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Scan registration is an essential subtask when building maps based on range finder data
from mobile robots. The problem is to deduce how the robot has moved between con-
secutive scans, based on the shape of overlapping portions of the scans. This paper pre-
sents a new algorithm for registration of 3D data. The algorithm is a generalization and
improvement of the normal distributions transform �NDT� for 2D data developed by
Biber and Strasser, which allows for accurate registration using a memory-efficient rep-
resentation of the scan surface. A detailed quantitative and qualitative comparison of the
new algorithm with the 3D version of the popular ICP �iterative closest point� algorithm
is presented. Results with actual mine data, some of which were collected with a new
prototype 3D laser scanner, show that the presented algorithm is faster and slightly more
reliable than the standard ICP algorithm for 3D registration, while using a more memory-
efficient scan surface representation. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

The main application considered in this paper is tun-

nel profiling �that is, measuring and building three-

dimensional models� by using a range sensor

mounted on drill rigs that are commonly used for

tunnel excavation �see Figure 1�. Profiling of mine

tunnels is necessary to check that new tunnels have
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the desired shape, to measure the volume of material
removed, to survey old tunnels and investigate
whether they are still safe, and to build three-
dimensional maps that can be used for autonomous
operation of drill rigs and other mining vehicles.

Today’s tools for tunnel profile scanning are ei-
ther very slow or very expensive, and profiling cur-
rently needs to be performed separately from any
other activity in the tunnel. The rock drill industry
has been searching for tools that give a fast and cheap
solution to this problem for a long time.

The long-term goal of this work is to make it pos-
sible for mining vehicles to operate with minimal hu-
man intervention, or completely autonomously. If un-
derground operations could be performed by
autonomous vehicles, the lives and health of thou-
sands of mine workers could be saved in the future.

The paper is structured as follows. Section 2
briefly covers the basic algorithms for scan registra-
tion that provided the foundation for this work. Sec-
tion 3 describes the three-dimensional normal distri-
butions transform, a novel algorithm for registration
of 3D surfaces, and Section 4 presents some variants
and improvements to 3D-NDT. Section 5 gives the re-
sults of experiments performed using scan data from
an underground mine, and shows a detailed com-
parison of the algorithms presented in the paper. Fi-
nally, Section 6 concludes and summarizes the paper.

2. EXISTING SCAN REGISTRATION

ALGORITHMS

Pairwise scan registration is the process of aligning
two overlapping scans, given an estimate of the rela-
tive transformation needed to match one with the
other. When the scans are properly aligned, they are
said to be in registration. Several algorithms for this
purpose exist, the most common and well known of
which is the ICP �iterative closest point� algorithm
�Besl & McKay, 1992; Chen & Medioni, 1992�. Follow-
ing the nomenclature of Besl & McKay, the scan that
serves as the reference is called the model and the scan
that is moved into alignment with the model is called
the data scan.

2.1. ICP

ICP works by iteratively searching for pairs of
nearby points in the two scans and minimizing the
sum of all point-to-point distances.

Two main problems of ICP are that it is point-
based, and as such does not make use of the local
surface shape around each point, and that the
nearest-neighbor search in the central loop is rather
time consuming. One way to speed up the search is
to use an efficient search data structure, such as a
kd-tree with approximate nearest-neighbor search
�Greenspan & Yurick, 2003�, but the search pass is
still the main bottleneck for the algorithm’s running
time.

If the point pairs that are found in the first step
of the algorithm indeed correspond to the same
point on the scanned surface, the computed transfor-
mation will be exact. However, since the closest
point is used as a guess for the corresponding point,
it is desirable to detect and filter bad correspon-
dences and keep only the best ones. One strategy is
to assign different weights to the pairs, as a kind of
“soft” outlier rejection �Rusinkiewicz, 2001�. The
strategy is to assign more weight to point pairs that
are likely to contribute more to the end result and
less weight to pairs that are more likely to be incor-
rect correspondences. One example of a weighting
criterion is to use the relative distance between the
points. The weight w of the correspondence between
points x and y can be set proportional to the point
pair with the largest distance so that

Figure 1. An Atlas Copco drill rig in its natural environ-
ment. The vehicle is equipped with rock drills mounted on
telescopic booms and is used for drilling holes in the rock
face before blasting.
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w = 1 −
�x − y�

max�xi − yj�
. �1�

We found that linear weighting based on distance
did not improve the results on our data. For tunnel
or corridor data, distance-based weighting can in
fact degrade performance. Because most points
along the walls and ceiling will generally be well-
aligned, their influence will overwhelm point pairs
with larger distances, which may correspond to cor-
ners and other features that are important. Therefore
we weighted all point pairs equally.

2.2. 2D-NDT

The normal distributions transform �NDT� is a more
recent method for registration developed for two-
dimensional scan data �Biber & Strasser, 2003�. The
key element in this algorithm is its representation of
the model. Instead of using the individual points of
the model, it is represented by a combination of nor-
mal distributions, describing the probability of find-
ing a surface point at a certain position. The normal
distributions give a piecewise smooth representation
of the model point cloud, with continuous first and
second order derivatives. Using this representation,
it is possible to apply standard numerical optimiza-
tion methods for registration. Numerical optimiza-
tion is a problem that has been studied for centuries,
and fast and reliable methods for optimizing func-
tions such as a sum of normal distributions have
been developed and tested over time. Because the
points in the model are not used directly for match-
ing, there is no need for the computationally expen-
sive nearest-neighbor search that is done in the cen-
tral loop of ICP. Storing the NDT representation of
scans instead of storing the point clouds themselves
also requires much less memory. This is beneficial
for all large maps, where storing the complete point
cloud data is uneconomical. Another application
where a compact map representation is needed is
when using multiple time scales for mapping dy-
namic environments, where multiple copies of the
same area are stored, representing different time
scales. Computing the normal distributions is a
quick one-off task that is done during a single pass
through the points of the model.

The first step of the NDT algorithm is to subdi-
vide the space occupied by the model into regularly
sized cells �squares in the 2D case, or cubes in 3D�.

Then, for each cell b that contains more than some
minimum number of points, the mean vector q of
the points in the cell and the covariance matrix C are
calculated as

q =
1

n
�
k=1

n

xk, �2�

C =
1

n − 1�
k=1

n

�xk − q��xk − q�T, �3�

where xk=1,. . .,n are the points contained in the cell.
The probability that there is a point at position x

in cell b can then be modeled by the normal distri-
bution N�q ,C�. The probability density function
�PDF� is formulated as

p�x� =
1

c
exp�−

�x − q�TC−1�x − q�

2
� , �4�

where q and C are the mean vector and covariance
matrix for the cell that contains point x, and c is a
normalizing constant that can be set to one for prac-
tical purposes. Setting the limit for which cells are
considered occupied to five points per cell is reason-
able, in order to get a sensible covariance matrix. A
2D laser scan and its corresponding normal distribu-
tions are shown in Figure 2.

The parameters to be optimized—that is, the ro-
tation and translation of the current pose estimate—
can be encoded in a vector p. For 2D registration,
there are three transformation parameters to opti-
mize. Let p= �tx , ty ,�� be the parameter vector, where
tx and ty are the translation parameters and � is the
rotation angle. Using counter-clockwise rotation, the
2D transformation function is

T3�p,x� = 	cos � − sin �

sin � cos �

x + 	tx

ty

 . �5�

The algorithm measures the fitness of a particular
pose by evaluating the PDFs at all points of the data
scan. Since optimization problems are generally for-
mulated as minimization problems, the score func-
tion is defined so that good parameters yield a large
negative number.
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Given a set of points X= �x1 , . . . ,xn�, a pose p,
and a transformation function T�p ,x� to transform a
point in space, the score s�p� for the current set of
parameters is defined as

s�p� = − �
k=1

n

p�T�p,xk�� . �6�

In other words, the score is the negated sum of prob-
abilities that the transformed points of the data scan
are actually lying on the model surface.

Given the transformation parameters p, New-
ton’s algorithm can be used to iteratively solve the
equation H�p=−g, where H and g are the Hessian
and gradient of s. The increment �p is added to the
current estimate of the parameters in each iteration,
so that p←p+�p.

For brevity, let

x�  T�p,x� − q . �7�

In other words, x� is the transformed point x, rela-
tive to the center of the point distribution of the cell
to which it belongs. The entries for the gradient of

the score function can be written as

gi =
�s

�pi

= �
k=1

n

xk�
TC−1�xk�

�pi

exp�− xk�
TC−1xk�

2
� . �8�

The entries of the Hessian are

Hij =
�s

�pi�pj

= �
k=1

n

exp�− xk�
TC−1xk�

2
���xk�

TC−1�xk�

�pi
�

��− xk�
TC−1�xk�

�pj
� + xk�

TC−1 �2xk�

�pi�pj

+
�xk�

T

�pj

C−1�xk�

�pi
� .

�9�

The first- and second-order partial derivatives of x�

in Eqs. �8� and �9� depend on the transformation
function. Using the 2D transformation function from
Eq. �5�, the first-order derivative �x�/�pi is given by
column i of the Jacobian matrix

J3 = 	1 0 − x1� sin � − x2� cos �

0 1 x1� cos � − x2� sin �

 , �10�

and the second-order derivatives are

�2x�

�pi�pj

= ��
− x1� cos � + x2� cos �

− x1� sin � − x2� cos �
� if i = j = 3,

�0

0
� otherwise.�

�11�

The NDT algorithm for registering two point sets X

and Y �finding the pose p that moves the data scan X

into registration with the model Y� is given in Algo-
rithm 1.

In recent work carried out independently, a
semi-3D version of NDT was used to register large
high-resolution outdoor scans �Ripperda & Brenner,
2005�. In the work of Ripperda and Brenner, each 3D
scan was divided into several horizontal slices and
2D-NDT was applied on each pair of slices. Using N

Figure 2. A 2D laser scan of part of a room and the NDT
representation describing the surface shape. The original
point cloud is shown with small squares, and the rounded
shapes show the normal distributions of the occupied grid
cells. Each cell is a square with 1 m side length. Brighter
areas represent a higher probability.
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slices, and denoting the score for slice n by sn�p�, the
score function was defined as the sum over all slice
pairs

s�p� = �
n=1

N

sn�p� . �12�

The approach used by Ripperda and Brenner can
only perform registration in the horizontal plane,
and only works under the assumption that the local
coordinate systems of all scans are aligned in the
plane, meaning that the scanner must have the same
orientation at each scan pose. This assumption does
not hold for the majority of mobile robot applica-
tions.

Algorithm 1 Register data scan X with model Y using
NDT

Build cell structure B

for all points yi�Y do

Find the cell bk that contains yi

Store yi in bk

end for

for all cells bi�B do

Y�= �y1� , . . . ,yn��←all points in bi

qi←
1

n
�j=1

n yj�

Ci←covariance of all points in Y�

end for

while not converged do

score←0

g←0

H←0

for all points xi�X do

Find the cell bk that contains T�p ,xi�

xi�←T�p ,xi�

score←score−p�xi�� �see Eq. �4��

Update g �see Eq. �8��

Update H �see Eq. �9��

end for

Solve H�p=−g

p←p+�p

end while

2.3. Registration with Approximants to the

Distance Function

Mitra et al. presented an approach to 3D scan regis-
tration that is similar to NDT �Mitra, Gelfand, Pott-
mann & Guibas, 2004�. The idea behind their algo-
rithm is to describe the model surface implicitly,
using quadratic approximants to the squared dis-
tance function from the target surface, instead of the
normal distributions used by NDT or the original
point cloud data used by ICP. Registration then be-
comes the task of minimizing the sum of the dis-
tance functions when evaluated at the points of the
data scan. Because the approximants used in their
algorithm are second-order approximations of the
local surface shape that are valid within an interval
around each point, and not just at the points where
they are computed, it is possible to use Newton it-
eration to solve the registration problem with this
surface representation, too. One way to use the ap-
proximants is to compute them on demand for each
point in the model, using the normal vector and the
two principal curvature directions at that point. The
normal and principal curvature vectors are com-
puted in a preprocessing step, and the distance func-
tions are computed at each step of the registration
process. The other method presented by the authors
is to subdivide the space occupied by the model into
a grid. For each grid cell �both cells that are occupied
by the surface and empty cells�, a quadratic patch is
fitted to the squared distance to the scan surface. The
second method is quite similar to the NDT versions
described in this paper. For any point in the data
scan, the algorithm queries the cell structure for the
corresponding approximant to the squared distance
function to the surface and uses these values as the
“score” of the current pose.

The squared distance function used by Mitra et
al. is in fact a generalization of the error metrics used
by the most common versions of ICP: the point-to-
point distance mentioned in Section 2.1, and the
point-to-plane distance, which measures the dis-
tance from a point in the data scan to the closest
point on the tangential plane of its closest neighbor
in the model. In their paper, they showed that the
suggested functions lead to more reliable registra-
tion from a larger number of initial pose estimates
than point-to-plane ICP. The algorithm behaves like
point-to-point ICP �stable with regard to the initial
error, but slower� when the scans are far from each
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other, and like point-to-plane ICP �faster, but less
stable with regard to the initial error� when the scans
are almost registered.

The quadratic patches approximate both the po-
sition and the curvature of the surface, while the
normal distributions used in NDT only give an esti-
mate of the position. As long as the surface is
smooth and the cells are small enough so that the
surface is approximately uni-modal within each cell,
quadratic patches are a more descriptive representa-
tion of the surface than the normal distribution of
points within the cell. Mitra et al. use the fitting error
of the quadratic patch to deal with the problem of
choosing a good cell size, by building an octree cell
structure that has small cells where required and
large cells where that is sufficient. Neighboring cells
are merged if a patch fitted to the surface in the
larger cell has an acceptable fitting error. A similar
method has also been implemented for NDT �see
Section 4.3.2�.

For very noisy data, we hypothesize that surface
patches are an inappropriate model of the scan data,
compared to the more context-free normal distribu-
tion representation. The quadratic patches assume
that the scan points are sampled from a piece-wise
smooth surface, which is not always the case. In the
mine mapping application, the walls of the tunnels
are quite rough, and the the sample spacing is at a
larger scale than the surface roughness for areas of
the tunnel far away from the scanner. Using only the
scan points or an approximated surface fitted to the
scan points is likely to lead to misalignment of scans
proportional to the roughness of the walls. The un-
even walls will in this case behave like noisy mea-
surements. Smoothing the surface with the proposed
normal distributions is a good alternative in that
case. Mitra et al. did not report the execution times
of their algorithm, but it would be interesting to
compare the speed and accuracy of their approach to
that of NDT. We did not compare the two algorithms
for the work presented here, because of time con-
straints and the lack of a publicly available imple-
mentation. Though the storage requirements for the
quadratic fit representation are smaller than storing
the point clouds themselves—at least for densely
sampled point clouds—they are somewhat larger
than for NDT, because distance approximants are
stored for all cells �requiring nine parameters per
cell�, and not just the occupied ones.

3. 3D-NDT

The main difference between 2D and 3D registration
with NDT lies in the spatial transformation function
T�p ,x� and its partial derivatives. In two dimensions,
rotation is represented with a single value for the
angle of rotation around the origin, and the most ob-
vious transformation function is the one from Eq. �5�.
General rotation in 3D is more complex. A robust 3D
rotation representation requires both an axis and an
angle. A straightforward way to represent a general
3D transformation is to use seven parameters �three
parameters for the translation, three for the rotation
axis, and one for the rotation angle�. Using a right-
handed coordinate system and counter-clockwise ro-
tations, the transformation of a 3D point x using a pa-
rameter vector p can then be formulated as

T7�p,x� = �
erx

2 + c erxry − srz erxrz + sry

erxry + srz ery
2 + c eryrz − srx

erxrz − sry eryrz + srx erz
2 + c

�x + �
tx

ty

tz
� ,

�13�

where p= �t�r���, t= �tx , ty , tz� is the translation, r
= �rx ,ry ,rz� is the axis of rotation, s=sin �, c=cos �,
e=1−cos �, and � is the rotation angle.

A common way to represent 3D rotation in com-
puter graphics is to use quaternions, which are a gen-
eralization of complex numbers. Quaternions have
favorable properties when used for rotation, most no-
tably when composing several rotations. A normal-
ized quaternion always represents a valid rotation. A
combination of rotation matrices, on the other hand,
may become nonorthogonal as rounding errors in-
crease over time, and using a nonorthogonal transfor-
mation matrix for rotation has undesired effects. The
axis-angle rotation r, � can be represented by the
quaternion cos �+ �rx cos ��i+ �ry cos ��j+ �rz cos ��k.

The partial derivatives that are needed for Eqs.
�8� and �9� when using T7 can be found in the Jacobian
and Hessian matrices �17� and �18�. The Hessian is
presented as a block matrix with 7�7 blocks, where
each block is a three-element vector. Similarly to Eq.
�7�, define

x�  T7�p,x� − q , �14�

where x is a 3D scan point, q is the mean vector of the
cell in which it lies, and p is a vector of transformation
parameters. Then
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�x�

�pi

= the ith column of J7, �15�

�2x�

�pi�pj

= Hij, �16�

J7 = �
1 0 0

0 1 0

0 0 1

e�2rxx1 + ryx2 + rzx3� eryx1 − sx3 erzx1 + sx2

erxx2 + sx3 e�rxx1 + 2ryx2 + rzx3� erzx2 − sx1

erxx3 − sx2 eryx3 + sx1 e�rxx1 + ryx2 + 2rzx3�

sA − cB sC − cD sE − cF

�
T

�17�

A = �rx
2 − 1�x1 + rxryx2 + rxrzx3, B = rzx2 − ryx3,

C = rxryx1 + �ry
2 − 1�x2 + ryrzx3, D = − rzx1 + rxx3,

E = rxrzx1 + ryrzx2 + �rz
2 − 1�x3, F = ryx1 − rxx2

H7 = �
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 a b c d

0 0 0 b e f g

0 0 0 c f h i

0 0 0 d g i j

� , �18�

a = �
2ex1

0

0
�, b = �

ex2

ex1

0
�, c = �

ex3

0

ex1
� ,

d = �
s�2rxx1 + ryx2 + rzx3�

sryx1 − cx3

srzx1 + cx2
� ,

e = �
0

2ex2

0
�, f = �

0

ex3

ex2
�, g = �

srxx2 + cx3

s�rxx1 + 2ryx2 + rzx3�

srzx2 − cx1
� ,

h = �
0

0

2ex3
�, i = �

srxx3 − cx2

sryx3 + cx1

s�rxx1 + ryx2 + 2rzx3�
� ,

Figure 3. The probability functions used by 3D-NDT for
a tunnel section. Brighter, denser parts represent higher
probabilities. The cells have a side length of 1 m.
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j = �
cA + sB

cC + sD

cE + sF
� .

In �17� and �18�, xn denotes the scalar nth component
of the 3D vector xk. Figure 3 illustrates the 3D normal
distributions for a mine tunnel scan.

The equations above were implemented for the
experiments in Section 5. However, the angle param-
eter in the seven-element parameter vector is redun-
dant. The angle can also be encoded implicitly in the
three axis parameters, so that the length of the rota-
tion axis corresponds to the angle of rotation, instead
of maintaining a normalized rotation axis separately.
In that case, only six parameters are needed.

4. ALTERNATIVE METHODS IMPLEMENTED

Several choices need to be made for a practical imple-
mentation of 3D-NDT. This section describes differ-
ent methods and parameters that were tested, and
their influence on the basic algorithm.

4.1. Sampling Method

When using 3D-NDT, the model is converted to a set
of normal distributions. The points of the data scan
are then aligned to these functions. Usually, a large
number of scan points are redundant for the pur-
pose of describing the scanned surface shape. There-
fore, it is normally desirable to subsample the data
scan in order to improve running time. In many
cases, not least when scanning in corridors and tun-
nels, as well as in unstructured outdoor environ-
ments, the distribution of points is very much
denser near the scanner location than farther out. If
points are sampled in a uniformly random manner,
the sampled subset will have a similar distribution.
Consequently, parts that are further from the scan-
ner contribute less to the registration. This is not spe-
cific to NDT, but is common to all point-based reg-
istration methods.

Spatially distributed sampling is a sensible alter-
native method, that is, making sure that the spatial
distribution of points in the subsample is as even as
possible. This can be done by grouping the points
into equally sized cells, similar to what is done when
the normal distributions are generated for the
model. Then, a number of points are drawn from

each cell. If the distribution of cells is adequate, this
strategy will give an even distribution of points.

It is also possible to implement subsampling
methods that consider the normals as well as posi-
tions of points, either making the distribution of nor-
mals as spread out as possible or primarily choosing
points with “unusual” normals �Rusinkiewicz,
2001�. The normal at each surface point must then be
computed from a sufficient number of its neighbors.
Gelfand et al. developed an improved sampling
method for ICP, mainly for cases when the data con-
sist of mostly planar regions with a few important
“lock and key” features �Gelfand, Ikemoto, Rusink-
iewicz & Levoy, 2003�. Such data are notoriously dif-
ficult to register correctly, since the scans can “slide”
along the planar regions without any big changes in
the error function. The stable sampling method of
Gelfand et al. requires that normals are computed
for all sample points. They reported that the algo-
rithm takes about three times longer to execute than
ICP with uniform subsampling. In the work covered
by this paper, point clouds without normal or con-
nectivity information have been used, so these kinds
of sampling methods have not been investigated in
detail. Though it was not tested, we believe that
most of the mine tunnel scans do not have the kind
of shape that the stable ICP sampling method was
designed for. While many of the scan pairs used in
Section 5 are difficult to register for the same rea-
sons, namely that the large-scale features are not
enough for accurate registration, the important
small-scale features are not generally as distinct as in
the incised plane data sets used by Gelfand et al.,
but are more evenly distributed over the rough sur-
face and have characteristics similar to Gaussian
noise.

4.2. Cell Size

Choosing a good cell size is important when using
NDT. Any feature that is much smaller then the size
of a cell will be blurred out by the PDF that de-
scribes the local surface shape around it. Choosing a
cell size that is too large therefore often leads to less
accurate registration. On the other hand, the region
of influence of a cell only extends as far as its bound-
aries. That is, the cell will only contribute to the
score function for scan points within its bounds. The
consequence of this is that if the cells are too small,
the two scans must be close together before registra-
tion for the algorithm to succeed. Using smaller cells
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also requires more memory. The optimal size and
distribution of cells depend on the shape of the in-
put data and on the application.

4.3. Discretization Methods

Using a fixed lattice of square or cubic cells burdens
the user with the task of choosing a good cell size. A
more adaptive cell structure would be preferable, us-
ing finer subdivision in places where a single normal
distribution cannot describe the surface satisfyingly.
This section presents a number of alternative meth-
ods for handling the cells and their PDFs.

4.3.1. Fixed Subdivision

The benefit of using a fixed lattice of cells is that the
overhead for initializing the cell structure is very
small. Only one set of PDF parameters needs to be
computed for each cell, and the positioning of each
cell is straightforward. Even more important for the
performance of the algorithm is that point-to-cell
look-up is also a very quick operation that can be
done in constant time, as the cells can be stored in a
simple array.

4.3.2. Octree Subdivision

An octree is a tree structure that can be used to store
a hierarchical discretization of 3D space. In an oc-
tree, each node represents a bounded partition of the
space. Each internal node has eight children that
represent congruent and non-overlapping subdivi-
sions of the space partition that corresponds to their
parent node. When creating an octree, the root node
is sized to encompass the whole model. The tree is
then built recursively, splitting all nodes containing
more than a threshold number of points. All data
points are contained in the leaf nodes of the octree.

The “octree” version of 3D-NDT starts with
fixed regular cells, as described before, with the dif-
ference that each cell is the root node of an octree.
Each cell in which the spread of the distribution is
larger than a certain threshold is then recursively
split, thus making a forest of octrees. It is important
for the efficiency of the algorithm that the point-to-
cell look-up is fast, and this is the main reason why
a forest of octrees was implemented, rather than
having a single octree with a root node that spans
the whole scan. For many types of scan data, a rea-
sonable cell size can be specified, so that only a few

cells in parts where the scan surface is particularly
uneven need to be split. Thus, for most points, find-
ing the correct cell only needs a single array access,
while traversing a large octree once for each point
would take more time. Using a forest gives a very
slight increase in memory consumption, since a few
unnecessary cells need to be stored, but the effect of
this is negligible.

When traversing the cell structure looking for
the corresponding cell to a point in the data scan, the
leaf node that contains the point is chosen and its
PDF is used to compute the score function.

4.3.3. Additive Subdivision

Using octree subdivision gives a better representa-
tion of the surface shape in areas where large cells
would hide many details, while keeping large cells
where the surface is largely planar and further sub-
division is unnecessary. However, the problem that
small cells have a smaller region of influence re-
mains: if corresponding points of the two scans are
not within the same cell, the extra fidelity is of no
use.

A slight change to the octree subdivision scheme
can mitigate this limitation. Instead of using only
one leaf of the octrees, each point from the data scan
has its score function evaluated for all of the distri-
butions in the leaf cells. This effectively increases the
support size of the leaf cells to that of their root cell,
without sacrificing the extra refinement of the sur-
face description that they give. This is illustrated in
Figure 4.

4.3.4. Iterative Subdivision

Another option is simply to perform a number of
NDT runs with successively finer cell resolution, so
that the start pose for each iteration other than the
first one is the end pose of the previous run. The first
runs are good for bringing badly aligned scans
closer together, and later runs improve the rough
initial match.

If the different cell structures are computed from
the smallest cell size to the largest and the cell sizes
are changed by a factor 2 in each iteration, the larger
cells do not need to be computed from scratch, but
can be updated efficiently using the data from their
subcells. This method is a potential improvement to
how the implementation shown in Section 5.2 was
done.
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During the preparation of this paper, Takeuchi
and Tsubouchi presented another way of using NDT
for 3D scan registration �Takeuchi & Tsubouchi,
2006�. Their implementation is rather similar to the
version described in this paper in that they also use
an iterative subdivision scheme similar to that de-
scribed here. An important difference is that they
used smaller cells in the space that is near the sensor
location and larger cells farther away in the early
iterations, and used only the smaller size in the later
iterations, when the scans were almost aligned. The
reasoning behind this is that error in the rotation
estimate caused larger displacements further from
the sensor location, so larger cells are needed there
to make sure that more points from the data scan are
used. The linked cells strategy described in Section
4.3.5 is another solution to the same problem. Takeu-
chi and Tsubouchi tested their algorithm on data
from a computer lab with good results, though they
did not make a direct comparison of their algorithm
with other registration algorithms.

4.3.5. Linked Cells and Infinite Outer Bounds

Using the discretization methods described so far,
points from the data scan lying in unoccupied cells
are discarded, thus rendering large parts of the input
space “dead.” Instead of doing so, the PDF from the
closest occupied cell can be used for those points.

This increases the region of influence of cells and is
illustrated in Figure 5. Even though the value of the
PDF of many cells is almost zero outside the cell
bounds, so that it makes no substantial contribution
to the score anyway, for cells with a very elongated
point distribution, the influence outside the cell can
also make a difference.

The same idea can also be applied to points fall-
ing outside of the cell lattice altogether. The score for
those points can be computed using the closest cell
on the edge of the lattice, so that the outer cells in
effect have infinite outer bounds. However, doing so
introduces a certain “drag” bias, as points from non-
overlapping regions of the data scan will be at-
tracted to border regions of the model.

Linked cells can be implemented either by let-
ting each cell store a pointer to the nearest occupied
cell, or by storing only occupied cells and putting
them in a kd-tree. The latter should be preferable if
there are many unoccupied cells.

5. EXPERIMENTS

This section covers experiments performed with un-
derground mine data to compare the performance of
different varieties of 3D-NDT and ICP.

Figure 4. Comparing octree and additive subdivision. A
subdivided grid cell is shown on the left, and the tree
structure is shown on the right. The PDF of cell a has a
large spread, because the points within the cell are not
aligned along a planar region. Therefore it is split, and the
PDFs of eight subregions b– i are computed instead. Point
x is within cell a, and, more specifically, within subcell g.
Using octree subdivision, x’s contribution to the score
function is computed from g alone. Using additive subdi-
vision, the score is a sum computed from nodes b– i. In
this example, nodes b–e are empty and will not add any-
thing to the score.

Figure 5. Matching two 2D scans of a tunnel section. The
dotted scan is being registered to the solid scan. Occupied
cells are shaded. If linked cells are not used, the parts of
the scan that are in unshaded cells will be skipped. Other-
wise the linked cell �shown with arrows� will be used. If
using infinite outer bounds, the outer cells extend as
shown with dashed lines.
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There are many parameters that can be changed,
both for ICP and 3D-NDT. To avoid a combinatorial
explosion in the number of possibilities, a default
“baseline” combination of variants was chosen that
incorporates the following features:

1. ICP parameters

• Euclidean point-to-point distance error
metric,

• outlier rejection using a 1 m fixed distance
threshold,

• least squares optimization �Besl & McKay,
1992�,

• approximate kd-tree search structure with
10 points per leaf node in the tree �to mini-
mize the amount of back-tracking needed�
and 1 cm error bound �for each search, a
point that is no more than 1 cm from the
true nearest neighbor is returned�,

• constant weighting of point pairs.

2. NDT parameters

• fixed cells with 1 m side length,

• Newton’s method with line search for op-
timization, with a maximum step length of
0.05 ���p � =0.05� so that the maximum
change in the pose vector is 5 cm or
0.05 rad at each iteration,

• neither linked cells nor infinite outer
bounds.

3. Common parameters

• convergence threshold when the change of
�p� is less than 0.0001.

The times reported in this paper include all required
preprocessing: creating a kd-tree �for ICP�, building
the cell structure and computing all PDFs �for NDT�,
and subsampling the data scan �for both algorithms�.

Moderate effort was made to optimize the effi-
ciency of the programs. The algorithms were imple-
mented in C++. The ICP implementation uses the
quite efficient approximate nearest neighbor library
ANN. The numerical optimization code used in 3D-
NDT makes use of the C linear algebra library new-
mat. This library claims to be most efficient for large
matrices, but the matrices involved in the computa-
tions for 3D-NDT are no larger than 7�7. It is likely
that the numerical optimization can be performed

faster. The experiments were run on a computer with
an AMD Athlon processor running at 1950 MHz and
512 MB of memory.

5.1. Data

Three mine data sets were used in the comparison
and evaluation of the registration algorithms. They
were collected in the Kvarntorp mine, south of Öre-
bro in Sweden. This mine is no longer in production,
but was once used to mine sandstone. The mine con-
sists of more than 40 km of tunnels, all in one plane.
Parts of the mine are currently used as archives and
storage facilities, while others are used as a test bed
for mining equipment.

Because of the natural layers of sandstone, the
tunnels have a rather characteristic shape, with flat
ceilings and relatively straight walls. Even though
the floor and ceiling are flat compared to many other
mines and natural environments, the unevenness of
the floor makes a wheeled vehicle tilt considerably
while driving over it. The roughness is comparable
to that of a gravel road, and if scans were being reg-
istered with only three degrees of freedom �disre-
garding tilt and changes in floor height�, there
would be large discrepancies between many scans.
Figure 6 shows a photo from one of the tunnels.

The JUNCTION data set �Figure 7� consists of two
scans from the end section of a tunnel. At the far end
of the tunnel, there is a flat cast concrete structure,
and on one of the side walls there is a passage to a
neighboring tunnel. Both the end face and this pas-
sage are salient and large-scale features. These two
scans were taken from the same pose, and only dif-
fer in resolution. In other words, the ground truth
pose for the data scan with respect to the model is
t=0, R= ��0,0 ,1� ,0�. The data scan contains 139 642
points and the model contains 72 417 points.

The TUNNEL data set �Figure 8� was collected fur-
ther down the same tunnel. Two scans were taken

Figure 6. One of the tunnels in the Kvarntorp mine.
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approximately 4 m apart. The scans contain around
27 500 points each. The scans in this set have much
less obvious features. The only large-scale features—
the walls and ceiling—are not enough to give accu-
rate registration, as the scans can “slide” along the
direction of the tunnel, and still have a large amount
of overlap and close proximity of all surfaces, which
are the usual criteria for a good match. The small-
scale features, such as bumps on the walls and light
fixtures in the ceiling, need to be matched in order to
properly register these scans. For these two scans,
the ground truth was determined visually, by run-
ning a number of registration attempts and picking

one that looked like the closest match. When collect-
ing this data set, we tried to measure the relative
displacement between the scans using a so-called to-
tal station �that is, a tripod mounted laser measure-
ment device�. The total station can be seen in Figure
6 �on a yellow tripod near the left wall�. Three points
were marked on the scanner, and the total station
was set up at a fixed position further down the tun-
nel. The distances to the three points on the scanner
were measured from each scanner pose, and the
transformation from each scanner pose to the next
was determined from these data. The resulting mea-
surements were not accurate enough to use as a
ground truth measurement, but they were good
enough to provide an initial estimate for the regis-
tration algorithms.

Both the JUNCTION and TUNNEL data sets were
collected with an early prototype of a 3D laser range
finder, built by Optab Optronikinnovation AB. The
Optab scanner is based on a modulated infra-red la-
ser that is projected onto a rotating mirror. The range
is measured by investigating the phase-shift of the
reflected laser beam. The configuration of the scan-
ner was changed between the two data sets. For the
TUNNEL data set, the scanner was oriented so that
the first scan plane was horizontal. The scanner was
then tilted upwards. This is a so-called pitching
scan. Because of this configuration, the floor is not
visible in the TUNNEL data. For the JUNCTION data
set, the scanner was mounted so that each scan
plane was vertical, and the scanner was rotated
around the vertical axis. This is known as a yawing
scan �Wulf & Wagner, 2003�. The Optab scanner is
shown in Figure 9.

A larger data set, KVARNTORP-LOOP, was col-
lected at a later date, using a SICK LMS 200 laser
scanner mounted on our mobile robot platform
called Tjorven �shown in Figure 10�. The SICK scan-
ner is a 2D scanner, but was mounted on a pan-tilt
unit in order to collect 3D data sets. For the
KVARNTORP-LOOP data set, the robot was driven
manually along two tunnels, forming a loop, with
3D scans being taken about 4 to 5 m apart. The ro-
bot was kept stationary during the scans, so that all
points in each scan were taken at the same physical
location. The first 65 scans from this set are shown in
Figure 11. The scans contain around 95 000 points
each. The scanner on Tjorven is configured for pitch-
ing scans.

The scans of the KVARNTORP-LOOP data set are
more accurate than those of the JUNCTION and TUN-

Figure 7. The data scan scan from the JUNCTION data set,
seen from above.

Figure 8. The two scans of the TUNNEL data set. The free-
floating points in the middle of the tunnel are noise.
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NEL sets, which show some disturbances due to the
somewhat unstable experimental state of the scan-
ner.

5.2. Results

5.2.1. Results with Single Scan Pairs

To test the performance of the algorithms with re-
spect to different parameter values the two scan

pairs of the JUNCTION and TUNNEL data sets were
used. A number of registration attempts were run
from a set of start poses evenly distributed around
the ground truth pose. The magnitudes of the trans-
lation and rotation components of the initial pose
estimates were kept constant for each batch of tests,
but the directions were different for each run. In
other words, the translation displacement for each
test run was a point on a sphere with a fixed radius.
The added rotation error had its axis pointing in a
random direction for each run and the angle �that is,
the amount of rotation� was fixed for each batch of
runs. The pose offsets were taken from a set of
points evenly distributed on the unit sphere. The
translation error of the initial pose estimate is de-
noted et and the rotation error is denoted er.

For these experiments, the following settings
were used in the “baseline” setup:

• 10% of the points were sampled from the data
scan with even spatial distribution,

• no subsampling of the model �all points were
used�,

Figure 9. The Optab scanner lab prototype.

Figure 10. Tjorven, our mobile robot platform. In addi-
tion to the laser scanner used for 3D mapping, it is also
equipped with a digital camera, an array of sonars, an
omnidirectional camera �not shown here�, and a differen-
tial GPS system.

Figure 11. The first 65 scans from the KVARNTORP-LOOP

data set, seen from above, after registration with manual
intervention where the registration algorithms failed and
for the scans without odometry information. The map
measures approximately 55 m by 155 m, and is around
6 m high. The traversed distance around the loop is
around 330 m. The top left corner shows the accumulated
error after coming back to a previously visited location
after completing the loop. The error there is about 2.7 m.
To the right of this section is a clear “offset” in the tunnel.
This is not a registration error, but shows the actual shape
of the tunnel. That shape is probably due to a mistake on
part of the excavation crew when they were trying to
physically “close the loop.”
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• initial translation error of 1 m,

• initial rotation error of 0.1 rad,

• 100 tests for each set of parameters.

Table I shows the parameters that were manipulated
in the experiment. The results of these experiments
are presented with box plots, with a line connecting
the median values of each set of runs. The box ex-
tends to the upper and lower quartile of the data, and
the “whiskers” extend to the maximum and mini-
mum values of the sequence. The limits for what is
considered a “good match” are shown with dashed
horizontal lines. These are not hard limits, but were
chosen according to what was considered acceptable
for the application and the accuracy with which the
ground truth pose could be estimated. If only the me-
dian registration errors were shown, 3D-NDT would
appear to be far superior to ICP in all cases. Even
though the median error was lower when using 3D-
NDT for scan registration, there were problems with
some outlier poses for which the algorithm did not
converge. The box plots show a more complete de-
scription of the distribution of the results, showing

both how the majority of the runs behaved and the
extreme values.

On a similar note, the mean squared point-to-
point error is commonly used as a measure of the
quality of registration. We did not include these
numbers here, as they are not an objective measure
of the registration accuracy. The mean squared
point-to-point error is exactly the objective function
that ICP tries to minimize, and, if that were indeed
the best measure of registration accuracy, ICP would
be an optimal algorithm and would never fail. We
chose instead to determine a ground truth pose for
each scan pair and measure the deviance from that
pose, with some allowance for what is a close
enough match, as described above. The ground truth
pose for the JUNCTION data set was zero rotation and
translation, since the scanner did not move between
the two scans. For the TUNNEL data set the ground
truth was determined by running and inspecting a
number of registration attempts, and an average of
the best matches was used as the ground truth pose.

Sample ratio: To test the sensitivity to the num-
ber of samples being used for registration, a number

Figure 12. Sample ratio tests for the JUNCTION set.
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of test sequences were run with increasing numbers
of samples. From 0.1% up to 50% of the points in the
data scan were sampled and used for matching to-
gether with all of the points in the model. Figures 12
and 13 show the results of tests where all other pa-
rameters were set according to the baseline setup.

The conclusion is that ICP is less error-prone
when using very low sample ratios �less than a few
percent�, and that the execution time is around three
times longer than for 3D-NDT. Even though 3D-
NDT succeeds at registering the two scans from
most of the start poses tried, it fails for some poses
when using a very low sample ratio. Around 10% of
the total number of points is enough to give reliable
results for the JUNCTION data set when the initial er-
ror is moderate. The median error is lower for 3D-
NDT in all cases with larger sampling ratios, but
there are some outlier cases where the error is much
larger. There were failed registrations at up to 12%
sample ratio. ICP gives acceptable results down to
around 8% for the same data and initial error.

As can be seen from Figure 13, the TUNNEL data
set is much more challenging than the JUNCTION set,

both for ICP and 3D-NDT. The median error is still
smaller for 3D-NDT than for ICP, but, with an initial
translation error of 1 m and a rotation error of
0.1 rad, the algorithms fail to register the scans from
a rather large number of the initial pose estimates.

Figure 12 shows that the rotation error actually
increases for ICP as the sample ratio goes above 20%
for the JUNCTION data set. The reason for this could
be that more of the scan noise is used, in other
words, overfitting. A similar effect can be seen for
3D-NDT on the TUNNEL data set in Figure 13. Be-
cause the two scans in this data set are only partially
overlapping, ICP tends to move the source scan a bit
too much towards the center of the target scan to
maximize the amount of overlap. The pose that 3D-
NDT converges to when using a high sample ratio is
similar to the one that ICP converges to.

If both the data scan and the model are sub-
sampled using the same ratio, and not just the data
scan, the required sample ratio is much higher.

Sampling method: Spatially distributed sam-
pling is generally more robust than uniformly ran-
dom sampling. The results of using a uniform prob-

Figure 13. Sample ratio tests for the TUNNEL set, using spatially distributed sampling.
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ability distribution when selecting the subset for
matching is shown in Figure 14. As discussed earlier,
using uniformly random sampling will preserve the
general distribution of points in the scan, and that is
not optimal for tunnel scans, where the concentra-
tion of points is much higher near the sensor loca-
tion than further away.

Comparing Figures 13 and 14, it can be seen that
the registration errors are larger when using uniform

random sampling for 3D-NDT. Using spatially dis-
tributed sampling with ICP with this data meant
that more non-overlapping points were selected.
Therefore, it makes sense not to use this sampling
method for ICP. For 3D-NDT, the interquartile range
was rather large for both sampling methods, but the
median translation and rotation errors were signifi-
cantly lower when using spatially distributed sam-
pling, because the more evenly distributed sampling
gives a more representative view of the scan. For the
JUNCTION set, uniformly random sampling works al-
most equally well compared to spatially distributed
sampling, however, since the overlap of the data
scan and model is 100%.

Cell size: To show the effect of different cell
sizes for 3D-NDT, registration with sizes ranging
from 0.5 m up to 3 m are shown in Figure 15. Each
box plot shows the results of 50 test runs.

The running times are shorter when the cells are
larger �and fewer�. The translation error is at its
smallest within a certain cell size range, and in-
creases with both smaller and larger cells. For

Figure 14. Sample ratio tests for the TUNNEL set with uniform random subsampling instead of spatially distributed
selection. The other settings are the same as in Figure 13.

Table I. The parameters that were manipulated for ICP
and NDT on the JUNCTION and TUNNEL and data sets.

Parameter ICP 3D-NDT

Sample ratio • •

Sampling method • •

Initial translation error • •

Initial rotation error • •

Cell size – •

Discretization method – •
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smaller cells, the algorithm fails to register the two
scans from many start poses, because of small re-
gions of influence. This can be seen in Figure 15,
where the upper quartile of the tests with JUNCTION

and 0.75 m cells is comfortably below the acceptable
threshold, but the error of the worst few runs is
much larger. This result is due to the fact that, de-
pending on the direction of the initial pose error, for
some test runs the small cells will not be able to
“attract” enough points. For larger cells, the accu-
racy decreases because of loss of surface shape infor-
mation. Based on these results, a cell size of around
1 to 2 m is most suitable for the given environment.

Because simple arrays were used for cell storage
�storing both occupied and unoccupied cells�,
memory usage increased drastically for the tests
with the smallest cells. This also led to slower per-
formance because of memory swapping, particularly
for the JUNCTION data set. The times reported here
were measured with the ANSI C clock�� function,
which only measures CPU time. The actual time was
larger for the tests with 0.5 m cell size. A straightfor-

ward way to fix this problem would be to store the
cells in a data type more suitable for sparsely popu-
lated data �for example, run-length encoded lists�.
For all other tests, where the NDT cells were not
pathologically small, memory allocation was not a
problem and the reported time and wall clock time
were the same.

Initial error: The sensitivity of the algorithms
with respect to the amount of error in the initial pose
estimate was also tested, both for the translational
and rotational components. The results are shown in
Figures 16 and 17. For the translation error tests, the
initial rotation error was set to zero, and the transla-
tion error was set to zero when testing the sensitivity
to the initial rotation error.

Again, 3D-NDT shows a smaller median error in
most cases, although failed registrations start to oc-
cur at smaller values for the initial error than is the
case for ICP. The reason that the median error is
smaller for 3D-NDT is probably because the PDFs
are a better surface description than point clouds,
which have no information about the surface be-

Figure 15. Comparing the effect of 3D-NDT registration with different cell sizes, using fixed cells. Each test sequence is
50 runs. The initial error is �et�=1 and �er�=0.1.

Magnusson et al.: Scan Registration for Autonomous Mining Vehicles Using 3D-NDT • 819

Journal of Field Robotics DOI 10.1002/rob



tween points. Without infinite outer bounds, fewer
points from the data scan are used when the initial
pose error is large. With the baseline settings for ICP,
an initial translation error of up to 2.5 m �when the
error in rotation is zero� or a rotation error of up to
0.35 rad �when the translation error is zero� can be
handled reliably for the JUNCTION data set. Using
3D-NDT, failed registrations start to occur at 2 m
translation error or 0.3 rad rotation error. The results
for the TUNNEL set show the same tendencies.

The time taken by ICP increases with the mag-
nitude of the initial pose error, while 3D-NDT takes
about the same amount of time for all of the runs.

Discretization methods: Test results for 3D-
NDT with different discretization methods on the
JUNCTION and TUNNEL data sets are shown in Figure
18. For these tests, cell sizes varying between 2 and
1 m were used. The results for fixed 2 m cells are
shown for comparison. The fixed cell plots are la-
belled F �without infinite bounds� and FI �with infi-
nite bounds�. With the initial error set according to
the baseline setup, all methods performed equally

well on the JUNCTION set. To show the differences in
the methods’ efficiency, the initial pose error was in-
creased a little for the tests on the JUNCTION set so
that er=0.2. The different discretization methods are
described in Section 4.3.

• Octree subdivision �O, OI� did not lead to a
noticeable improvement for the JUNCTION

data set. A probable reason for this is that the
added detail was not needed for this data set,
as it has clear and large features. Octree sub-
division did improve the result for the TUN-

NEL data set, approximately halving the me-
dian error compared to using fixed cells.

• Additive octree subdivision �A, AI�—
computing the score for each point by sum-
ming all leaves in the octree where it belongs
instead of using a single leaf—improved the
result of the TUNNEL set slightly, at the cost of
a minor increase in execution time, because
more cells were investigated for each point.
However, for an unknown reason, 3D-NDT

Figure 16. Comparing the sensitivity to the initial error in the translation estimate for the JUNCTION set. The initial
rotation error was 0 for these tests.
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with additive octree subdivision failed for
two of the initial pose estimates when run-
ning on the JUNCTION data set. The results for
the other 98 poses were still satisfactory.

• Iterative subdivision with varying cell size �I,
II�—the more “brute-force” method—
removed all of the failed registrations for the
JUNCTION data set, at the cost of longer execu-
tion times. Iterative subdivision and additive
subdivision with infinite outer bounds were
the only methods that succeeded in accu-
rately registering the TUNNEL data set from at
least 75% of the inital poses. For the tests
shown here, the first iteration used 2 m cells.
For each subsequent iteration, the cell size
was multiplied by 0.75, and the registration
was stopped when the size was smaller than
1 m. In other words, the cell sizes used were
2, 1.5, and 1.125 m, respectively.

• Using linked cells led to a slight improve-
ment for the TUNNEL data set, especially for
the rotation component of the pose. Interest-

ingly, it did not lead to an improvement for
the JUNCTION data set. The likely reasons for
this are that, firstly, the error in the initial
pose estimate was not large enough for the
outer cells to have any significant effect, and,
secondly, that the scans overlap completely.

Based on these results, the best performance was ob-
tained using iterative subdivision with infinite outer
bounds, at a slightly higher computational cost than
the noniterative variants of 3D-NDT, though it was
still faster than ICP.

5.2.2. Results with Mobile Robot Data

The KVARNTORP-LOOP data set contains scans col-
lected by a mobile robot, together with pose esti-
mates for each scan, derived from the robot’s two-
dimensional odometry. This is more like the actual
situation that can be expected in the mine mapping
application than the artificial �but more complete�
experimental setup used for the other two data sets.

Figure 17. Comparing the sensitivity to the initial error in the rotation estimate for the JUNCTION set. The initial transla-
tion error was 0 for these tests.
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The more artificial setup can be considered more
complete because, for those experiments, the algo-
rithms were tested from a larger set of possible start-
ing poses, and the properties of the algorithms were
investigated more thoroughly.

For the results presented here, 8000 random
sample points �around 8%� from the data scan and
all points from the model were used. Infinite outer
bounds were used for 3D-NDT, but not linked cells.
The following text covers the effects of using differ-
ent cell sizes and discretization methods.

Because of some practical problems during the
data collection in the Kvarntorp mine, the odometry
had to be reset at three points �after scans number
11, 16, and 66�. These results are for the longest con-
secutive scan sequence �scans 17–66�.

The pose error from odometry was up to around
1.5 m and 0.2 rad from one scan to the next. Given
that the size of each scan is around 10 by 30 m, a
rotation error of 0.2 rad is quite large. An example of

how bad the odometry can be when driving on
gravel with a small mobile robot is shown in Figure
19. Scan 49 is severely rotated with respect to the
previous scan, which was taken just 5 m earlier.
Measuring the turn angle from odometry is always
problematic, and especially so when driving over a
surface with loose rocks.

The results are presented as histograms in Fig-
ures 20–23. Two limits were chosen for each compo-
nent of the error of the pose estimate after registra-
tion. Because of the difficulty of finding a real
ground truth pose, all registrations that came within
a certain limit of the manually determined true pose
were considered successful. The ground truth poses
were determined by running and inspecting a num-
ber of registration attempts, and an average of the
best matches was used as the ground truth pose for
each scan pair. A second limit was also picked. Reg-
istrations that came inside this limit are not exact
matches, but “acceptably” close for the application.

Figure 18. Comparing different discretization methods for 3D-NDT on the JUNCTION and TUNNEL data sets. For the
JUNCTION tests, et=1 m and er=0.2 rad. For TUNNEL, et=1 m and er=0.1 rad. Baseline ICP is on the left. The next two plots
�F and FI� show 3D-NDT with fixed cells, O and OI show octree subdivision, A and AI show additive subdivision, and I
and II show iterative subdivision, The rightmost plot in each NDT plot pair ��I� uses infinite outer bounds but not linked
cells �not applicable for ICP�.
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The limits for this data set were chosen to be 0.10 m
and 0.005 rad for “good” matches, and 0.20 m and
0.010 rad for “acceptable” matches. Registrations
where any of the pose components are outside of
this limit were regarded as failures. The most impor-
tant feature of the plots to judge the quality of each
registration algorithm is the height of the leftmost
histogram box, showing the number of successful
registrations. The histogram boxes that only have
one entry are labelled with the corresponding scan
number, to make it clearer which scans fail to be
registered. Also included in the plots are box plots
showing the distribution of the results.

The results from using 3D-NDT with fixed cells
with different sizes are shown in Figure 20. When
the cells are too small �0.5 m�, scans where the
odometry pose is too far from the actual pose fail.
When the cells are too large, features that are needed
for accurate registration are smoothed out, also mak-
ing registration fail in more cases. Looking at Figure
20, a cell size of around 2 m seems to be the prefer-
able choice for this data set.

The orientation was generally easier to get right
than the position, because the large-scale features of
the tunnel scans were sufficient to get the correct
rotation angle.

Figure 21 shows the results of different adaptive
subdivision methods; starting with 2 m cells, and
using cells with 1 and 0.5 m side length as needed.
Octree subdivision improves the registration of a
number of the scans, compared to using fixed 2 m
cells, resulting in 40 successful registrations. Using

additive subdivision instead of standard octree sub-
division did not lead to an additional improvement
for the KVARNTORP-LOOP data set. Iterative subdivi-
sion, however, registered 45 of the 50 scan pairs with
very high accuracy, and only failed with two scans—
the difficult scans number 49 and 41. It is interesting
to note that only the rotation component of scan 41’s
pose and only the translation component of scan 49’s
pose were wrong. The time needed for 3D-NDT with
iterative subdivision was longer than for the other
subdivision methods, because two extra runs of the
algorithm were performed for each scan. However,
the increase is not linearly proportional to the num-
ber of iterations. Iterative 3D-NDT took about twice
as long as a single iteration of the other versions of
the algorithm, even though three passes were per-
formed for each scan. The reason for this is that in
most cases, the scans are already in registration at
the last pass, so that the last iteration is very fast.

Figure 22 shows the results of registering the
same data set with iterative 3D-NDT, with and with-
out infinite outer bounds. Using linked cells did not
give an improvement for these scans. When not us-
ing infinite outer bounds, the translation component
of scan 41 and the rotation component of scan 48’s
final pose estimate were worse than when using in-
finite bounds. This shows that using infinite bounds
for the outer cells helps in some cases. Apart from
that, the results were very similar to when using in-
finite bounds.

The KVARNTORP-LOOP data set was also regis-
tered with ICP. For this experiment, a decreasing dis-
tance threshold was used, starting at 2 m and de-
creasing to zero, instead of the fixed 1 m threshold
from the baseline setup. The results are shown in
Figure 23. The number of successful registrations
was comparable to that of 3D-NDT, though ICP had
a few more failures. The main difference lies in the
running time of the two algorithms. 3D-NDT was
typically almost three times faster than ICP when
using the same sampling ratio.

6. SUMMARY AND CONCLUSIONS

A new method for registration of 3D range scans, 3D-
NDT, has been presented. A detailed analysis of the
algorithm with respect to different methods and pa-
rameters based on real-world experiments in a mine

Figure 19. Scans 48 �light, yellow� and 49 �dark, blue�
before registration, seen from above.
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has also been presented, along with a comparison to
ICP, the most common registration algorithm used to-
day. The main reason why 3D-NDT is faster is be-
cause it avoids the computationally challenging
nearest-neighbor search, which is central to the ICP

algorithm. Using iterative subdivision for building
NDT’s model surface description overcomes the
problems associated with discretizing the scan vol-
ume into fixed grid cells. It has been shown that 3D-
NDT with iterative subdivision and infinite outer

Figure 20. NDT with fixed cells, ranging from 0.5 m �top� to 3 m �bottom�. In order to make the plots easier to read, the
scan labels are not shown in these plots.
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Figure 22. NDT with �top row� and without �bottom row� infinite outer bounds. Using linked cells did not give a
noticeable improvement for this data set, but increased the time substantially.

Figure 21. 3D-NDT with different discretization methods. Octree split top, iterative split at bottom. Cells with sizes 2; 1;
and 0.5 m were used. Iterative subdivision is clearly the best choice here, as it has only two failed registrations �the
position of scan 49 and the orientation of scan 41� and three “acceptable” matches. The time taken is about twice that of
octree subdivision. Additive octrees and standard octrees had very similar performance for this data set.
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bounds consistently leads to accurate registration of
difficult scan data, requiring less time than ICP.

With the experimental setup used in the work
presented here, the alignment speed is not critical.
Since the vehicle is stopped and moved between
scans, the few seconds saved from using a faster reg-
istration algorithm are not very important. In the real
application, however, the plan is to collect 3D scan
data while the vehicle is moving, possibly using a 3D
lidar camera that collects a full-frame range image at
vide frame rates. Also, the computer hardware on the
intended platform �Atlas Copco’s drill rigs� is slower
than the system used for these tests. In such a sce-
nario, the need for fast scan alignment will be much
higher.

One of the other main advantages of 3D-NDT is
that the scanned surface can be stored much more ef-
ficiently using the combined normal distributions
than if the point clouds themselves, or even sparse
subsamples of the point clouds, are stored. This is im-
portant for any large 3D map. In a scenario where a
dynamic map is maintained over a long time, the
storage requirements for 3D point cloud data would
also soon grow uncomfortably large. Storing the NDT

representations of the scans requires only a small
fraction of the space required by ICP, and the NDT
representation is still powerful enough for registering
new scans to the collected data, as has been shown in
this paper.
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