Scan Primitives for GPU
Computing

Shubho Sengupta, Mark Harris™, Yao
Zhang, John Owens

Presented by Mary Fletcher
Slides adapted from authors’ slides

Motivation

= Raw compute power and bandwidth of GPUs
increasing rapidly

= Move to general-purpose applications on GPU

= Lack of efficient, general data-parallel primitives
and algorithms

Motivation

e Current efficient algorithms either have streaming
access

e 1:1 relationship between input and output element
* Or have small “neighborhood” access

= k:1 relationship between input and output element where
k is a small constant

= Example, image convolution

Motivation

= However interesting problems require more
general access patterns

= Output depends on arbitrary number of inputs

e Stream Compaction

B RN ER R

VL

EIEAEIEREN

Motivation

Common scenarios in parallel computing
= Variable output per thread

= Threads want to perform a split — radix sort

“What came before/after me?”

“Where do | start writing my data?”

Scan answers these questions

Scan (aka prefix sum)

e Each element is a sum of all the elements to the
left of it (Exclusive)

RSN R
N
[oR 3\ 4T1t[12]15T16]22] Output

e Each element is a sum of all the elements to the
left of i\and itself (Inclusive)

|3|4|11|11|15|16|22|25| Output

Scan - the implementation

e O(n) algorithm — same work complexity as the
serial version

= Space efficient — needs O(n) storage

= Has two stages — reduce and down-sweep

Scan - Reduce Stage

w

1 2 4 5 5 .
|3|1|7|0|4|1|6|3| = log n steps

&@l &@L &@L 2\31 * Work halves each step
5 9 « O(n) total work
14

Scan - Reduce Stage

0 1 2 3 4 5 6 7
|3la[7]ola]1]6]

\\)G'B \)é \)é \) * Work halves each step
s ~d

11_)%;1

25

* log n steps

o
=
w

b <
~ <€
o <
© <

« O(n) total work

<&
<

Scan - Reduce Stage

0 1 2 3 4 5 6 7
|3|;|7|0|4|1|6|3

* log n steps

* Work halves each step

® AN
\ 4 Y Y \ 4

| 3 | 4 | 7 | 3 | 4 | 5 | 6 | gJ - O(n) total work
7 .,

N Y
|3|4|7|11|4|5|6|§J
;V

[3] 4]l 7]11]4a]5]6]25]

= In place, space efficient

10

Scan - Down Sweep Stage

0 1 2 3 4 5 6 7

|3|4|7|11|4|5|6|25| = log n steps

|3|4|7|11|4|5|6|VJ
_‘é

* Work doubles each step

* O(n) work

’ -

[slaf7fofalalels]

¥ S

7

| | | | | | | | = In place, space efficient
3| 4 7 0 4 5 6 ;J
Y

|3|§|7|3|4|}x1|6|1x€ﬂ \,E/ \1/
Y v Vv % \’t*/
|o|3|4|11|1 |15|16|22|Flnalresult

0 1 2 3 4 5 6 7

11

Scan - Implementation

Grid

Block (0, 0) Block (1, 0)

—

Thread (1,0) | | Thread(0,0) Thread (1, 0)

2
3 | AAA

3 l AL

Image from the
CUDA programming
guide

12

Scan - Large Input

N O P N P B N P N O B N P O N P
DG 9 b5 DG G 9% DG G %

Segmented Scan

e Input - array broken into segments

K AR BN

e Scan within each segment in parallel

e Qutput

[ofslof7[offof2]7]

14

Segmented Scan - Challenges

e Representing segments

= Efficiently storing and propagating information
about segments

= Scans over all segments in parallel

= Overall work and space complexity should be O(n)
regardless of the number of segments

15

Representing Segments

= Vector of flags: 1 if segment head, O if not
EIE B EEREN

[3lef7]2[afr]e[3]

[tlofr]ofofr]ofo]

= Store one flag in a byte striped across 32 words

e Reduces bank conflicts

16

Segmented Scan - Implementation

e Similar to Scan

= O(n) space and work complexity

e Has two stages — reduce and down-sweep
= Unique to segmented scan

= Requires an additional flag per element for intermediate
computation

= These flags prevent data movement between segments

17

Segmented Scan — Advantages

e Operates in parallel over all the segments

= Good for irregular workload since segments can be
of any length

= Can simulate divide-and-conqguer recursion since
additional segments can be generated

18

Primitives - Enumerate

e Input: a true/false vector

Fa\ N
HEAERIATAAEE

e Output:

Coy

nt of

try

\'>

eSS

to the left of each element

o] o [lo]] + [\1/l\2]]\s]] 3 |
\Y

e Useful in stream compact

e Output for each true element is the address for
that element in the compacted array

19

Primitives - Distribute

e Input: a vector with segments

[3la[7f[efofrf[e]s]

e Qutput: the first element of a segment copied over
all other elements

[3l3[sf[efaf4][e]s]

20

10

Primitives - Split and Segment

= |Input: a vector with true/false elements, possibly
segmented

|3|1|7|0||4|1|6|3| False

= Output: Stable split within each segment — falses
on the left, trues on the right

ENCNENES| ES NI ENEN

21

Applications — Quicksort

Traditional algorithm GPU unfriendly

Recursive

Subarrays vary in length, unequal workload

Primitives built on segmented scan solve both
problems

= Allow operations on all segments in parallel

= Simulate recursion by generating new segments in each iteration

22

11

Applications - Sparse M-V multiply

= Dense matrix operations are much faster on GPU
than CPU

= However sparse matrix operations on GPU much
slower

e Hard to implement on GPU

= Non-zero entries in row vary in number

23

Applications — Sparse M-V multiply

Yo _a O b |X

Y.l = |c d e X,

Y2 O O f X5

}) |
v vV v VvV Vv ¥
albflc|d|e]l|f Non-zero elements
v v L L/
0|2(011]|2]|2 Column Index
0/2]|5 Row begin index

24

12

Applications - Sparse M-V multiply
Columnindex (0|2 0|1 |2|2

albl|lc|d]|e fl X |Xo|Xo|Xp| Xy [X[Xy =

axy | bX, [CXq | dX, | ex, || X,

4

axy+ bx, | bx, ot dx; + ex, | dx; + ex,|e Xo
axy+ bx, ot dx; + ex, | X,

25

Results - Scan

Packing and Unpacking Flags
Non-sequential memory access
Saving State

Extra \J .

- computation for
sequential
memory access

Forward Backward Forward Backward

Time (Normalized)

26 Scan Segmented Scan

13

Results - Sparse M-V Multiply

Input: “raefsky” matrix, 3242 x 3242, 294276
elements

GPU - 215 MFLOPS
OSKI on Pentium 4 - 522 MFLOPS

Most time spent in backward segmented scan

27

Results - Sort

| Slow Merge I:

Packing/Unpacking Flags
1 Complex Kernel

_ Slow Merge

Global Block GPU CPU
Radix Sort Quick Sort

Time (Normalized)

28

14

Improved Results Since Publication

= Twice as fast for all variants of scan and sparse
matrix-vector multiply

= More optimizations possible

29

Conclusions

e Algorithm and implementation of segmented scan
on GPU

= First implementation of quicksort on GPU
= Primitives appropriate for complex algorithms

= Global data movement, unbalanced workload, recursive
e CUDPP: CUDA Data Parallel Primitives Library

e http://www.gpgpu.org/scan-gpugems3

30

15

