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Figure 1: Scan2CAD takes as input an RGB-D scan and a set of 3D CAD models (left). We then propose a novel 3D CNN

approach to predict heatmap correspondences between the scan and the CAD models (middle). From these predictions, we

formulate an energy minimization to find optimal 9 DoF object poses for CAD model alignment to the scan (right).

Abstract

We present Scan2CAD1, a novel data-driven method

that learns to align clean 3D CAD models from a shape

database to the noisy and incomplete geometry of an RGB-

D scan. For a 3D reconstruction of an indoor scene, our

method takes as input a set of CAD models, and predicts a

9DoF pose that aligns each model to the underlying scan

geometry. To tackle this problem, we create a new scan-

to-CAD alignment dataset based on 1506 ScanNet scans

with 97607 annotated keypoint pairs between 14225 CAD

models from ShapeNet and their counterpart objects in the

scans. Our method selects a set of representative keypoints

in a 3D scan for which we find correspondences to the CAD

geometry. To this end, we design a novel 3D CNN archi-

tecture to learn a joint embedding between real and syn-

thetic objects, and thus predict a correspondence heatmaps.

Based on these correspondence heatmaps, we formulate

a variational energy minimization that aligns a given set

of CAD models to the reconstruction. We evaluate our

approach on our newly introduced Scan2CAD benchmark

where we outperform both handcrafted feature descriptor

as well as state-of-the-art CNN based methods by 21.39%.

1The Scan2CAD dataset is publicly released along with an automated

benchmark script for testing under www.Scan2CAD.org

1. Introduction

In recent years, the wide availability of consumer-grade

RGB-D sensors, such as the Microsoft Kinect, Intel Real

Sense, or Google Tango, has led to significant progress

in RGB-D reconstruction. We now have 3D reconstruc-

tion frameworks, often based on volumetric fusion [6],

that achieve impressive reconstruction quality [18, 29, 30,

40, 21] and reliable global pose alignment [40, 5, 8]. At

the same time, deep learning methods for 3D object clas-

sification and semantic segmentation have emerged as a

primary consumer of large-scale annotated reconstruction

datasets [7, 2]. These developments suggest great potential

in the future of 3D digitization, for instance, in applications

for virtual and augmented reality.

Despite these improvements in reconstruction quality,

the geometric completeness and fine-scale detail of indoor

scene reconstructions remain a fundamental limitation. In

contrast to artist-created computer graphics models, 3D

scans are noisy and incomplete, due to sensor noise, motion

blur, and scanning patterns. Learning-based approaches for

object and scene completion [9, 37, 10] cannot reliably re-

cover sharp edges or planar surfaces, resulting in quality far

from artist-modeled 3D content.

One direction to address this problem is to retrieve a set

of CAD models from a shape database and align them to

an input scan, in contrast to a bottom-up reconstruction of
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the scene geometry. If all objects are replaced in this way,

we obtain a clean and compact scene representation, pre-

cisely serving the requirements for many applications rang-

ing from AR/VR scenarios to architectural design. Unfor-

tunately, matching CAD models to scan geometry is an ex-

tremely challenging problem: While high-level geometric

structures might be similar, the low-level geometric fea-

tures differ significantly (e.g., surface normal distributions).

This severely limits the applicability of handcrafted geo-

metric features, such as FPFH [33], SHOT [35], point-pair-

features [11], or SDF-based feature descriptors [25]. While

learning-based approaches like random forests [28, 36] ex-

ist, their model capacity remains relatively low, especially

in comparison to more modern methods based on deep

learning, which can achieve significantly higher accuracy,

but remain at their infancy. We believe this is in large part

attributed to the lack of appropriate training data.

In this paper, we make the following contributions:

• We introduce the Scan2CAD dataset, a large-scale

dataset comprising 97607 pairwise keypoint corre-

spondences and 9DoF alignments between 14225 in-

stances of 3049 unique synthetic models, between

ShapeNet [3] and reconstructed scans in ScanNet [7],

as well as oriented bounding boxes for each object.

• We propose a novel 3D CNN architecture that learns a

joint embedding between real and synthetic 3D objects

to predict accurate correspondence heatmaps between

the two domains.

• We present a new variational optimization formulation

to minimize the distance between scan keypoints and

their correspondence heatmaps, thus obtaining robust

9DoF scan-to-CAD alignments.

2. Related work

RGB-D Scanning and Reconstruction The availability

of low-cost RGB-D sensors has led to significant research

progress in RGB-D 3D reconstruction. A very prominent

line of research is based on volumetric fusion [6], where

depth data is integrated in a volumetric signed distance

function. Many modern real-time reconstruction methods,

such as KinectFusion [18, 29], are based on this surface

representation. In order to make the representation more

memory-efficient, octree [4] or hash-based scene represen-

tations have been proposed [30, 21]. An alternative fusion

approach is based on points [22]; the reconstruction qual-

ity is slightly lower, but it has more flexibility when han-

dling scene dynamics and can be adapted on-the-fly for loop

closures [40]. Very recent RGB-D reconstruction frame-

works combine efficient scene representations with global

pose estimation [5], and can even perform online updates

with global loop closures [8]. A closely related direction to

ours (and a possible application) is recognition of objects as

a part of a SLAM method, and using the retrieved objects

as part of a global pose graph optimization [34, 27].

3D Features for Shape Alignment and Retrieval Geo-

metric features have a long-established history in computer

vision, such as Spin Images [20], Fast Point Feature His-

tograms (FPFH) [33], or Point-Pair Features (PPF) [11].

Based on these descriptors or variations of them, re-

searchers have developed shape retrieval and alignment

methods. For instance, Kim et al. [24] learn a shape prior in

the form of a deformable part model from input scans to find

matches at test time; or AA2h [23] use a similar approach

to PPF, where a histogram of normal distributions of sam-

ple points is used for retrieval. Li et al. [25] propose a for-

mulation based on a hand-crafted TSDF feature descriptor

to align CAD models in real-time to RGB-D scans. While

these retrieval approaches based on hand-crafted geomet-

ric features show initial promise, they struggle to generalize

matching between the differing data characteristics of clean

CAD models and noisy, incomplete real-world data.

An alternative direction is learned geometric feature de-

scriptors. For example, Nan et al. [28] use a random deci-

sion forest to classify objects on over-segmented input ge-

ometry from high-quality scans. Shao et al. [36] introduce

a semi-automatic system to resolve segmentation ambigui-

ties, where a user first segments a scene into semantic re-

gions, and then shape retrieval is applied. 3DMatch [43]

leverage a Siamese neural network to match keypoints in

3D scans for pose estimation. Zhou et al. [44] is of similar

nature, proposing a view consistency loss for 3D keypoint

prediction network on RGB-D image data. Inspired by such

approaches, we develop a 3D CNN-based approach target-

ing correspondences between the synthetic domain of CAD

models and the real domain of RGB-D scan data.

Other approaches retrieve and align CAD models given

single RGB [26, 19, 38, 17] or RGB-D [12, 45] images.

These methods are related, but our focus is on geomet-

ric alignment independent of RGB information, rather than

CAD-to-image.

Shape Retrieval Challenges and RGB-D Datasets

Shape retrieval challenges have recently been organized

as part of the Eurographics 3DOR [16, 32]. Here, the

task was formulated as matching of object instances from

ScanNet [7] and SceneNN [15] to CAD models from the

ShapeNetSem dataset [3]. Evaluation only considered

binary in-category vs out-of-category (and sub-category)

match as the notion of relevance. As such, this evaluation

does not address the alignment quality between scan objects

and CAD models, which is our focus.

ScanNet [7] provides aligned CAD models for a small

subset of the annotated object instances (for only 200 ob-

jects out of the total 36000). Moreover, the alignment

2615



quality is low with many object category mismatches and

alignment errors, as the annotation task was performed by

crowdsourcing. The PASCAL 3D+ [42] dataset annotates

13898 objects in the PASCAL VOC images with coarse 3D

poses defined against representative CAD models. Object-

Net3D [41] provides a dataset of CAD models aligned to

2D images, approximately 200K object instances in 90K

images. The IKEA objects [26] and Pix3D [38] datasets

similarly provide alignments of a small set of identifiable

CAD models to 2D images of the same objects in the real

world; the former has 759 images annotated with 90 mod-

els, the latter has 10069 annotated with 395 models.

No existing dataset provides fine-grained object instance

alignments at the scale of our Scan2CAD dataset with

14225 CAD models (3049 unique instances) annotated to

their scan counterpart distributed on 1506 3D scans.

3. Overview

Task We address alignment between clean CAD models

and noisy, incomplete 3D scans from RGB-D fusion, as il-

lustrated in Fig. 1. Given a 3D scene S and a set of 3D CAD

models M = {mi}, the goal is to find a 9DoF transforma-

tion Ti (3 degrees for translation, rotation, and scale each)

for every CAD model mi such that it aligns with a semanti-

cally matching object O = {oj} in the scan. One important

note is that we cannot guarantee the existence of 3D models

which exactly matches the geometry of the scan objects.

Dataset and Benchmark In Sec. 4, we introduce the con-

struction of our Scan2CAD dataset. We propose an anno-

tation pipeline designed for use by trained annotators. An

annotator first inspects a 3D scan and selects a model from a

CAD database that is geometrically similar to a target object

in the scan. Then, for each model, the annotator defines cor-

responding keypoint pairs between the model and the object

in the scan. From these keypoints, we compute ground truth

9DoF alignments. We annotate the entire ScanNet dataset

and use the original training, validation, and test splits to

establish our alignment benchmark.

Heatmap Prediction Network In Sec. 5, we propose a

3D CNN taking as input a volume around a candidate key-

point in a scan and a volumetric representation of a CAD

model. The network is trained to predict a correspondence

heatmap over the CAD volume, representing the likelihood

that the input keypoint in the scan is matching with each

voxel. The heatmap prediction is formulated as a classifi-

cation problem, which is easier to train than regression, and

produces sparse correspondences needed for pose optimiza-

tion.

Alignment Optimization Sec. 6 describes our variational

alignment optimization. To generate candidate correspon-

dence points in the 3D scan, we detect Harris keypoints, and

predict correspondence heatmaps for each Harris keypoint

(a) First step: Retrieval view.

(b) Second step: Alignment view.

Figure 2: Our annotation web interface is a two-step pro-

cess. (a) After the user places an anchor on the scan surface,

class-matching CAD models are displayed on the right. (b)

Then the user annotates keypoint pairs between the scan and

CAD model from which we derive the ground truth 9DoF

transformation.

and CAD model. Using the predicted heatmaps we find op-

timal 9DoF transformations. False alignments are pruned

via a geometric confidence metric.

4. Dataset

Our Scan2CAD dataset builds upon the 3D scans from

ScanNet [7] and CAD models from ShapeNet [3]. Each

scene S contains multiple objects O = {oi}, where each ob-

ject oi is matched with a ShapeNet CAD modelmi and both

share multiple keypoint pairs (correspondences) and one

transformation matrix Ti defining the alignment. Note that

ShapeNet CAD models have a consistently defined front

and upright orientation which induces an amodal tight ori-

ented bounding box for each scan object, see Fig. 3.

4.1. Data Annotation

The annotation is done via a web application that allows

for simple scaling and distribution of annotation jobs; see

Fig. 2. The annotation process is separated into two steps.

The first step is object retrieval, where the user clicks on a

point on the 3D scan surface, implicitly determining an ob-

ject category label from the ScanNet object instance anno-

tations. We use the instance category label as query text in

the ShapeNet database to retrieve and display all matching
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Figure 3: (Left) Oriented bounding boxes (OBBs) com-

puted from the instance segmentation of ScanNet [7] are

often incomplete due to missing geometry (e.g., in this case,

missing chair legs). (Right) Our OBBs are derived from the

aligned CAD models and are thus complete.

CAD models in a separate window as illustrated in Fig. 2a.

After selecting a CAD model the user performs alignment.

In the alignment step, the user sees two separate win-

dows in which the CAD model (left) and the scan object

(right) are shown (see Fig. 2b). Keypoint correspondences

are defined by alternately clicking paired points on the CAD

model and scan object. We require users to specify at least

6 keypoint pairs to determine a robust ground truth trans-

formation. After keypoint pairs are specified, the alignment

computation is triggered by clicking a button. This align-

ment (given exact 1-to-1 correspondences) is solved with

the genetic algorithm CMA-ES [14, 13] that minimizes the

point-to-point distance over 9 parameters. In comparison

to gradient-based methods or Procrustes superimposition

method, we found this approach to perform significantly

better in reliably returning high-quality alignments regard-

less of initialization.

The quality of these keypoint pairs and alignments was

verified in several verification passes, with re-annotations

performed to ensure a high quality of the dataset. The veri-

fication passes were conducted by the authors of this work.

A subset of the ShapeNet CAD models have symme-

tries that play an important role in making correspondences.

Hence, we annotated all ShapeNet CAD models used in

our dataset with their rotational symmetries to prevent false

negatives in evaluations. We defined 2-fold (C2), 4-fold

(C4) and infinite (C∞) rotational symmetries around a

canonical axis of the object.

4.2. Dataset Statistics

The annotation process yielded 97607 keypoint pairs on

14225 (3049 unique) CAD models with their respective

scan counterpart distributed on a total of 1506. Approxi-

mately 28% out of the 3049 CAD models have a symmetry

tag (either C2, C4 or C∞).

Given the complexity of the task and to ensure high qual-

ity annotations, we employed 7 part-time annotators (in

contrast to crowd-sourcing). On average, each scene has

been edited 1.76 times throughout the re-annotation cycles.

The top 3 annotated model classes are chairs, tables and

cabinets which arises due to the nature of indoor scenes in

ScanNet. The number of objects aligned per scene ranges

from 1 to 40 with an average of 9.3. It took annotators on

average of 2.48min to align each object, where the time to

find an appropriate CAD model dominated the time for key-

point placement. The average annotation time for an entire

scene is 20.52min.

It is interesting to note that manually placed keypoint

correspondences between scans and CAD models differ sig-

nificantly from those extracted from a Harris corner detec-

tor. Here, we compare the mean distance from the anno-

tated CAD keypoint to: (1) the corresponding annotated

scan keypoint (= 3.5cm) and (2) the nearest Harris key-

point in the scan (= 12.8cm).

4.3. Benchmark

Using our annotated dataset, we designed a benchmark

to evaluate scan-to-CAD alignment methods. A model

alignment is considered successful only if the category of

the CAD model matches that of the scan object and the pose

error is within translation, rotational, and scale bounds rel-

ative to the ground truth CAD. We do not enforce strict in-

stance matching (i.e., matching the exact CAD model of the

ground truth annotation) as ShapeNet models typically do

not identically match real-world scanned objects. Instead,

we treat CAD models of the same category as interchange-

able (according to the ShapeNetCorev2 top-level synset).

Once a CAD model is determined to be aligned correctly,

the ground truth counterpart is removed from the candidate

pool in order to prevent multiple alignments to the same

object. Alignments are fully parameterized by 9 pose pa-

rameters. A quantitative measure based on bounding box

overlap (IoU) can be readily calculated with these parame-

ters as CAD models are defined on the unit box. The error

thresholds for a successful alignment are set to ǫt ≤ 20cm,

ǫr ≤ 20◦, and ǫs ≤ 20% for translation, rotation, and scale

respectively (for extensive error analysis please see the sup-

plemental). The rotation error calculation takes C2, C4 and

C∞ rotated versions into account.

The Scan2CAD dataset and associated symmetry anno-

tations are available to the community. For standardized

comparison of future approaches, we operate an automated

test script on a hidden test set that can be found under

www.Scan2CAD.org.

5. Correspondence Prediction Network

5.1. Data Representation

Scan data is represented by its signed distance field

(SDF) encoded in a volumetric grid and generated through

volumetric fusion [6] from the depth maps of the RGB-D re-

construction (voxel resolution = 3cm, truncation = 15cm).

For the CAD models, we compute unsigned distance fields

(DF) using the level-set generation toolkit by Batty [1].
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Figure 4: 3D CNN architecture of our Scan2CAD approach: we take as input SDF chunks around a given keypoint from a 3D

scan and the DF of a CAD model. These are encoded with 3D CNNs to learn a shared embedding between the synthetic and

real data; from this, we classify whether there is semantic compatibility between both inputs (top), predict a correspondence

heatmap in the CAD space (middle) and the scale difference between the inputs (bottom).

5.2. Network Architecture

Our architecture takes as input a pair of voxel grids: A

SDF centered at a point in the scan with a large receptive

field at 643 size, and a DF of a particular CAD model at 323

size. We use a series of convolutional layers to separately

encode each input stream (see Fig. 4). The two encoders

compress the volumetric representation into compact fea-

ture volumes of 43 × 64 (scan) and 43 × 8 (CAD) which

are then concatenated before passing to the decoder stage.

The decoder stage predicts three output targets, heatmap,

compatibility, and scale, described as follows:

Heatmap The first output is a heatmap H : Ω → [0, 1]
over the 323 voxel domain Ω ∈ N

3 of the CAD model pro-

ducing the voxel-wise correspondence probability. This in-

dicates the probability of matching each voxel in Ω to the

center point of the scan SDF. We train our network using a

combined binary cross-entropy (BCE) loss and a negative

log-likelihood (NLL) to predict the final heatmap H . The

raw output S : Ω → R of the last layer in the decoder is

used to generate the heatmaps:

H1 : Ω→ [0, 1], x 7→ sigmoid(S(x))

H2 : Ω→ [0, 1], x 7→ softmax(S(x))

LH =
∑

x∈Ω

w(x) · BCE(H1, HGT) +
∑

x∈Ω

v · NLL(H2, HGT)

where w(x) = 64.0 if HGT(x) > 0.0 else 1.0, v = 64 are

weighting factors to increase the signal of the few sparse

positive keypoint voxels in the voxel grid (≈ 99% of the

target voxels have a value equal to 0). The combination of

the sigmoid and softmax terms is a compromise between

high recall but low precision using sigmoid, and more lo-

cally sharp keypoint predictions using softmax over all vox-

els. The final target heatmap, used later for alignment,

is constructed with an element-wise multiplication of both

heatmap variations: H = H1 ◦H2.

Compatibility The second prediction target is a single

probability score ∈ [0, 1] indicating semantic compatibil-

ity between scan and CAD. This category equivalence score

is 0 when the category labels are different (e.g., scan table

and CAD chair) and 1 when the category labels match (e.g.,

scan chair and CAD chair). The loss function for this output

is a sigmoid function followed by a BCE loss:

Lcompat. = BCE(sigmoid(x), xGT)

Scale The third output predicts the scale ∈ R
3 of the CAD

model to the respective scan. Note that we do not explicitly

enforce positivity of the predictions. This loss term is a

mean-squared-error (MSE) for a prediction x ∈ R
3:

Lscale = MSE(x, xGT) = ‖x− xGT‖
2
2

Finally, to train our network, we use a weighted combi-

nation of the presented losses:

L = 1.0LH + 0.1Lcompat. + 0.2Lscale

where the weighting of each loss component was empiri-

cally determined for balanced convergence.

5.3. Training Data Generation

Voxel Grids Centered scan volumes are generated by pro-

jecting the annotated keypoint into the scan voxel grid and

then cropping around it with a crop window of 633. Ground

truth heatmaps are generated by projecting annotated key-

points (and any symmetry-equivalent keypoints) into the

CAD voxel grid. We then use a Gaussian blurring kernel

(σ = 2.0) on the voxel grid to account for small keypoint

annotation errors and to avoid sparsity in the loss residuals.
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Training Samples With our annotated dataset we gen-

erate NP,ann. = 97607 positive training pairs where one

pair consists of an annotated scan keypoint and the corre-

sponding CAD model. Additionally, we create NP,aug. =
10 ·NP,ann., augmented positive keypoint pairs by randomly

sampling points on the CAD surface, projecting them to the

scan via the ground truth transformation and rejecting if the

distance to the surface in the scan ≥ 3cm. In total we gen-

erate NP = NP,ann. +NP,aug. positive training pairs.

Negative pairs are generated in two ways: (1) Randomly

choosing a voxel point in the scan and a random CAD

model (likelihood of false negative is exceedingly low). (2)

Taking an annotated scan keypoint and pairing it with a ran-

dom CAD model of different class. We generateNN = NP

negative samples with (1) and NHN = NP with (2).

Hence, the training set has a positives-to-negatives ratio

of 1:2 (NP : NN+NHN ). We found an over-representation

of negative pairs gives satisfactory performance on the com-

patibility prediction.

5.4. Training Process

We use an SGD optimizer with a batch size of 32 and

an initial learning rate of 0.01, which is decreased by 1/2
every 50K iterations. We train for 250K iterations (≈ 62.5
hours). The weights are initialized randomly. The losses

of the heatmap prediction stream and the scale prediction

stream are masked such that only positive samples make up

the residuals for back-propagation.

The CAD encoder is pre-trained with an auto-encoder on

ShapeNet models with a reconstruction task and a MSE as

loss function. All models of ShapeNetCore (≈ 55K) are

used for pre-training and the input and output dimensions

are 323 distance field grids. The network is trained with

SGD until convergence (≈ 50 epochs).

6. Alignment Optimization

Filtering The input to our alignment optimization is a

representative set of Harris keypoints K = {pj}, j =
1 . . . N0 from a scene S and a set of CAD models M =
{mi}. The correspondences between K and M were estab-

lished by the correspondence prediction from the previous

stage (see Sec. 5) where each keypoint pj is tested against

every model mi.

Since not every keypoint pj semantically matches to ev-

ery CAD model mi, we reject correspondences based on

the compatibility prediction of our network. The thresh-

old for rejecting pj is determined by the Otsu thresholding

scheme [31]. In practice this method turned out to be much

more effective than a fixed threshold. After the filtering

there are N ≤ N0 (usually N ≈ 0.1N0) correspondence

pairs to be used for the alignment optimization.

Variational Optimization From the remaining Kfilter. ⊂
K Harris keypoints, we construct point-heatmap pairs

(pj , Hj) for each CAD model mi, with pj ∈ R
3 a point

in the scan and Hj : Ω→ [0, 1] a heatmap.

In order to find an optimal pose we construct the follow-

ing minimization problem:

cvox = Tworld→vox · Tmi
(a, s) · pj

f = min
a,s

N
∑

j

(1−Hj(cvox))
2 + λs‖s‖

2
2 (1)

where cvox is a voxel coordinate, Tworld→vox denotes a trans-

formation that maps world points into the voxel grid for

look-ups, a denotes the coordinates of the Lie algebra (for

rotation and translation), s defines the scale, and λs defines

the scale regularization strength. a, s compose a transfor-

mation matrix Tmi
= ψ(ami

, smi
):

ψ : R
6 × R

3 → R
4×4,

a, s 7→ expm

([

Γ(a1,2,3) a4,5,6
0 0

])

·

[

s 0
0 1

]

where Γ is the hat map, expm is the matrix exponential.

We solve Eq. 1 using the Levenberg-Marquardt (LM) al-

gorithm. As we can suffer from zero-gradients (especially

at bad initialization), we construct a scale-pyramid from the

heatmaps which we solve in coarse-to-fine fashion.

In each LM step we optimize over the incremental

change and update the parameters as following: T k+1
mi

←
φ(a∗, s∗) ·T k

mi
where a∗, s∗ are the optimal parameters. As

seen in Eq. 1, we add a regularization on the scale in order

to prevent degenerate solutions which can appear for very

large scales.

By restarting the optimization with different translation

parameters (i.e., varying initializations), we obtain multiple

alignments per CAD model mi. We then generate as many

CAD model alignments as required for a given scene in the

evaluation. Note, in a ground truth scene one unique CAD

model mi can appear in multiple locations e.g., chairs in

conference rooms.

Pruning Finally, there will be alignments of various CAD

models into a scene where a subset will be misaligned. In

order to select only the best alignments and prune potential

misalignments we use a confidence metric similar to [25];

for more detail, we refer to the appendix.

7. Results

7.1. Correspondence Prediction

To quantify the performance of correspondence heatmap

predictions, we evaluate the voxel-wise F1-score for a pre-

diction and its Gaussian-blurred target. The task is chal-

lenging and by design 2

3
test samples are false correspon-

dences, ≈ 99% of the target voxels are 0-valued, and only a
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base [+variations, ...] bath bookshelf cabinet chair display sofa table trash bin other class avg. avg.

+sym 46.88 44.39 40.49 64.46 26.85 56.26 47.15 38.43 24.68 43.29 48.01

+sym,+scale 51.35 45.46 45.24 66.94 29.88 64.78 48.30 38.00 28.65 46.51 50.85

+sym,+CP 59.32 51.93 55.11 70.99 41.58 66.77 53.74 43.39 42.93 53.97 60.44

+scale,+CP 45.24 45.85 47.16 61.55 27.65 51.92 41.21 31.13 29.62 42.37 47.64

+sym,+scale,+CP 56.05 51.28 57.45 72.64 36.36 70.63 52.28 46.80 43.32 54.09 60.43

+sym,+scale,+CP,+PT (3/3 fix) 57.03 50.63 56.76 70.39 39.74 65.00 52.03 46.87 41.83 53.36 58.61

+sym,+scale,+CP,+PT (1/3 fix) 60.08 58.62 56.35 73.92 44.19 75.08 56.80 45.78 46.53 57.48 63.94

Table 1: Correspondence prediction F1-scores in % for variations of our correspondence prediction network. We evaluate the

effect of symmetry (sym), predicting scale (scale), predicting compatibility (CP), encoder pre-training (PT), and pre-training

with parts of the encoder fixed (#fix), see Sec. 5 for more detail regarding our network design and training scheme.

single 1-valued voxel out of 323 voxels exists. The F1-score

will increase only by identifying true correspondences. As

seen in Tab. 1, our best 3D CNN achieves 63.94%.

Tab. 1 additionally addressed our design choices; in par-

ticular, we evaluate the effect of using pre-training (PT), us-

ing compatibility (CP) as a proxy loss (defined in Sec. 5.2),

enabling symmetry awareness (sym), and predicting scale

(scale). Here, a pre-trained network reduces overfitting, en-

hancing generalization capability. Optimizing for compati-

bility strongly improves heatmap prediction as it efficiently

detects false correspondences. While predicting scale only

slightly influences the heatmap predictions, it becomes very

effective for the later alignment stage. Additionally, incor-

porating symmetry enables significant improvement by ex-

plicitly disambiguating symmetric keypoint matches.

7.2. Alignment

In the following, we compare our approach to other

handcrafted feature descriptors: FPFH [33], SHOT [39], Li

et al. [25] and a learned feature descriptor: 3DMatch [43]

(trained on our Scan2CAD dataset). We combine these de-

scriptors with a RANSAC outlier rejection method to obtain

pose estimations for an input set of CAD models. A detailed

description of the baselines can be found in the appendix.

As seen in Tab. 2, our best method achieves 31.68% and

outperforms all other methods by a significant margin. We

additionally show qualitative results in Fig. 5. Compared to

state-of-the-art handcrafted feature descriptors, our learned

approach powered by our Scan2CAD dataset produces con-

siderably more reliable correspondences and CAD model

alignments. Even compared to the learned descriptor ap-

proach of 3DMatch, our explicit learning across the syn-

thetic and real domains coupled with our alignment op-

timization produces notably improved CAD model align-

ment.

Fig. 6 shows the capability of our method to align in an

unconstrained real-world setting where ground truth CAD

models are not given, we instead provide a set of 400 ran-

dom CAD models from ShapeNet [3].

Figure 5: Qualitative comparison of alignments on four different test ScanNet [7] scenes. Our approach to learning geometric

features between real and synthetic data produce much more reliable keypoint correspondences, which coupled with our

alignment optimization, produces significantly more accurate alignments.
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bath bookshelf cabinet chair display sofa table trash bin other class avg. avg.

FPFH (Rusu et al. [33]) 0.00 1.92 0.00 10.00 0.00 5.41 2.04 1.75 2.00 2.57 4.45

SHOT (Tombari et al. [39]) 0.00 1.43 1.16 7.08 0.59 3.57 1.47 0.44 0.75 1.83 3.14

Li et al. [25] 0.85 0.95 1.17 14.08 0.59 6.25 2.95 1.32 1.50 3.30 6.03

3DMatch (Zeng et al. [43]) 0.00 5.67 2.86 21.25 2.41 10.91 6.98 3.62 4.65 6.48 10.29

Ours: +sym 24.30 10.61 5.97 9.49 3.90 25.26 12.34 10.74 3.58 11.80 8.772

Ours: +sym,+scale 18.99 13.61 7.24 14.73 9.76 41.05 14.04 5.26 6.29 14.55 11.48

Ours: +sym,+CP 35.90 32.35 28.64 40.48 18.85 60.00 33.11 28.42 16.89 32.74 29.42

Ours: +scale,+CP 34.18 31.76 21.82 37.02 14.75 50.53 32.31 31.05 11.59 29.45 26.75

Ours: +sym,+scale,+CP 36.20 36.40 34.00 44.26 17.89 70.63 30.66 30.11 20.60 35.64 31.68

Ours: +sym,+scale,+CP,+PT (3/3 fix) 37.97 30.15 28.64 41.55 19.51 57.89 33.85 20.00 17.22 31.86 29.27

Ours: +sym,+scale,+CP,+PT (1/3 fix) 34.81 36.40 29.00 40.60 23.25 66.00 37.64 24.32 22.81 34.98 31.22

Table 2: Accuracy comparison (%) on our CAD alignment benchmark. While handcrafted feature descriptors can achieve

some alignment on more featureful objects (e.g., chairs, sofas), they do not tolerate well the geometric discrepancies between

scan and CAD data – which remains difficult for the learned keypoint descriptors of 3DMatch. Scan2CAD directly addresses

this problem of learning features that generalize across these domains, thus significantly outperforming state of the art.

Figure 6: Unconstrained scenario where instead of having a

ground truth set of CAD models given, we use a set of 400

randomly selected CAD models from ShapeNetCore [3],

more closely mimicking a real-world application scenario.

8. Limitations

While the focus of this work is mainly on the alignment

between 3D scans and CAD models, we only provide a ba-

sic algorithmic component for retrieval (finding the most

similar model). This necessitates an exhaustive search over

a set of CAD models. We believe that one of the immediate

next steps in this regard would be designing a neural net-

work architecture that is specifically trained on shape sim-

ilarity between scan and CAD geometry to introduce more

efficient CAD model retrieval. Additionally, we currently

only consider geometric information, and it would also be

intresting to introduce learned color features into the cor-

respondence prediction, as RGB data is typically higher-

resolution than depth or geometry, and could potentially im-

prove alignment results.

9. Conclusion

In this work, we presented Scan2CAD, which aligns a set

of CAD models to 3D scans by predicting correspondences

in form of heatmaps and then optimizes over these corre-

spondence predictions. First, we introduce a new dataset of

9DoF CAD-to-scan alignments with 97607 pairwise key-

point annotations defining the alignment of 14225 objects.

Based on this new dataset, we design a 3D CNN to predict

correspondence heatmaps between a CAD model and a 3D

scan. From these predicted heatmaps, we formulate a vari-

ational cost minimization that then finds the optimal 9DoF

pose alignments between CAD models and the scan, en-

abling effective transformation of noisy, incomplete RGB-

D scans into a clean, complete CAD model representation.

This enables us to achieve significantly more accurate re-

sults than state-of-the-art approaches, and we hope that our

dataset and benchmark will inspire future work towards

bringing RGB-D scans to CAD or artist-modeled quality.
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