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Abstract

Recent deep convolutional neural network-based object detectors have shown promising performance
when detecting large objects, but they are still limited in detecting small or partially occluded ones—in
part because such objects convey limited information due to the small areas they occupy in images. Conse-
quently, it is difficult for deep neural networks to extract sufficient distinguishing fine-grained features for
high-level feature maps, which are crucial for the network to precisely locate small or partially occluded
objects. There are two ways to alleviate this problem: the first is to use lower-level but larger feature maps
to improve location accuracy and the second is to use context information to increase classification accu-
racy. In this paper, we combine both methods by first constructing larger and more meaningful feature
maps in top-down order and concatenating them and subsequently fusing multilevel contextual informa-
tion through pyramid pooling to construct context aware features. We propose a unified framework called
the Semantic Context Aware Network (SCAN) to enhance object detection accuracy. SCAN is simple to
implement and can be trained from end to end. We evaluate the proposed network on the KITTI challenge
benchmark and present an improvement of the precision.
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1. Introduction

Object detection is a key element for a safe and ro-

bust autonomous driving system. Traditional detec-

tion methods are based on both engineered features

such as histogram of oriented gradients (HOG)6 and

scale-invariant feature transform (SIFT)22 and on

explicit detection models such as deformable part

model (DPM)7 and its variants. The main idea is

to design special rules for extracting descriptive in-

formation from images to enable object identifica-

tion. These traditional methods have been preva-

lent in the past ten years and have achieved remark-

able results. However, it is both difficult and time-

consuming to design effective features for special

vision tasks. Moreover, these features are not ro-

bust due to the variability in the shape of objects and

environmental changes in illumination.

Recently, the success of modern neu-

ral networks16 on the ImageNet classification
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challenge25, deep convolutional neural networks

(DCNN) have become the most promising method

for vision recognition tasks. The region-based con-

volutional network (R-CNN)9 is one of the most

successful methods based on DCNN; it used regions

acquired with off-the-shelf methods such as selec-

tive search29, Edge Boxes36 and multiscale combi-

natorial grouping (MCG)1 and then classified the

proposed regions using DCNN and regressing the

bounding box of the region. Because DCNN could

accurately classify the proposed regions, R-CNN

dramatically improved the state-of-the-art of object

detection tasks on the PASCAL VOC benchmark.

However, the task of object detection and image

classification has a internal conflict. Image classi-

fication tasks must be insensitive to object transla-

tion, scaling and rotation to make the learned fea-

tures less sensitive to location; however, these fea-

tures are detrimental to precisely locating objects in

an object detection task. This problem is exacer-

bated when detecting small or partially occluded ob-

jects because they have very limited information due

to small areas in the image; consequently, it is diffi-

cult for the neural network to extract distinguishing

features that can precisely locate and classify such

objects. Acquiring the contextual information sur-

rounding these objects is a key component in iden-

tifying them correctly because the contextual infor-

mation helps to exclude inappropriate object classes

and increases the probability of identifying appro-

priate classes by considering the background (e.g., a

boat has a higher probability of appearing on the sea

than does a house).

The goal of this paper is to alleviate the above

two problems in a simple but effective way. We pro-

pose a novel neural network structure called the Se-

mantic Context Aware Network (SCAN) to tackle

the above problems. SCAN introduces two ad-

ditional components: a Location Fusion Module

(LFM) and a Context Fusion Module (CFM). The

LFM constructs semantic features by making full

use of internal features with appropriate sizes to ob-

tain additional object location information, while the

CFM uses multilevel context information through

pyramid pooling to construct context-aware fea-

tures. The network is simple to implement and can

be trained end to end.

The rest of this paper is organized as follows.

Section 2 describes related object detection meth-

ods. Section 3 describes the details of the proposed

framework. We provide an evaluation of our method

in Section 4 . Finally, conclusions are given in Sec-

tion 5 .

2. Related Work

One of the most important components of object de-

tection is computing appropriate features from im-

ages. Over the past decade, HOG and SIFT have

been the most prevalent methods for designing hand-

engineered features. Various versions of HOG and

SIFT features combined with support vector ma-

chine (SVM) classifiers have been employed to con-

struct numerous object detection systems. How-

ever, due to breakthrough improvements in image

classification tasks, DCNN has now become a more

promising feature extraction method. Object de-

tection methods based on DCNN such as R-CNN

have demonstrated impressive improvements in de-

tection accuracy. R-CNN converted the detection

problem to a classification problem by identifying

regions in images using algorithms such as selec-

tive search29. Then, it classified the regions us-

ing DCNN. SPPnet10 improved the detection speed

by sharing feature maps extracted from entire im-

age and using multiple scales of region-of-interest

(RoI) pooling to perform region classification. Fast

R-CNN8 used a single-scale RoI pooling layer to

compute equally-sized features for region classifica-

tion, which improved the detection accuracy by in-

tegrating object classification losses and bounding

box regression losses as unit losses for optimiza-

tion. Faster R-CNN24 further improved the detection

speed by proposing candidate regions on shared fea-

ture maps called a Region Proposal Network (RPN).

Recently, some works have used middle-level

features to fill gaps in object detection and recogni-

tion. Kong et al.15 introduced a new way to build

more expressive middle-level features by fusing

low-, middle- and high-level features for object de-

tection. Cai et al.2 detected objects of different sizes

by proposing multilevel regions in feature maps. Xi-
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ang et al.31 enhanced the accuracy of detecting oc-

cluded or truncated objects by using subcategory re-

lated information to guide the bounding box pro-

posal. Yang et al.32 used scale-dependent pooling to

improve detection accuracy and improve detection

speed by rejecting easy negative-object proposals.

Shrivastava, Lin et al.28,20 constructed additional se-

mantic feature maps in a top-down manner, and de-

tected objects from multilevel feature maps.

Context carries important information when an

object is partially occluded or its size is small.

Context has been exploited in many traditional de-

tection models3,17. Recently, some DCNN-based

works have used context information to enhance ob-

ject detection accuracy. For example, Vu et al.30

utilized global context information for head detec-

tion, Li et al.18 used multilevel context information

and segmentation results for object detection. Con-

text is also important in dense classification prob-

lems such as semantic segmentation. For example,

Chen et al.5 encoded object size, ground plane and

depth information into an energy function and min-

imized it to perform object detection. Similarly,

Chen et al.4 utilized object shape priors, the ground

plane and semantic segmentation information to en-

hance detection accuracy, and Pham et al.23 ex-

ploited depth features that included a disparity map

and distance to the ground to propose objects. Lin,

Zhao et al.19,34 utilized context information by ap-

plying multiple pooling layers to guide pixel-wise

classification. In particular, Hong et al.12 proposed

a detection method based on a co-occurrence con-

text, and Lin et al.19 used a chain of multiple max

pooling blocks consisting of one max-pooling layer

and one convolutional layer to extract features from

large regions. Zhao et al.34 used various pooling

sizes to harvest both local and global context infor-

mation and concatenate them to form the final fea-

ture representations.

In this paper, we propose a unified framework

called SCAN that utilizes both multilevel middle

features and context information to enhance object

detection precision. More concretely, SCAN con-

sists of two components, LFM and CFM. LFM fully

explores the rich middle-feature maps, and con-

structs finer and more expressive feature maps to

enhance object location, the most related work is

Kong,Shrivastava and Lin et al.15,28,20, while Kong

et al.15 only consider the fusion of multi-layer fea-

tures, but did not use high-level features to improve

the semantics of low-level features, Shrivastava et

al.28,20 using high-level features to improve the se-

mantics of low-level features, but deal with them

separately. In design LFM, we enhance the low-

, middle-level features by high-level features and

composite them to improve the detection accuracy.

CFM is designed to utilize different scales of con-

text information in the feature maps, the most related

work is Lin et al.19, which used a chain of multi-

ple max pooling blocks and examined in the task of

semantic segmentation. In designing CFM, we ex-

amined max pooling and average pooling in detail,

and found that max pooling achieves more accurate

detection, while average pooling achieves higher re-

call. Consequently, alternately employing max pool-

ing and average pooling results in more balanced de-

tection. To the best of our knowledge, this is the first

effort to utilize both types of information to enhance

object detection precision.

3. Method

3.1. Semantic Context Aware Network

Our method is based on two key observations. The

first is that there is an internal conflict between the

tasks of object detection and image classification.

Object detection requires accurate object location

information, while image classification must be in-

sensitive to object translation, scaling and rotation.

Consequently, the high-level features used in clas-

sification tasks are not suitable for accurately lo-

cating objects—especially small objects. Middle-

level features contain more accurate location infor-

mation but carry less semantic information. To rem-

edy this problem, we use LFM to construct fea-

tures that are both fine-grained and semantically

rich. LFM uses internal features to obtain additional

object location information. LFM primarily uses a

top-down flow with lateral connections to bottom up

features and concatenates them to construct seman-

tic fine-grained features. The constructed features

carry more semantic information than the equiv-
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Location Fusion Module Context Fusion Module

RPN

ROI

pooling

Fig. 1. Architecture of the proposed method. In the first step, a backbone convolutional network extracts multi-layer features from

an image. Then, the Location Fusion Module constructs fine-grained and expressive feature maps using a top-down flow and lateral

connections and the Context Fusion Module constructs context-aware features using multiple pooling operations. The final features are

used to perform region proposal and classification.

alently sized bottom-up features while preserving

more fine-grained object location information com-

pared with higher-level features. Then, we utilize

multilevel local context information to detect small

objects and partially occluded objects. We designed

CFM, which constructs context-aware features us-

ing a pyramid pooling operation. The context infor-

mation improves the object detection accuracy, es-

pecially for small or partially occluded objects. Fi-

nally, the LFM and CFM models are combined into

SCAN, forming a general-purpose framework suit-

able for multiple tasks. Fig. 1 shows the architecture

of our method. The design details of the LFM and

CFM modules and how they can be combined with

a convolutional neural network for object detection

are introduced in the following subsections.

3.2. Location Fusion Module

The goal of LFM is to construct features with higher

resolution while preserving useful semantic infor-

mation. LFM accomplishes this by merging bottom-

up hierarchical feature maps using a top-down flow

with literal connections, compressing them into a

uniform space. In detail, given an image, we first

apply the feed-forward computation of the backbone

convolutional network to obtain bottom-up feature

maps, most commonly at several scales and with nu-

merous feature maps at the same scale. According

to Lin et al.20, we call a group of feature maps that

maintain the same scale as a “stage,” and we denote

the output of these stages as Ci, i = 1, ,m, where m

is the length of the stages. We set Um = Cm; then,

we compute Ui−1 by up-sampling Ui with a decon-

volutional layer and merge the result with the feature

map Ci−1:

Ui−1 =Ci−1 +Deconv(Ui). (1)

This process is performed iteratively until the last

layer is reached. In the experiments performed for

this paper, our network used five stages; we used

the final three stages of the feature maps, denoted

as U3,U4,U5. We applied a max pooling layer to the

U3 stage to construct the down-sampled feature map,

and applied a deconvolutional layer to U5 to con-

struct an up-sampled feature map of the same size.

Finally, we applied a 3x3 convolution layer and a

batch normalization layer14 to each feature map be-

fore concatenating them to obtain the final feature

maps. Fig. 2 depicts the structure of the LFM.
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Deconvolution

Concat

Deconvolution

Sum

Sum

Concat

Concat

Downsample

C5

C4

C3

U4

U3

Fig. 2. The structure of the Location Fusion Module, which

initially takes bottom-up features as input. Then, it takes a

top-down flow started by deconvoluting the C5 feature map

with a scale of 2 and adds the corresponding bottom-up fea-

tures of C4 to compute U4. Next, it computes U3 by decon-

voluting U4 plus C3. Finally, it concatenates the up-sampled

C5, down-sampled U3, and U4 to obtain the output features.

For space reasons, the 3x3 convolution layer that occurs be-

fore the concatenation layer is not depicted.

3.3. Context Fusion Module

In a deep neural network, the size of the receptive

field can roughly indicate the size of the context in-

formation; however Zhou et al.35 shows that the em-

pirical receptive field is smaller than the theoretical

field. CFM is focused on adding different scales

of context information into feature maps. It does

this by fusing multiple pooling layers into the orig-

inal feature maps. Mathematically, let Ci denote the

CFM input, which is the output feature map from

LFM. Here, Cp j denotes the j-th pooling from the

feature map. Then,

Co = ∑
j

φ(Cp j,Ci j). (2)

where φ(·) is the fusion method that can be a sum

or a concatenate operator, and p can be either max

pooling or average pooling. A trick exists to obtain

a larger pooling context by repeatedly applying the

same kernel size to the feature map—a technique de-

veloped by Zhao et al.34 and adopted in our CFM

implementation. From experiments, we found that

using the sum operator for φ achieves more accurate

detection results then does the concatenate opera-

tor; consequently, we adopted the sum operator. To

choose a pooling layer, we found that max pooling

results in more accurate detection results, but aver-

age pooling results in higher recall; therefore, we al-

ternatively apply max pooling and average pooling

to achieve more balanced detection results. Details

of the process steps are illustrated in Fig. 3.

Context Fusion Module
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o
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o
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Cp1

Ci2

Cp2
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Fig. 3. The Context Fusion Module structure, which takes

the output features from the LFM (denoted as Ci) and passes

them through a pooling layer with a stride of 1 and a kernel

size of 5. We obtain Ci2 by summing the feature map Cp1

and Ci. Then, we obtain Cp2 by applying the pooling oper-

ation to the feature map Cp1. Finally, we sum Cp2 and Ci2

to obtain the final output feature map Co.

4. Experiments

In this work, we focused on applying our method

to the autonomous driving system; however, our ap-

proach is applicable to other object detection scenar-

ios. We evaluated our model on the KITTI object de-

tection dataset. The KITTI dataset consists of 7,481

training images and 7,518 test images containing a

total of 80,256 labeled objects. The object labels are

grouped into easy, moderate and hard levels, based

on the extent to which the objects are occluded and

truncated. The size of the images is 1,382 x 512. We

randomly split the training images in half, forming

a training set and a validation set. We evaluated our

average precision results evaluated on the validation

set.

We selected PVANET13 as our baseline method.

PVANET is a fast implementation of the Faster R-

CNN detection protocol that uses a lighter back-end

network structure. The network backbone is pre-

trained on the ImageNet 1K classification set and

fine-tuned on the KITTI training dataset. We use
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Table 1. The results of ablation experiments from the PVANET (PVA) and our method with different combinations of modules on the

KITTI validation set. Our model is trained based on the previous model to speed up network convergence (e.g., LFM training is based

on the network weights of PVANET(PVA), and LFM+CFM is trained based on LFM. We applied the same hyperparameters and training

iterations as were used previously (in %).

Model Diff
Car Cyclist Pedestrian mAP mAR FPS

AP AR AP AR AP AR

PVA

E 95.56 98.84 88.7 95.38 85.6 88.61

81.23 84.45 7.7M 81.03 86.67 85.59 87.84 77.05 78.44

H 69.68 69.67 78.91 83.8 68.98 70.82

LFM

E 95.8 97.61 88.4 95.08 86.3 88.92

81.68 84.36 7.3M 81.1 86.15 86.2 88.01 77.5 78.39

H 70.3 69.5 79.5 84.13 70 71.47

CFM

E 86.42 96.93 88.29 95.38 79.43 87.03

76.52 81.87 6.2M 78.13 84.66 79 83.72 70.04 74.99

H 67.87 67.87 77.98 79.5 61.51 66.77

SCAN

E 96.68 97.92 87.88 94.15 87.16 88.13

81.96 84.71 6.2M 80.65 85.74 86.65 89.8 78.22 78.6

H 70.42 69.89 79.7 86.45 70.28 71.73

Stochastic Gradient Descent with momentum to op-

timize the loss function, with a weight decay of

0.0002 and a momentum of 0.9. The learning rate

was set to 0.001 for the first 50K mini-batches and

to 0.0001 for the next 50K iterations. To augment

the training data, we resized every batch of image

width to the value randomly selected from the se-

quence (480, 512, 554, 576, 608, 640, 672, 704, 736,

768) while maintaining the image ratio in the train-

ing phase. Then, in the testing phase, we rescaled

the image widths to 768 pixels while maintaining

the image ratios. We used a batch size of 1 and

512 anchors per image; our RPN uses 25 anchors

at 5 scales (16, 32, 64, 128, and 256) and 5 aspect

ratios (0.5, 0.667, 1.0, 1.5, and 2.0). We trained

our model to detect 3 categories of objects: car, cy-

clist and pedestrian. We adopted a class-balanced

sampling strategy so that every class would have a

similar number of samples during the training pro-

cess. All the experiments were performed using a

Maxwell-based NVIDIA TITAN X GPU.

4.1. Ablation Experiments

We selected mean average precision (mAP), mean

average recall (mAR), and frames per second (FPS)

as the evaluation metrics in our experiment. mAP

denotes the average precision scores for each object

detection; it evaluates how good the detection result

is. Following the KITTI estimate criteria, cars re-

quire more than a 70% overlap with the ground truth

box, while pedestrians and cyclists require an over-

lap of 50% to be true positives. mAR denotes the

average recall value from each category; it evaluates

how many true positive objects were detected among

all the detected objects. FPS specifies the number of

images that can be detected in one second. For all

three indicators, higher values indicate better perfor-

mance.

As shown in Table 1 (PVA), the baseline

PVANET model achieves a mAP of 81.23% on the

validation set. Table 1 (LFM) shows that the de-

tection accuracy was significantly improved after

adding the LFM to PVANET, achieving a 0.46 im-

provement compared with the baseline. The re-

sults of this experiment show that LFM effectively

improves both detection precision and recall, espe-

cially for detecting small objects such as the “hard”

level of pedestrians and cyclists. Table 1 (CFM)

shows the results from adding CFM directly to

PVANET; the detection results are worse (the detec-

tion mAP drop down to 76.52) when CFM is added

directly to PVANET. We argue that this result occurs

because the feature map from the baseline method is

not strong enough; consequently, it is difficult to ob-

tain sufficient context information from CFM while
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Table 2. Comparison experiments between our method(SCAN) and Faster R-CNN + OHEM(FRCNN): object detection results on the

KITTI validation set (in %).

Model Diff
Car Cyclist Pedestrian mAP mAR

AP AR AP AR AP AR

FRCNN

E 93.5 97.92 49.16 57.85 64.22 68.12

60.13 64.87M 78.51 85.82 44.84 49.91 50.06 56.11

H 68.22 72.02 44.28 47.77 48.37 49.29

SCAN

E 96.68 97.92 87.88 94.15 87.16 88.13

81.96 84.71M 80.65 85.74 86.65 89.8 78.22 78.6

H 70.42 69.89 79.7 86.45 70.28 71.73

avoiding a jamming effect in the pooling operation.

original 

image

PVANET

LFM

SCAN

（LFM+CFM）

Ground

Truth

Fig. 4. An example of an original image from the KITTI

dataset, the detection results and the ground truth. The

first row shows the original KITTI image, the second row

shows the baseline (PVANET) detection result, the third

row shows the detection results of the baseline method with

LFM, which achieves slightly more accurate bounding box

locations than the baseline, and the fourth row shows the

result of the PVANET+LFM+CFM method, which addi-

tionally detects the more difficult partially occluded objects.

The final row shows the ground truth bounding boxes.

Table 1 (SCAN) shows the results from adding

both LFM and CFM to PVANET, which further

improves the mAP (from 81.68% to 81.96%) and

achieves a mAR of 84.71%. This result indicates

that the feature map output from LFM is sufficiently

robust; therefore, CFM can successfully add the

context information to the feature map and increase

the detection precision and recall.

Fig. 4 shows the detection results of an exam-

ple image from the validation set. We selected this

image because it contains many types of objects to

be detected and the object sizes and occlusions are

rich. The first row shows the original image; the

second row shows the results of PVANET (the base-

line method); the third row shows the detection re-

sult of PVANET with LFM, demonstrating slightly

more accurate bounding box locations compared

with PVAN et al.; and the fourth row shows the re-

sults from the PVANET+LFM+CFM method, which

detects more difficult objects such as those that are

small or partially occluded. As Fig. 4 shows, the

LFM+CFM method detects the pedestrian who is

mostly occluded by the car. The final row shows the

ground truth bounding boxes. Fig. 5 shows the pre-

cision and recall of PVANET, LFM and LFM+CFM.

Again, LFM+CFM achieves the best results.

Faster R-CNN is one of the most successful ob-

ject detection methods; therefore, we chose this

method as the comparison method. We added

OHEM to Fast R-CNN method because OHEM has

been shown to be able to significantly improve Fast

R-CNN’s detection accuracy. We further improved

the detection precision by removing all the layers

from conv5 and using conv4 3 as the input for RPN

as suggested by Zhang et al.33, We trained this

Faster R-CNN with OHEM27 on the KITTI training

set.
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SCAN

（LFM+CFM）

LFM

PVANET

Fig. 5. Precision and recall of PVANET (the baseline method), combined with LFM and with LFM+CFM. The object detection results

were obtained from the validation image set from the KITTI dataset.

SCAN(LFM+CFM) Faster RCNN + OHEM

Fig. 6. Detection results from SCAN and Faster R-CNN +

OHEM.

To make a fair comparison between Faster R-

CNN with OHEM and our method, the RPN setting

uses 25 anchors at 5 scales (16, 32, 64, 128, and 256)

and 5 aspect ratios (0.5, 0.667, 1.0, 1.5, and 2.0), and

we used the same training and validation sets. The

detection results from our method with those from

Faster R-CNN enhanced with OHEM are shown in

Table 2. The results show that our method is sig-

nificantly better than the Faster R-CNN + OHEM

method, especially in detecting small objects such

as pedestrians and cyclists. Fig. 6 shows some of

the detection results from our method and Faster

R-CNN+OHEM, revealing that our method detects

more objects at the “hard” level and results in more

accurate bounding box locations. Table 2 shows the

object detection results of SCAN and Faster R-CNN

+ OHEM on the KITTI Dataset (in %).

4.2. CFM Design Choices

We designed experiments to choose between using

max pooling and/or average pooling in CFM. Lin et

al.19 used a max pooling chain to fuse context in-

formation into feature maps for dense classification

problems, while Zhao et al.34 argued that using av-

erage pooling achieves better accuracy for semantic

segmentation tasks.

We evaluated max pooling, average pooling and

a mixture of both in CFM for object detection and

found that while max pooling resulted in a slightly
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Table 3. Ablation experiments on the selection of pooling type in designing the CFM and object detection results on the KITTI validation

set (in %)

.

Pooling Diff
Car Cyclist Pedestrian mAP mAR

AP AR AP AR AP AR

Max

E 96.68 97.92 87.88 94.15 87.16 88.13

81.96 84.71M 80.65 85.74 86.65 89.8 78.22 78.6

H 70.42 69.89 79.7 86.45 70.28 71.73

Average

E 95.96 97.71 87.23 96 87.1 90.43

81.68 85.8M 80.62 85.38 86.1 90.88 78.45 81.23

H 70.3 69.51 78.99 87.11 70.33 73.98

Max +

Average

E 95.47 97.65 88 95.38 86.98 89.64

81.78 85.12M 80.61 85.6 86.25 89.45 78.4 80.14

H 70.32 69.64 79.46 85.95 70.57 72.64

higher object detection precision than the other op-

tions, average pooling resulted in a higher recall.

The mixture of the two is a compromise choice;

average pooling is a good candidate selection in

some scenarios because it results in a mAP loss of

only 0.28%; however, average pooling increased the

mAR by 1.1% as shown in Table 3.

The second design choice decision for CFM was

to determine how many pooling operations were ap-

propriate. More pooling operations will create a

large receptive field but can also result in a side ef-

fect of jamming. Therefore, we designed an exper-

iment to test between one and four pooling layers.

We found that two pooling layer achieved the best

result. Three pooling layers obtains a similar detec-

tion result and achieves better results in detecting the

moderate and hard levels of pedestrians. However,

when we tested four pooling layers in CFM, both the

mAP and the mAR decreased rapidly. This result in-

dicated that the last pooling layer interfered with the

feature map. The results are listed in Table 4.

Table 4. Ablation experiments on the selection of the number
of pooling layers in the design of the Context Fusion Module:
object detection results on the KITTI validation set (in %).

Pooling number mAP mAR

one pooling 81.28 84.66

two pooling 81.96 84.71

three pooling 81.79 84.67

four pooling 77.76 81.33

5. Conclusion

In this paper, we proposed SCAN, a novel network

that combines precise location information and con-

text information to enhance object detection accu-

racy for small and occluded objects in a simple

way. There are two main modules in our network.

The Location Fusion Module (LFM) obtains fine-

grained semantic features and combines them to pro-

duce features that include precise positioning infor-

mation. The Context Fusion Module (CFM) mixes

contextual information into feature maps by apply-

ing multiple pooling layers to enhance the detection

accuracy of small or partially occluded objects. Ex-

tensive experiments on the KITTI dataset show that

our method enhances both object detection accuracy

and recall, particularly for images containing small

or partly occluded objects. We hope our work will

be helpful in facilitating future research and applica-

tions.

Acknowledgments

This work is supported by the National Natural

Science Foundation of China (No. U1764261),

the Natural Science Foundation of Shanghai

(No.kz170020173571), the Fundamental Re-

search Funds for the Central Universities (No.

22120170232) and Zhejiang Provincial Department

of Education Project

 

___________________________________________________________________________________________________________

959

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 951-961

(No.Y201432357)



References
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