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Abstract We present the first version of a new tool to scan
the parameter space of generic scalar potentials, SCANNERS
(Coimbra et al., SCANNERS project., 2013). The main goal
of SCANNERS is to help distinguish between different pat-
terns of symmetry breaking for each scalar potential. In this
work we use it to investigate the possibility of excluding
regions of the phase diagram of several versions of a com-
plex singlet extension of the Standard Model, with future
LHC results. We find that if another scalar is found, one
can exclude a phase with a dark matter candidate in definite
regions of the parameter space, while predicting whether a
third scalar to be found must be lighter or heavier. The first
version of the code is publicly available and contains various
generic core routines for tree level vacuum stability analysis,
as well as implementations of collider bounds, dark matter
constraints, electroweak precision constraints and tree level
unitarity.

1 Introduction

The recent discovery of a scalar particle [2, 3] at CERN’s
Large Hadron Collider (LHC) has boosted the activity in
probing extensions of the scalar sector of the Standard
Model (SM). So far, the experimental results indicate that
this scalar is compatible with the SM Higgs boson. How-
ever, many of its extensions are also compatible with the
present experimental results. In fact, we know that several of
them will never be completely disproved even if the Higgs
has all the properties one expects from a SM Higgs. The
limit where this occurs is known as the decoupling limit and
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is characterised by a light Higgs with SM couplings to all
other known particles while the remaining scalars are very
heavy. It is possible though that other scalars are waiting to
be found at the LHC or that a more precise measurement of
production cross sections and branching ratios of the newly
found 125 GeV scalar reveals meaningful deviations from
the SM predictions. As one needs to be prepared to address
that scenario we have developed a new code to deal with the
vacuum structure of scalar extensions of the SM. The code
presented in this work, SCANNERS [1], is intended to con-
tribute to the analysis of the different scenarios that can be
suggested by the LHC experiments.

In the SM, electroweak symmetry breaking (EWSB) is
achieved by one complex SU(2)L scalar doublet. Although
the pattern of EWSB can be correctly reproduced by this one
scalar doublet, the SM is not able to accommodate a number
of experimental results such as the existence of dark matter
or the measured baryon asymmetry of the universe. Adding
a scalar singlet to the potential could provide a viable dark
matter candidate [4–14] as well as means of achieving elec-
troweak baryogenesis by allowing a strong first-order phase
transition during the era of EWSB [15–19]. Although mini-
mal, this extension provides a rich collider phenomenology
leading to some distinctive signatures that can be tested at
the LHC [20–27].

In this work we focus on the conditions on the parame-
ters that lead to the existence of a global minimum in the
scalar potential. However, contrary to previous works, we
impose these conditions not to single out a particular model
(or phase), but rather use that information to distinguish be-
tween possible coexisting phases. This way, we expect to
identify properties of the models by classifying the possible
phases as function of the parameter space point. We have
also included in the code the most relevant theoretical and
experimental constraints both from dark matter and collider

mailto:rita.coimbra@coimbra.lip.pt
mailto:msampaio@ua.pt
mailto:rsantos@cii.fc.ul.pt


Page 2 of 15 Eur. Phys. J. C (2013) 73:2428

searches. Our goal is therefore to investigate the possibil-
ity of using measured experimental quantities (e.g. the mass
and branching ratios of a new light scalar at the LHC), to au-
tomatically exclude one of the possible phases (e.g. a phase
with a dark matter candidate) using the phase diagram of
the model. To that purpose we scan over the entire parame-
ter space subject to the most relevant constraints and plot the
results in projections that include physical quantities when-
ever possible.

As the ultimate goal of SCANNERS is to serve as a tool
that can be used for general scalar sectors, the core rou-
tines of the code can already be used for some larger ex-
tensions of the scalar sector in terms of its field content.
The core includes generic local minimum generation rou-
tines (with Goldstone/flat direction identification as well as
a-priori curved directions/symmetries) and tree level unitar-
ity check routines. However, since the first version of the
code has been tested extensively with the complex singlet
models we present here, routines for testing electroweak ob-
servables can be used only for extensions with n-singlets,
and global minimum and boundedness from below routines
are defined on a model by model basis by the user. The same
naturally applies for some of the analysis of experimental
bounds (since such analysis will depend on the model that is
being analysed) though some data tables from several exper-
iments are generic and included in the core. We expect in the
near future to automatise global minimum and boundedness
from below routines to be in the core of the program. Also
note that some tasks, such as the choice of experimental
bounds analysis and model specific theoretical constraints,
are naturally user dependent. For this reason, some routines
of the program are editable by the user, as well as an in-
put Mathematica file where the model is specified. Details
on the structure of the program and on how to use it can be
found in [1] (see also Sect. 3).

The structure of the paper is the following. In Sect. 2 we
describe the scalar potential of the models we will study.
We derive the conditions to be fulfilled for the minimum to
be global at tree level for those specific models, based on
symmetries, and classify the various phases for each model.
In Sect. 3 we address the problem of efficiently performing
a scan of the parameters space in a more general perspec-
tive. We propose a method to generate a local minimum by
generating vacuum expectation values (VEVs), mixings and
masses uniformly, and obtaining some of the (dependent)
couplings from the linear systems of equations which char-
acterise the minimum. In Sect. 3.2 we discuss the generic
implementation of tree level unitarity bounds. In Sect. 4 we
implement constraints from various experimental sources,
such as electroweak precision observables, LEP bounds,
dark matter bounds, and constraints from Higgs searches at
the LHC. Finally, we conclude with a discussion of our main
results in Sect. 5.

2 The models

We consider an extension of the scalar sector of the SM that
consists on the addition of a complex singlet field to the SM
field content. Our starting point is the most general renor-
malisable model, invariant under a global U(1) symmetry.
We then consider two models with explicit breaking of this
symmetry, but where Z2-type symmetries are preserved for
one or two of the components of the complex scalar singlet.
Each model is classified according to phases associated with
the spontaneous symmetry breaking pattern of the vacuum.

Considering the allowed parameter space, each model
can exhibit more than one global minimum with the cor-
rect pattern of EWSB for fixed couplings. In these models,
the mixing matrix is usually lower dimensional, allowing for
one or two unstable scalar bosons that could be detected at
the LHC and at future colliders, together with two or one
dark matter candidates, respectively. However, if all Z2 sym-
metries are broken we can end up with three unstable scalars
(and no dark matter candidate) complicating the signatures
and making a clear identification of the Higgs boson a much
more difficult task. Our aim is to investigate the parameter
space of these extensions as to identify the properties of the
models which are not yet excluded by theoretical and ex-
perimental constraints. Furthermore, we want to investigate
the possibility of, given a set of experimental measurements
related to the scalar sector at the LHC, that we can automat-
ically use the phase diagram of the model to exclude one of
the phases, e.g. a phase with dark matter or a phase where
all the scalars are mixed.

The scalar field content of the model is as follows. There
is the SM Higgs doublet H which is a singlet under SU(3)C
and is in the fundamental representations of SU(2)L ×
U(1)Y , i.e. (1,2,1/2). We add a complex scalar field S =
S + iA which is a singlet under the SM gauge group. This
is equivalent to adding two real singlet fields. Several mod-
els have been studied in the literature by imposing special
symmetries on this scalar sector. Our starting point are the
models discussed in [25], where the Higgs potential has a
global U(1) symmetry in S. Besides spontaneous breaking
of this symmetry by the vacuum, we can break it explicitly
at various levels, by soft linear and quadratic terms which
do not generate infinities through renormalisation [25]. The
scalar potential is then (soft breaking terms in parenthesis)

V = m2

2
H †H + λ

4

(
H †H

)2 + δ2

2
H †H |S|2

+ b2

2
|S|2 + d2

4
|S|4 +

(
b1

4
S

2 + a1S + c.c.

)
. (1)

Observe that in general one can rotate away one of the
phases of either a1 or b1, by a constant field redefinition.
However, for convenience, we specify such phase choices
later.
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We must ensure that the potential is bounded from below
and in this simple model an analytic condition can be found
easily. Noting that the quartic operators of V are quadratic
forms in the real positive quantities H †H and |S|2, posi-
tive definiteness of such forms is equivalent to boundedness
from below and implies

λ > 0 ∧ d2 > 0 ∧ δ2 > −√
λd2. (2)

Before specifying the models, we note that the stationarity
conditions are:

∂V

∂H †
= 0 ⇔ H

(
m2

2
+ λ

2
H †H + δ2

2
|S|2

)
= 0,

∂V

∂S†
= 0 ⇔ S

(
δ2

2
H †H + b2

2
+ d2

2
|S|2

)
+ b∗

1

2
S

† + a∗
1 = 0,

(3)

which have no closed form solution in general. We will ex-
pand the Higgs doublet and the complex scalar field around
the vacuum according to

〈H 〉 = 1√
2

(
0
v

)
, 〈S〉 = 1√

2
(vS + i vA) (4)

where the Higgs Vacuum Expectation Value (VEV) is v =
246 GeV.

As previously stated, simpler versions of this model were
already discussed in the literature. In most cases a specific
model is singled out by imposing additional symmetries on
the model. Because one of the main motivations for adding
a scalar singlet to the SM is to provide a dark matter candi-
date, models with one or two dark matter candidates are then
analysed and confronted with experimental results. Here,
we are interested in applying our new tool SCANNERS to
various versions of such models, while applying the latest
experimental bounds, together with theoretical constraints.
The points that pass all constraints during the scan are then
classified according to the phase they are in (see classifi-
cation below) and plotted, whenever possible, in a physi-
cal projection of the parameter space, such as a mass of a
new particle or a measurable rotation angle between group
and mass eigenstates. A physical measurement allows us in
some cases to discriminate a phase with dark matter can-
didates from one with no dark matter candidates. Conse-
quently, the phase which is realised for a given model, can
in such cases be decided by experiment.

Theoretically, the independent models and their phases
are classified according to their symmetry group and spon-
taneous breaking, respectively, as follows:

– Model 0, U(1) symmetry with up to two dark matter can-
didates. This is obtained by imposing a U(1) symmetry
on the complex singlet field, which eliminates the soft
breaking terms, thus a1 = b1 = 0. There are two possible
phases:

1. 〈S〉 = 0 at the global minimum (symmetric phase).
Then we have two degenerate dark matter particles.
In this scenario the model is equivalent to two inde-
pendent real singlets of the same mass and quantum
numbers.

2. 〈S〉 �= 0 at the global minimum (broken phase). The
U(1) symmetry is spontaneously broken, then there
is an extra scalar state mixing with the Higgs and a
(massless) Goldstone boson associated with the break-
ing of the symmetry. Since the phase of the complex
singlet is unobservable, without loss of generality we
can take 〈S〉 �= 0 and 〈A〉 = 0 for such phase and
A is the dark Goldstone particle. This phase is how-
ever strongly disfavoured by observations of the Bullet
Cluster [7, 25, 28, 29]. These observations can be used
to constrain the mass of the dark matter particle as a
function of the value of δ2. Hence, unless δ2 is vanish-
ingly small, a zero mass dark matter particle is ruled
out.

The purpose of this article is two fold: (i) describe a way
to use the program to compare phases of a model, (ii) ap-
ply the program to a variety of simples cases. Since in
Model 0 the broken phase is not allowed, this does not
address purpose (i). Furthermore, the unbroken phase has
a similar couter-part in Model 1 (unbroken phase—see
below). Thus we will not study Model 0 in the remainder
of our discussion.

– Model 1, Z2 × Z
′
2 symmetry with up to two dark matter

candidates. This model is obtained by imposing a separate
Z2 symmetry for each of the real components of the com-
plex singlet. The Z2 symmetries imply that the soft break-
ing couplings are a1 = 0 and b1 ∈ R (6 real couplings in
the scalar potential & no other couplings are generated
through renormalisation). Specialising the minimum con-
ditions (3) we obtain the following qualitatively different
possibilities for minima with v2 �= 0:

1. 〈S〉 = 0, no mixing and two dark matter candidates
(symmetric phase).

2. 〈S〉 = 0 or 〈A〉 = 0, a singlet component mixed with
the Higgs doublet and a dark matter candidate (spon-
taneously broken phase). One can show, by noting
that swapping S ↔ A only changes the sign of b1,
that without loss of generality we can take 〈A〉 = 0,
while still covering the full parameter space (this is
so because b1 ∈ R, and the potential only depends on
squares of the VEVs). This is true in our scans only
because we will adopt the strategy of first generating
a locally viable minimum and, only after, to check all
possibilities for minima below the one generated.

– Model 2, One Z
′
2 symmetry with up to one dark matter

candidates. This is obtained by imposing a Z
′
2 symme-

try on the imaginary component A. Then the soft break-
ing couplings must be both real, i.e. a1 ∈ R and b1 ∈ R.



Page 4 of 15 Eur. Phys. J. C (2013) 73:2428

Looking at the minimum conditions we find the following
cases:

1. 〈A〉 = 0, i.e. mixing between h (SM Higgs doublet
fluctuation) and S only (symmetric phase). In this case
we can take 〈S〉 ∈ R

+ as long as a1 runs through posi-
tive and negative values.

2. 〈S〉 �= 0, i.e. both VEVs non-zero and mixing among
all fields (broken phase).

To summarise this classification, we list the three possible
models (labelled by their symmetry group) in Table 1, with a
description of the particle content of the two possible phases
(symmetric or broken) as well as the VEV/symmetry break-
ing pattern. Once we have picked one of the cases above, we
have to check for all possible minima by evaluating the po-
tential at all possible stationary points. A list of the possible
cases is provided in Appendix A.

We have chosen to start the studies with our new tool
with these models, because they already have a great diver-
sity of physically different phases (which provide some in-
teresting results—see Sect. 5), while allowing us to test the
routines of the code we propose to develop. We have re-
produced several results presented in the literature with a
very good agreement. In the next sections, we describe the
SCANNERS scanning strategy and the main tree level theo-
retical constraints to generate a stable vacuum with the cor-
rect symmetry breaking pattern.

3 The scanning method

To implement the scan of the parameter space of the models,
we have developed a dedicated tool SCANNERS which can
be used for more generic potentials. Our method is based
on a strategy of reducing as many steps as possible to linear
algebra, since these are computationally less expensive. In
its present form, the program requires the user to decide the
symmetry breaking pattern to scan over, as well as a choice
of ordering of the couplings in the theory (details below).
This is done in a Mathematica notebook which generates
an input file for the C++ program. Before describing the
method in detail, let us discuss the general idea.

Table 1 Phase classification for the three possible models

Model Phase VEVs at global minimum

U(1) Higgs + 2 degenerate dark 〈S〉 = 0

2 mixed + 1 Goldstone 〈A〉 = 0 (/U(1) → Z
′
2)

Z2 × Z
′
2 Higgs + 2 dark 〈S〉 = 0

2 mixed + 1 dark 〈A〉 = 0 (/Z2 × Z
′
2 → Z

′
2)

Z
′
2 2 mixed + 1 dark 〈A〉 = 0

3 mixed 〈S〉 �= 0 (/Z′
2)

A possible way of performing the scan for a generic
scalar potential (strategy 1), and determining the spectrum
of scalars is: (i) scan the couplings λa uniformly in cho-
sen ranges, (ii) determine all stationary points by solving
the (non-linear) stationarity conditions, (iii) check if any are
minima and choose the global one, (iv) if yes, accept the
point, compute the mass matrix, diagonalise and check if the
masses of the scalars (m2

i ) and mixing matrix (Mij ) are con-
sistent with the symmetry breaking imposed. This method
contains two steps which are quite expensive, computation-
ally, which are executed before we know if the minimum has
the desired properties. The first is the determination of the
stationary points. For a generic multi-scalar model this in-
volves finding the solutions of a polynomial system of equa-
tions in the VEVs.1 The second, not as expensive, is the di-
agonalisation of the mass matrix at the global minimum.

Our alternative strategy (strategy 2) relies on two obser-
vations. First, a generic scalar potential V (φi) (where the
φi are the real fields used to decompose the scalar multi-
plets/singlets into real components), is a linear form in the
couplings λa

V (φi) = Va(φi)λa, (5)

where (for renormalisable models) Va(φi) are monomials in
the fields, of degree up to four. Second, in strategy 1, the
couplings λa are taken as independent parameters, and the
VEVs, masses and mixing parameters are determined. How-
ever, any independent set of parameters is equally good to
label a certain point in parameter space, so if instead we
use VEVs, masses and mixing matrix elements as the pa-
rameters to be scanned over, then the determination of de-
pendent couplings λa becomes a linear algebra problem due
to the linearity property of (5). While this choice is model-
dependent and not unique, once the user has decided the
VEV pattern and how to order the couplings, our procedure
is well defined since all transformations are systems of lin-
ear equations (see details in Sect. 3.1).

Finally, this set of parameters (VEVs, masses and mix-
ings) is more directly related to physical properties of the
scalar states, so it is a more natural choice of parametrisa-
tion.

3.1 Generation of a local minimum

The details of the method we use are as follows. We first
want to express the Lagrangian in terms of physical propa-
gating scalar degrees of freedom Hi with masses mi , which
are the fluctuations around a minimum with VEVs vi . The

1The models we study in the next sections offer the advantage of pro-
viding closed form solutions for all stationary points, which can be
used to test the core routines of the program for consistency.
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most general expansion of the original fields such that the
kinetic terms remain canonical is then

φi = vi + MijHj (6)

where Mij is a generic rotation matrix, and we have assumed
that the original kinetic terms for the φi fields are canoni-
cally normalised. The (linear) stationarity conditions (vac-
uum conditions) are

∂V

∂φi

∣∣∣
∣
vi

= 0 ⇔ 〈∂iV 〉aλa = 0 (7)

where we have defined the derivative of the a-th operator
with respect to the field φi evaluated at the VEVs by 〈∂iV 〉a .
Such object is as matrix with indices {i, a} acting on a vec-
tor of couplings λa . These conditions are independent of the
mixing matrix. If we choose values for the VEVs (by scan-
ning over an interval or fixing some of them such as the SM
Higgs VEV), this system of equations can be analysed as
to identify a sub-set of couplings to be eliminated in favour
of the remaining couplings (let them be grouped in a sub-
vector λa1 where the sub-index a1 runs only over dependent
couplings). Otherwise, if the system is over-determined we
must reject such choice of VEVs.

The dependent couplings λa1 can be eliminated in favour
of the remaining ones, whose subset we denote λa2 .2 This
elimination is represented in a matrix form as follows

λa1 = Λa1a2λa2 (8)

where the matrix Λa1a2 can be found numerically through
Gaussian elimination using the system (7). This procedure
amounts to replacing the λa1 couplings by the VEVs that
have been scanned over. Thus, the number ordering of the
couplings λa chosen by the user in the Mathematica input
file, determines which couplings are eliminated in this step.

The vacuum conditions can be implemented in any VEV
of some operator O acting on the potential, using the matrix
Λa1a2 :

〈OV 〉 = (〈OVa1〉Λa1a2 + 〈OVa2〉
)
λa2 ≡ ÔVa2λa2, (9)

where in the last step we have defined the “VEV reduced”
action of O on the potential, ÔVa2 , which contracts (lin-
early) with the sub-vector of couplings λa2 .

The second step is to impose that the stationary point is a
minimum, which is done by assuming non-negative masses
squared. Thus we write the quadratic derivative conditions

2Note: One can always favour keeping couplings of lower dimensional
operators as independent, since they are usually easier to interpret in
terms of observable quantities. Or alternatively they can be ordered
according to any other criterion.

which involve the masses and mixing matrix elements, i.e.

∂2V

∂Hi∂Hj

∣∣∣∣
Hi=0

= MikMjl

〈̂
∂2
klV

〉
a2

λa2 = δijm
2
î

⇔ MT
〈̂
∂

2
V

〉
a2

Mλa2 = Diag
(
m2

i

)
(10)

where we have used Eqs. (6) and (9), and in the last line we
have replaced Latin indices by a bold face matrix notation.
The hatted index î denotes no summation over i. For a given
model, the mass matrix before diagonalisation

〈̂
∂

2
V

〉
a2

λa2, (11)

may have eigen-directions which are independent of the val-
ues of the couplings λa2 . In such case we say that there
are “a priori” eigen-directions at the minimum. This can be

tested by finding the eigen-vectors of a matrix 〈̂∂2
V 〉a2 for

fixed a2, and then check which eigen-vectors remain eigen-
vectors of the other matrices with different a2. We may then
find “a priori” flat eigen-directions (which would be Gold-
stone bosons) or curved eigen-directions (which would be
massive particles).3 Once those directions are identified, the
form of the mixing matrix is restricted to a block diagonal
form. The flat directions fix the mass of the corresponding
particles to zero regardless of λa2 , so effectively they elim-
inate a set of conditions from system (10). For each curved
eigen-directions, there is a condition with the mass squared
of the particle on the right hand side. For the block where
mixing occurs, since the mixing matrix is symmetric, we
have n(n+1)/2 conditions (n is the dimension of the block).
Along the diagonal of the block, n conditions contain a mass
squared on the right hand side. The n(n − 1)/2 conditions
off the diagonal conditions contain a zero on the right hand
side.

At this stage the undetermined parameters are: the λa2

couplings; the mixing matrix elements Mij ; and the physi-
cal masses m2

i . Because we want to avoid solving non-linear
equations, we choose to generate first the mixing matrix uni-
formly.4 Then we are left with a set of conditions relating
λa2 with the masses m2

i , which can be re-arranged as a ho-
mogeneous system. If we define the vector of parameters
which are still undetermined by vT = (λa2,m

2
i ) such homo-

geneous system is

Dv = 0 (12)

where the matrix D is read out from (10). Using again Gaus-
sian elimination we can solve for a sub-set of parameters of

3This procedure can be continued until all “a priori” eigen-directions
are found.
4A rotation matrix can be generated with uniform probability with re-
spect to the Haar measure, by generating its entries with a Gaussian
distribution and then performing a QR decomposition to extract it [30].
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v, as a function of another subset which we are left to scan
over (if the system is over-determined we must reject the
vacuum).

With this procedure, we end up generating a point in pa-
rameter space, and all the properties of the physical states
are determined (such as masses and mixing matrices), hav-
ing avoided the problem of solving a system of non-linear
equations. The price to pay is that we have delayed check-
ing if the minimum is global. However, the advantage of this
procedure is that we do not spend any time in points of pa-
rameter space where there is no stationary point with the cor-
rect properties. Furthermore, we can add to this procedure
more constraints on the local minimum (if they are compu-
tationally quick to check), before checking if it is global.
If we use strategy 1, the first steps involve a computation-
ally intensive non-linear problem, which will be wasted each
time a point in parameter space is rejected, whereas with
strategy 2 we generate a local minimum with the desired
properties quickly and only then do we have to perform the
computationally intensive steps.

3.2 Tree level unitarity

An important constraint on the region of parameter space
to be scanned over is given by imposing tree level unitar-
ity at high energies. This was pioneered by Lee, Quigg and
Thacker in [31]. It was shown that the Goldstone high en-
ergy theorem applies and all we need is to compute all the
scalar quartic interaction amplitudes, describing 2 → 2 pro-
cesses between any (suitably normalised) scalar two particle
states. The basis of such states for N real scalars is

⎛

⎜⎜⎜⎜
⎜⎜
⎝

. . .

. . .

. . .

|Φi〉
. . .

. . .

⎞

⎟⎟⎟⎟
⎟⎟
⎠

≡

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

1√
2! |φ1φ1〉

. . .
1√
2! |φNφN 〉
|φ1φ2〉

. . .

|φN−1φN 〉

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

(13)

where we have emphasised the 1√
2! term which arises from

the normalisation of harmonic oscillator (indistinguishable)
2-particle states, and the second block contains all the pair-
ings of different field states. Then, one constructs an s-wave
amplitude matrix

a
(0)
ij = 1

16π
〈Φi |iT(0)|Φj 〉 = 1

16π

∑

a4

Pa4√
ni !nj !

λa4 (14)

where T(0) is the J = 0 contribution to the usual transition
matrix. In the second step we have used the Feynman rules
for the scalar sector to express each matrix element as a sum
over quartic vertices labelled by the index a4. If the |Φi〉
state contains identical particles, ni = 2 otherwise it is one.

Pa4 is defined as the product of the factorials of the pow-
ers of each field in the corresponding monomial Va4(φ). For
a generic scalar potential, (14) yields real coefficients. Tree
level s-wave unitarity, is then implemented by requiring that
the absolute value of each eigenvalue of a

(0)
ij is smaller than

1/2. This matrix can be computed efficiently at each point
of parameter space, and diagonalised, as to check if unitarity
is preserved. For the complex singlet model we are consid-
ering, one can write down exactly the most restrictive con-
ditions which are

|λ| ≤ 16π ∧ |d2| ≤ 16π ∧ |δ2| ≤ 16π

∧
∣∣∣∣
3

2
λ + d2 ±

√(
3

2
λ + d2

)2

+ d2
2

∣∣∣∣ ≤ 16π, (15)

which correctly reduces to the SM tree level unitarity bound
when d2 = δ2 = 0.

4 Constraints and phenomenological potential

4.1 Electroweak precision observables

Another source of constraints comes from electroweak pre-
cision observables. Here we focus on the S,T ,U vari-
ables [32, 33]. For an extended sector with scalar singlets
coupling only to the Higgs doublet, the only extra contribu-
tions beyond the SM are in the self energies ΠZZ(q2) and
ΠWW(q2) for the Z and W particles respectively. Using the
general expressions in [24], one can show that the variations
with respect to the SM contributions from a single Higgs
doublet are

ΔS = Δ

[∑

j

(Mhj )
2

π

{
f

(
m2

j

M2
Z

)
− g

(
m2

j

M2
Z

)}]
(16)

ΔT = Δ

[∑

j

(Mhj )
2

4πs2
W

{
g

(
m2

j

M2
W

)
− 1

c2
W

g

(
m2

j

M2
Z

)}]
(17)

ΔU = Δ

[∑

j

(Mhj )
2

π

{
f

(
m2

j

M2
W

)
− g

(
m2

j

M2
W

)

− f

(
m2

j

M2
Z

)
+ g

(
m2

i

M2
Z

)}]
(18)

where the terms inside the brackets are to be evaluated with
the values of the mixing matrix elements Mhj that represent
the mixing between the SM Higgs and the new singlet field
components. The masses m2

i correspond to the new scalar
physical eigenstates. The functions f (Y ) and g(Y ) are de-
fined as

f (Y ) = −1

4
Y logY +

∫ 1

0
dx

[
−3

2
+

(
Y

2
+ 1

)
x − x2

2

]
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× log
(
(1 − x)2 + xY

)
(19)

g(Y ) = Y

4

(
logY

1 − Y
− 1

2

)
. (20)

Denoting the variation of the three observables in a vector
ΔOi ≡ Oi − OSM

i → (ΔS,ΔT,ΔU), then consistency with
the electroweak fit within a 95 % C.L. ellipsoid is imple-
mented by requiring Δχ2 < 7.815 with

Δχ2 ≡
∑

ij

[
ΔOi −ΔO(0)

i

][(
σ 2)−1]

ij

[
ΔOj −ΔO(0)

j

]
(21)

where the covariance matrix is defined in terms of the corre-
lation matrix, ρij , and the standard deviation, σi , of each pa-
rameter through [σ 2]ij ≡ σiρij σj . To test these observables,
we have used results for the SM global fit of the Gfitter col-
laboration [34] with a Higgs mass5 mh = 120 GeV and a top
mass mt = 173.1 GeV. Their results are:

S = 0.02 ± 0.11 ⇒ ΔS(0) = −0.03 ± 0.11

T = 0.05 ± 0.12 ⇒ ΔT (0) = 0.03 ± 0.12 (22)

U = 0.07 ± 0.12 ⇒ ΔU(0) = 0.06 ± 0.12

where in the last line we have used the values SSM = 0.05,
TSM = 0.02, USM = 0.01 computed for the SM contribution
from a single Higgs with mh = 120 GeV, using the expres-
sions in [24] specialised to the SM. The correlation matrix
is

ρij =
⎛

⎝
1 0.879 −0.469

0.879 1 −0.716
−0.469 −0.716 1

⎞

⎠ . (23)

4.2 LEP and LHC bounds

An important set of experimental constraints comes from
collider searches for the Standard Model Higgs boson. The
standard strategy is to compute, for each search channel, the
predicted signal strength defined as

μi = σNew(Hi)BrNew(Hi → XSM)

σSM(hSM)BrSM(hSM → XSM)
(24)

where σNew(Hi) and σSM(hSM) are the production cross sec-
tions of Hi and the SM Higgs respectively, both evaluated
at the mass of Hi ; BrNew(Hi → XSM) is the Hi branch-
ing ratio (BR) to SM particles and BrSM(hSM → XSM) is
the SM Higgs BR to SM particles evaluated at the mass of
Hi . In the models we are considering, the scalars couple
to the SM particles always through the same combination
h = MT

hiHi = MihHi . Therefore, both the production cross

5Note: The latest fit central values differ only very slightly to these
numbers so we do not expect a noticeable difference.

sections and the decay widths are just rescaled by the factor
M2

ih. We can then write μi as

μi = M2
ih

BrNew(Hi → XSM)

BrSM(hSM → XSM)
. (25)

However, because there are new particles involved, the ratio
of BRs is now

BrNew(Hi → XSM)

BrSM(hSM → XSM)

= M2
ihΓ (hSM → XSM)

M2
ihΓ (hSM → XSM) + ∑

Γ (Hi → new scalars)
,

(26)

where the term
∑

Γ (Hi → new scalars) is only present
when the channels for which the SM Higgs decays to the
new scalars are open, and once again Γ (hSM → XSM) de-
notes the SM Higgs width evaluated at the mass of Hi . We
only consider two-body final states for the Higgs boson de-
caying to other scalars. Then, when kinematically allowed,
the decay widths for a process of the type Hi → HjHj and
Hi → HjHk are given respectively by

Γ (Hi → HjHj ) = g2
ijj

32πmi

√√√√1 − 4m2
j

m2
i

(27)

Γ (Hi → HjHk) = g2
ijk

16πmi

√

1 − (mj + mk)2

m2
i

×
√

1 − (mj − mk)2

m2
i

(28)

where gijj , gijk are the coupling strengths between the cor-
responding scalars i, j, k and mj is the mass of the scalar
state Hj .

The combined LEP data [35] from the four LEP collab-
orations sets a 95 % confidence level upper bound on the
HiZZ coupling in non-standard models relative to the same
coupling in the SM, through the quantity

χ2
i =

[
gBSM

HiZZ

gSM
HZZ

]2

BrNew(Hi → ZZ) = μiBrSM(hSM → ZZ)

(29)

where gBSM
HiZZ is the non-standard HiZZ coupling while

gSM
HZZ stands for the corresponding SM coupling. In the last

line we have related this quantity to the signal strength μi

for this particular channel, as defined in Eq. (25). We apply
the LEP limits for each scalar mass eigenstate Hi in the bb̄

and τ+τ− decay channels separately.
With the recent discovery of a Higgs like boson by the

ATLAS and CMS collaborations, we now have a very strong
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constraint on BSM models. In any extension of the SM one
of the scalars is bound to have a mass of approximately
125 GeV. At the same time both LHC experiments have also
constrained any new scalar couplings to the SM particles,
that is, they have provided us an exclusion region for μi as
function of the mass of the scalar Hi . These bounds are also
included in the program and the details are as follows. We
assume a Higgs boson with mass mh = 125 GeV, and allow
for a signal strength μi in the interval 1.1 ± 0.4 [36]. In the
mass regions where a scalar particle is excluded, we apply
the 95 % CL combined ATLAS upper limits on μi as a func-
tion of mi [36] for all other non 125 GeV scalars, as long as
their production is allowed at the LHC.

4.3 Dark matter experimental bounds

We have applied the limits on the total dark matter relic den-
sity from the WMAP 7-year measurements of cosmic mi-
crowave background (CMB) anisotropies [37]

Ωcdmh2 = 0.112 ± 0.006 (30)

where h is the Hubble constant (h = 0.704 ± 0.025 in units
of 100 km/Mpc/s). We have calculated numerically the relic
density for the DM candidate with the software package
micrOMEGAS [38, 39]. We have allowed the contribution
from the dark matter candidate in each model to be below
the limit for the relic density, taking into account that there
could be another DM contributor.

Another important constraint on these models is the elas-
tic cross section from DM scattering off nuclear targets. The
most recent direct detection DM experiments have placed
limits in the spin-independent (SI) scattering cross section
(σSI) of weakly interacting massive particles (WIMPS) on
nucleons. The most restrictive upper bound on the SI elastic
scattering of a DM particle is the one from XENON100 [40].
In SCANNERS we have included the limits of σSI as a func-
tion of the dark matter mass as presented in [40].

In these singlet models, the scattering cross section of the
dark matter candidate with a proton target is given by [41]

σSI = m4
p

2πv2

∑

i

1

(mp + mi)2

[∑

j

M2
jhgijj

m2
j

]2

×
(

fpu + fpd + fps + 2

27
(3fG)

)2

(31)

where mp is the proton mass, v = 246 GeV is the SM-Higgs
VEV and fpi are the proton matrix elements with central
values [42]:

fpu = 0.020, fpd = 0.026,

fps = 0.118, fG = 0.836.
(32)

The dominant contribution for SI scattering comes from t-
channel scalar exchange. We note that the cross-sections for
scattering off protons is very similar to the one for neutrons.
Therefore we present only the results for the scattering off
proton targets. Finally we should mention that we have used
micrOMEGAS [38] to perform an independent calculation
of the cross sections and that we have found a very good
agreement with our result. We have written the cross section
expressions for the models considered in Appendix B.

5 Discussion

In this section we analyse the results of full scans over all
parameter space, for the various phases of each model. We
focus on models 1 and 2, which we denote by cSM1 and
cSM2 respectively. We have performed two main scans for
each model. One with a smaller hyper-cubic box in param-
eter space to allow for a better resolution of the region be-
ing scanned over, and another wider scan to check which
boundaries did not change significantly. Unless stated other-
wise, we always use the wider scan.6 We will also present
a scan with some of the constraints removed to clarify the
appearance of certain boundaries in the allowed regions of
parameter space.

We start by presenting some results for model 1 (cSM1)
where we label the phase with two dark matter candidates
as “2DM” and the phase with only one dark matter candi-
date by “1DM”. The key of all figures contains an extra la-
bel for each colour of the points, indicating whether all the
bounds/constraints discussed in previous sections have been
included, and when not, the corresponding constraints that
have been removed, are indicated.

In Fig. 1 we show two particular projections in parameter
space which show regions which are exclusive of a given
physical phase. On the left panel we display mheavy as a
function of mD,light where mD,light is the mass of the light-
est dark matter particle and mheavy is the mass of the other
non-SM scalar; on the right we show mheavy − mD,light as a
function of mD,light. Note that the heavy scalar is in fact a
dark matter candidate in the phase “2DM”.

There are regions exclusive to the phase with two dark
matter candidates, and also very small regions where just
one dark matter state is possible. A measurement of the mass
of a dark matter candidate could give us a hint on the phase
the model is in. However, even if it is possible in some cases
to distinguish between phases with actual physical measure-
ments, it is rather hard to discriminate between phases in
model 1, even more so because in some regions it requires

6The exact ranges of the scans that we have performed are presented in
Appendix C.
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Fig. 1 Phase diagram for model 1 (cSM1): Scatter plots of two pro-
jections of the parameter space points obtained for a wide scan of the
two phases of model 1. In each plot, we have overlaid the points of
the phase which does not cover most of the plane, on top of the other

phase which does. Left: mheavy as a function of mD,light where mD,light
is the mass of the lightest dark matter particle and mheavy is the mass
of the other scalar (dark or not); Right: mheavy − mD,light as a function
of mD,light

independent measurements of the properties of a dark matter
candidate and an unstable scalar mixing with the Higgs.

Model 2 (cSM2) on the other hand displays more inter-
esting possibilities. Here we label the phase with one dark
matter candidate and a new scalar by “1DM”, whereas the

phase with no dark matter candidates and all three scalars
mixed, by “mix”. Figure 2 (left) shows the phase diagram
projection in the plane (λ, |Mih|), where λ is the doublet
quartic coupling and |Mih| is the mixing matrix element
with the SM Higgs doublet component of (any of) the new

Fig. 2 Phase diagram for model 2 (cSM2): Scatter plot of various pro-
jections of the parameter space points of the two phases of model 2. On
the left we plot λ (the doublet quartic coupling) as a function of |Mih|
which is the mixing matrix element with the SM Higgs doublet com-
ponent of (any of) the new mixed scalar(s) which is not the 125 GeV
scalar. In this case, we show a standard and a wide scan for the “1DM”

phase. On the right we display the effects of applying the different
bounds to the “1DM” phase obtained for a wide scan. For such case
there is only one extra mixed scalar so |M2h| is the mixing matrix el-
ement of such non-dark state with the SM Higgs doublet component.
The points have been overlaid following the order in the key (first in
the key list is the bottom layer in the plot)
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mixed scalar(s) which is not the 125 GeV scalar. Three
sets of points are displayed in this plot (where all bounds
have been taken into account): the phase “mix” with a wide
scan and the phase “1DM” both with a standard and a wide
scan. The wide and standard scans allow us to discriminate
fixed boundaries from moving boundaries between the two
phases. It is clear that the left most boundary is moving to-
wards the vertical axis and therefore cannot be considered
a physical boundary between the two phases. This is ob-
served by comparing the boundary between the navy and
blue points. Concentrating on the two wide scans (pink and
navy colour) it is clearly possible to separate the two phases
for some regions of the parameter space; for instance, for
small values of |Mih|, λ has to be close and above its SM
value in phase “1DM” while in the “mix” phase it can be
either above or below that value in a much wider interval.
Thus, in this projection, one can clearly identify two pink
regions which are exclusive of the “mix” phase (excluding
the region close to the moving boundary along the vertical
axis).

In the right panel of Fig. 2 we display the effects of ap-
plying the different bounds to the “1DM” phase obtained
for a wide scan. In this case the horizontal axis has the vari-
able |M2h| which is the mixing matrix element with the SM
Higgs doublet component of the non-dark matter state. The
points have been overlaid following the order in the key—
first in the key list is the bottom layer in the plot. It can be
seen that EWPO constraints cut out a considerable portion of
the parameters space and are responsible for the upper right
boundary between the allowed region for the one dark mat-
ter phase as compared to the mixed phase in the left panel.
Nevertheless, the theoretical constraints alone are responsi-
ble for the bottom boundary as seen from comparing the left
and the right plots. Note that the apparent top left boundary
is not meaningful, and should shrink to the vertical axis if
we perform increasingly wider scans in parameter space, as
discussed in the previous paragraph.

In Fig. 3 we plot the projection on the (λ, mlight) plane,
where mlight is the mass of the lightest non-dark matter state.
If some other scalar is detected at the LHC there are values
of λ that are only allowed in the “mix” phase. The SM value
for λ (fixed by the Higgs and W-boson masses) is the hor-
izontal line slightly above 0.5. If the new scalar is lighter
than the SM Higgs the “1DM” phase only exists below that
value while if it heavier than the SM Higgs that phase is only
present for values above the SM λ .

More interesting are the cases presented in Fig. 4 that
show scatter plots of various projections of the parameter
space points obtained for a wide scan of the two phases
of model 2. In the horizontal axis we have either mlight or
mheavy which are the masses of the lightest or heaviest of
the new mixed scalars which are neither the 125 GeV Higgs

Fig. 3 Phase diagram model 2 (cSM2): Scatter plot of a projection of
the parameter space points obtained for a wide scan of the two phases
of model 2. λ is plotted against mlight, the lightest non-dark matter
state. The points have been overlaid following the order in the key (first
in the key list is the bottom layer in the plot)

nor the dark matter candidate. In the vertical axis we have ei-
ther |Mih| (mixing matrix element with the SM Higgs dou-
blet component of the non-dark matter scalar correspond-
ing to the mass in the horizontal axis), or |M1h| which is
the 125 GeV scalar mixing matrix element. Note that if the
125 GeV scalar is not allowed to decay to any of the other
two scalars, |M1h| is just

√
μ, that is, the square root of the

signal strength parameter. As before, the points have been
overlaid following the order in the key (first in the key list is
the bottom layer in the plot). In this case we are dealing with
directly measurable quantities only. Finding a new particle
and measuring its decay rates will gives us access to both the
masses and |Mih| while there are already results for |M1h|
from the LHC measurements. In fact note that current LHC
bounds of the signal strength already impose a strong con-
straint on the mixing yielding |M1h| � 0.84 [36]. We should
note however that this is just the 1σ bound for

√
μ—had

we taken the 2σ result the limit on |M1h| would be relaxed.
The experimental bounds also force |Mih| � 0.55. The plots
in Fig. 4 clearly show that a combination of measurements
of a new scalar at the LHC may decide for a given phase
or exclude the scenario altogether. The top plots show that
a scalar with a mass close the SM Higgs mass is allowed
to exist in the “1DM” phase. Furthermore, there are regions
which are clearly exclusive of a no dark matter phase. The
same trend appears in the bottom plots even if the distinc-
tion between phases is not so striking. A very interesting
property, that is observed in both bottom and top plots, is
that given a measurement of |M1h| or |Mih| and the mass
of the new scalar in a region which is exclusive of the “mix”
phase, one can infer whether a heavier or lighter scalar is ex-



Eur. Phys. J. C (2013) 73:2428 Page 11 of 15

Fig. 4 Phase diagram for model 2 (cSM2): Scatter plot of various pro-
jections of the parameter space points obtained for a wide scan of the
two phases of model 2. In the horizontal axis we have either mlight
or mheavy which are the masses of the lightest or heaviest of the new
mixed scalars which is not the 125 GeV Higgs. In the vertical axis we
have either |Mih| (mixing matrix element with the SM Higgs doublet

component of the non-dark matter scalar corresponding to the mass in
the horizontal axis) or |M1h| which is the 125 GeV scalar mixing ma-
trix element. Note that if the 125 GeV scalar is not allowed to decay to
any of the other two scalars, |M1h| is just

√
μ, that is, the square root of

the signal strength parameter. The points have been overlaid following
the order in the key (first in the key list is the bottom layer in the plot)

pected to be observed (within this model). For concreteness
consider for example the pink (light grey) regions in the left
plots of the figure, there is clearly a big portion which does
not exist in the corresponding region of the right plots, so if
a measurement falls in that region, we can immediately say
that if we are in the cSM2 we are looking at the light scalar
of the “mix” phase. Similarly, there is a pink region in the
right plots which do not exist in the left plot, so in such case
one can say we are observing the heavy scalar in the “mix”
phase of the cSM2.

6 Conclusions

We have presented a new tool, SCANNERS, devoted to the
search for global minima in multi-Higgs models. In this
work we have applied it to some versions of a simple exten-
sion of the SM—the addition of a complex singlet to the SM
doublet, with some symmetries. The code includes the most
relevant theoretical and experimental bounds. Our main fo-
cus is in distinguishing the possible phases of each model by
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using the present experimental data both from the LHC and
from dark matter experiments.

Once we have identified our working models based on
symmetries, we have excluded all phases that did not dis-
play the correct electroweak symmetry breaking pattern. We
ended up with two possible phases for each model. In the
first model, which we called model 0, one of the phases
leads to a massless dark matter candidate which is already
excluded by the Bullet Cluster results. The other phase has
two dark matter candidates. Because in the allowed phase
there is no mixing between scalars, the only way to tell them
apart is by actually detecting a dark matter particle. Hence,
a study with SCANNERS would add no advantageous infor-
mation to what we know experimentally.

The cases of model 1 and (especially) of model 2 are the
most interesting. We have shown that by measuring physical
quantities like the particle masses, mixing angles, or quartic
couplings we are able, in some particular cases, to pinpoint
the phase that is realised in Nature if one of these models
applies. Most importantly, in model 2 a simultaneous mea-
surement of the mass of a non-dark matter scalar together
with its mixing angle could be enough to exclude a dark
matter phase, and simultaneously indicate whether we are
observing the lightest or the heaviest of the new scalar states
expected in the model. Nevertheless, as we move closer and
closer to the SM limit the phases become more and more
indistinguishable.

In summary, although the differences that we found be-
tween phases of these singlet extensions are restricted only
to some measurable quantities, we found it possible to fall
into regions where measurements will definitely exclude one
of the phases and predict properties of the scalar spectrum.
An interesting question is whether such differences between
phases can be identified for more complicated scalar exten-
sions or if they can even become more impressive and pre-
dictive.

The ultimate goal of SCANNERS is to provide the com-
munity with a tool that can be used to search for global min-
ima in general scalar sectors. Although the core routines can
already be used for an arbitrary scalar sector, the present re-
lease [1] requires the user to define the boundedness from
below and global minimum routines. In the next release, we
expect to provide core routines for such tasks, as well as fur-
ther analysis examples such as the important case of the two-
Higgs doublet model. The present publicly available code
includes examples with all the analysis used in this article,
which we hope will be a useful starting point for users who
intend to explore this tool.
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Appendix A: Stationary point equations

Given a point in parameter space with definite numerical
values for the couplings λa and VEVs φi , we need to check
for other minima which are below the local one we have se-
lected. Solving Eqs. (3) for the various cases we obtain the
following stationary points:

A.1 Model 1

– A = 0, H = 0, S2 = − b1+b2
d2

– S = 0, in which case we need H †H = −m2

λ

– A = 0, S2 = λ(b1+b2)−δ2m
2

δ2
2−d2λ

, H †H = −m2+δ2S
2

λ

– S = 0, A2 = λ(−b1+b2)−δ2m
2

δ2
2−d2λ

, H †H = −m2+δ2A
2

λ

A.2 Model 2

– H = 0, A = 0 and the following cubic equation must be
solved

S
(
b1 + b2 + d2S

2) + 2a1 = 0 (A.1)

– H = 0, S = −a1/b1 and

A2 = b2
1(b1 − b2) − d2a

2
1

d2b
2
1

(A.2)

– A = 0, H †H = −m2+δ2S
2

λ
and the following cubic equa-

tion must be solved

S

[
b1 + b2 − δ2m

2

λ
+

(
d2 − δ2

2

λ

)
S2

]
+ 2a1 = 0 (A.3)

– S = −a1/b1, H †H = −m2+δ2(S
2+A2)

λ
and

A2 = b2
1(λ(b1 − b2) + m2δ2) − d2a

2
1λ + δ2

2a2
1

d2b
2
1λ − δ2

2b2
1

(A.4)

Appendix B: SI scattering cross-section

B.1 Model 1 with vanishing singlet VEV

In this case we have two dark matter candidates, A and S

and the couplings with the DM particles and the Higgs state
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is given by

gHSS = gHAA = −1

2
δ2v . (B.1)

The SI scattering cross section is

σSI = m4
p

2πv2

(
gHSS

M2
H

)2(
fpu + fpd + fps + 2

27
(3fG)

)2

×
(

1

(mp + mS)2
+ 1

(mp + mA)2

)
. (B.2)

B.2 Model 1 with singlet VEV

In this case we have 1 dark matter candidate, A and two
scalars, H1 and H2. The couplings between the DM particle
and the scalar eigenstates are

gAAH1 = (δ2v cosφ + d2vS sinφ)/2, (B.3)

gAAH2 = (d2vS cosφ − δ2v sinφ)/2 (B.4)

where vS is the singlet VEV and φ the mixing angle. The
expression for σSI is now

σSI = m4
p

2πv2(mp + mA)2

(
gAAH1 cosφ

M2
H1

− gAAH2 sinφ

M2
H2

)2

×
(

fpu + fpd + fps + 2

27
(3fG)

)2

. (B.5)

B.3 Model 2 with 〈A〉 = 0

The expression for σSI is the same as in the last subsection.

Appendix C: Ranges for the scans in parameter space

In this appendix we present the ranges that were used for
the scans over the couplings λa , masses and VEVs of the
scalars. We have performed two different scans, which are
indicated in the tables respectively by “standard run” and
“wide run”. In the latter we allow the hypercubic box in pa-
rameter space to be wider to investigate which boundaries
in the phase diagram do not changed significantly. Each ta-
ble contains the two possible phases of each model indicated
appropriately.

Table 2, Left, shows the ranges of couplings, masses
and VEVs of the scalars in the symmetric phase “2DM” of
model cSM1 (two dark matter phase) and for the two dif-
ferent scans (standard and wide). h refers to the Standard
Model Higgs and D1 and D2 the two dark matter candidates
of the model. Table 2, Right, is for the same model (cSM1)
but in the broken phase where there is only one dark matter
particle (1DM); h is the Standard Model Higgs which mixes
with the scalar H1 and D the dark matter candidate.

The last table is for model 2 (cSM2). Table 3, Left, is
for the symmetric phase, which contains a dark matter par-
ticle (1DM). Similarly to model 1, the scalar spectrum is

Table 2 Parameter ranges for
cSM1 Left: 2DM symmetric
phase , Right: 1DM broken
phase

Z2 × Z
′
2

coupling Standard run Wide run

min max min max

m2 (GeV2) −106 0 −2 × 106 0

λ 0 4 0 50

δ2 −4 4 −50 50

b2 (GeV2) −106 106 −2 × 106 2 × 106

d2 0 4 0 50

b1 (GeV2) −106 106 −2 × 106 2 × 106

a1 (GeV3) 0 0 0 0

mass min max min max

mh (GeV) 125 125 125 125

mD1 (GeV) 0 300 0 103

mD2 (GeV) 0 300 0 103

VEVs min max min max

v (GeV) 246 246 246 246

vS (GeV) 0 0 0 0

vA (GeV) 0 0 0 0

/Z2 × Z
′
2 → Z

′
2

Standard run Wide run

min max min max

−106 106 −2 × 106 2 × 106

0 4 0 50

−4 4 −50 50

−106 106 −2 × 106 2 × 106

0 4 0 50

−106 106 −2 × 106 2 × 106

0 0 0 0

min max min max

mh 125 125 125 125

mH1 0 300 0 103

mD 0 300 0 103

min max min max

246 246 246 246

0 500 0 103

0 0 0 0
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Table 3 Parameter ranges for
cSM2. Left: “1DM” symmetric
phase, Right: “mix” broken
phase

Z
′
2

coupling Standard run Wide run

min max min max

m2 (GeV2) −106 106 −2 × 106 2 × 106

λ 0 4 0 50

δ2 −4 4 −50 50

b2 (GeV2) −106 106 −2 × 106 2 × 106

d2 0 4 0 50

b1 (GeV2) −106 106 −2 × 106 2 × 106

a1 (GeV3) −106 106 −108 108

mass min max min max

mh (GeV) 125 125 125 125

mH1 (GeV) 0 300 0 103

mD (GeV) 0 300 0 103

VEVs min max min max

v (GeV) 246 246 246 246

vS (GeV) 0 500 0 103

vA (GeV) 0 0 0 0

/Z′
2

Standard run Wide run

min max min max

−106 106 −2 × 106 2 × 106

0 4 0 50

−4 4 −50 50

−106 106 −2 × 106 2 × 106

0 4 0 50

−106 106 −2 × 106 2 × 106

−106 106 −108 108

min max min max

mh 125 125 125 125

mH1 0 300 0 103

mH2 0 300 0 103

min max min max

246 246 246 246

0 500 0 103

0 500 0 103

given by the Standard Model Higgs, h, which mixes with
the scalar H1 and D is the DM candidate. For the broken
phase, Table 3, Right, the scalar spectrum contains the Stan-
dard model Higgs, h, which mixes with the two scalars H1

and H2.
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