag in a byte striped across 32 words

e Reduces bank conflicts
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Segmented Scan - Implementation

e Similar to Scan

= O(n) space and work complexity

e Has two stages — reduce and down-sweep
= Unique to segmented scan

= Requires an additional flag per element for intermediate
computation

= These flags prevent data movement between segments
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Segmented Scan — Advantages

e Operates in parallel over all the segments

= Good for irregular workload since segments can be
of any length

= Can simulate divide-and-conqguer recursion since
additional segments can be generated
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Primitives - Enumerate

e Input: a true/false vector
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e Output:
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e Useful in stream compact

e Output for each true element is the address for
that element in the compacted array
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Primitives - Distribute

e Input: a vector with segments
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e Qutput: the first element of a segment copied over
all other elements
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Primitives - Split and Segment

= |Input: a vector with true/false elements, possibly
segmented

|3|1|7|0||4|1|6|3| False

= Output: Stable split within each segment — falses
on the left, trues on the right
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Applications — Quicksort

Traditional algorithm GPU unfriendly

Recursive

Subarrays vary in length, unequal workload

Primitives built on segmented scan solve both
problems

= Allow operations on all segments in parallel

= Simulate recursion by generating new segments in each iteration
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Applications - Sparse M-V multiply

= Dense matrix operations are much faster on GPU
than CPU

= However sparse matrix operations on GPU much
slower

e Hard to implement on GPU

= Non-zero entries in row vary in number

23

Applications — Sparse M-V multiply
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Applications - Sparse M-V multiply
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Results - Scan

Packing and Unpacking Flags
Non-sequential memory access
Saving State

Extra \J .
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Results - Sparse M-V Multiply

Input: “raefsky” matrix, 3242 x 3242, 294276
elements

GPU - 215 MFLOPS
OSKI on Pentium 4 - 522 MFLOPS

Most time spent in backward segmented scan
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Results - Sort
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Improved Results Since Publication

= Twice as fast for all variants of scan and sparse
matrix-vector multiply

= More optimizations possible
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Conclusions

e Algorithm and implementation of segmented scan
on GPU

= First implementation of quicksort on GPU
= Primitives appropriate for complex algorithms

= Global data movement, unbalanced workload, recursive
e CUDPP: CUDA Data Parallel Primitives Library

e http://www.gpgpu.org/scan-gpugems3
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