
1

Scan Primitives for GPU
Computing

Shubho Sengupta, Mark Harris*, Yao

Zhang, John Owens

Presented by Mary Fletcher

Slides adapted from authors’ slides

2

Motivation

• Raw compute power and bandwidth of GPUs

increasing rapidly

• Move to general-purpose applications on GPU

• Lack of efficient, general data-parallel primitives

and algorithms

2

3

Motivation

• Current efficient algorithms either have streaming

access

• 1:1 relationship between input and output element

• Or have small “neighborhood” access

• k:1 relationship between input and output element where

k is a small constant

• Example, image convolution

4

• However interesting problems require more
general access patterns

• Output depends on arbitrary number of inputs

• Stream Compaction

Motivation

30140703

31473

0 Null

3

5

• Common scenarios in parallel computing

• Variable output per thread

• Threads want to perform a split – radix sort

• “What came before/after me?”

• “Where do I start writing my data?”

• Scan answers these questions

Motivation

6

Scan (aka prefix sum)

• Each element is a sum of all the elements to the

left of it (Exclusive)

• Each element is a sum of all the elements to the

left of it and itself (Inclusive)

2216151111430 Output

25221615111143 Output

36140713 Input

4

7

Scan – the implementation

• O(n) algorithm – same work complexity as the

serial version

• Space efficient – needs O(n) storage

• Has two stages – reduce and down-sweep

8

Scan - Reduce Stage

36140713

9574

1411

25

• log n steps

• Work halves each step

• O(n) total work

0 1 2 3 4 5 6 7

5

9

Scan - Reduce Stage

36140713

9574

1411

25

• log n steps

• Work halves each step

• O(n) total work

0 1 2 3 4 5 6 7

10

Scan - Reduce Stage

36140713

96547743

1465411743

2565411743

• log n steps

• Work halves each step

• O(n) total work

• In place, space efficient

0 1 2 3 4 5 6 7

6

11

Scan - Down Sweep Stage

065411743

116540743

1661144703

2216151111430

2565411743 • log n steps

• Work doubles each step

• O(n) work

• In place, space efficient

Final result

36140713

9574

1411

25

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

12

Scan - Implementation

Image from the

CUDA programming

guide

7

13

14

• Input - array broken into segments

• Scan within each segment in parallel

• Output

30 970 710

Segmented Scan

13 427 361

8

15

Segmented Scan - Challenges

• Representing segments

• Efficiently storing and propagating information

about segments

• Scans over all segments in parallel

• Overall work and space complexity should be O(n)

regardless of the number of segments

16

Representing Segments

• Vector of flags: 1 if segment head, 0 if not

• Store one flag in a byte striped across 32 words

• Reduces bank conflicts

13 427 361

13 7 2 4 1 6 3

01 1 0 0 1 0 0

9

17

Segmented Scan – Implementation

• Similar to Scan

• O(n) space and work complexity

• Has two stages – reduce and down-sweep

• Unique to segmented scan

• Requires an additional flag per element for intermediate
computation

• These flags prevent data movement between segments

18

• Operates in parallel over all the segments

• Good for irregular workload since segments can be

of any length

• Can simulate divide-and-conquer recursion since

additional segments can be generated

Segmented Scan – Advantages

10

19

TT T T

10 2 3

Primitives - Enumerate

• Input: a true/false vector

• Output: count of true values to the left of each element

• Useful in stream compact

• Output for each true element is the address for
that element in the compacted array

FFF F

100 3

20

Primitives - Distribute

• Input: a vector with segments

• Output: the first element of a segment copied over

all other elements

713 104 36

333 444 66

11

21

• Input: a vector with true/false elements, possibly

segmented

• Output: Stable split within each segment – falses

on the left, trues on the right

Primitives – Split and Segment

0713 3614

03 71 61 34

False

FTTF TFFT

22

Applications – Quicksort

• Traditional algorithm GPU unfriendly

• Recursive

• Subarrays vary in length, unequal workload

• Primitives built on segmented scan solve both

problems

• Allow operations on all segments in parallel

• Simulate recursion by generating new segments in each iteration

12

23

Applications – Sparse M-V multiply

• Dense matrix operations are much faster on GPU

than CPU

• However sparse matrix operations on GPU much

slower

• Hard to implement on GPU

• Non-zero entries in row vary in number

24

Applications – Sparse M-V multiply

y0

y1

y2

a 0 b

c d e

0 0 f

x0

x1

x2

=

221020 Column Index

520 Row begin index

Non-zero elementsba edc f

13

25

Applications – Sparse M-V multiply

x2x2x1x0x2x0x =ba edc f

bx2ax0 cx0 dx1 ex2 fx2

221020Column Index

dx1 + ex2 ex2cx0+ dx1 + ex2ax0+ bx2 bx2 fx2

fx2cx0+ dx1 + ex2ax0+ bx2

26

Results - Scan

1.1x
slower

3x

slower

4.8 x

slower

Forward Backward Forward Backward

Scan Segmented Scan

T
im

e
 (

N
o
rm

a
li
z
e
d
)

Extra

computation for
sequential

memory access

Packing and Unpacking Flags

Non-sequential memory access
Saving State

Packing and Unpacking Flags

Saving State

14

27

Results – Sparse M-V Multiply

• Input: “raefsky” matrix, 3242 x 3242, 294276

elements

• GPU - 215 MFLOPS

• OSKI on Pentium 4 - 522 MFLOPS

• Most time spent in backward segmented scan

28

Results - Sort

2x

slower

13x

slower

4x

slower

Global Block GPU CPU

Radix Sort Quick Sort

T
im

e
 (

N
o
rm

a
li
z
e
d
)

Slow Merge

Slow Merge

Packing/Unpacking Flags
Complex Kernel

15

29

Improved Results Since Publication

• Twice as fast for all variants of scan and sparse

matrix-vector multiply

• More optimizations possible

30

Conclusions

• Algorithm and implementation of segmented scan

on GPU

• First implementation of quicksort on GPU

• Primitives appropriate for complex algorithms

• Global data movement, unbalanced workload, recursive

• CUDPP: CUDA Data Parallel Primitives Library

• http://www.gpgpu.org/scan-gpugems3

