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High throughput electrochemical techniques are widely applied in material discovery and optimiza-

tion. For many applications, the most desirable electrochemical characterization requires a three-

electrode cell under potentiostat control. In high throughput screening, a material library is explored

by either employing an array of such cells, or rastering a single cell over the library. To attain this latter

capability with unprecedented throughput, we have developed a highly integrated, compact scanning

droplet cell that is optimized for rapid electrochemical and photoeletrochemical measurements. Using

this cell, we screened a quaternary oxide library as (photo)electrocatalysts for the oxygen evolution

(water splitting) reaction. High quality electrochemical measurements were carried out and key elec-

trocatalytic properties were identified for each of 5456 samples with a throughput of 4 s per sample.

© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790419]

I. INTRODUCTION

Analysis of inorganic libraries is a powerful technique

for materials discovery and optimization, as evident in the

number and variety of recently published methods for com-

binatorial materials research.1–3 A variety of parallel and

serial scanning techniques has been implemented for combi-

natorial studies of (photo)electrocatalysts with varying com-

promises between throughput and quality of electrochemical

data.3–5 We present a scanning 3-electrode droplet cell that

provides high quality electrochemical data and establishes a

new throughput limit for scanning serial techniques. This in-

strument is designed for general (photo)electrochemical ex-

periments and in this article, we highlight its use for the dis-

covery of energy-related materials.

A potentiostat-controlled electrochemical cell is the stan-

dard tool for the measurement of electrochemical reactions.

Parallel electrochemical methods typically replace the direct

potentiostat measurement with a proxy for the reaction of in-

terest by using pH imaging6 or color imaging of fluorescent

molecules4, 7 and organic dyes.8, 9 In addition to providing

limited electrochemical information, these techniques func-

tion in a narrow pH range and are not suitable for highly

acidic (pH = 0) or basic (pH = 14) environments. Tradi-

tional 2-electrode or 3-electrode photoelectrochemical cells

incorporated with automated positioning systems5, 10, 11 have

the advantage of directly measuring the key electrochemical

properties. However, the throughput of these reported tech-

niques are limited either by the requirement of the custom de-

signed substrate for electrical isolation of research samples,

or the requirement for creating a liquid-tight seal for each

sample. Scanning electrochemical microscopy (SECM)12, 13

is another scanning serial technique where a sensing elec-

trode and/or a fiber optic tip is rastered across the material

a)gregoire@caltech.edu.

library to identify regions of high (photo)electrochemical ac-

tivity. In the SECM screening, the entire material library is in

contact with the electrolyte, permitting cross-contamination

between neighboring compositions. The scanning droplet cell

described in this article provides fast rastering capability and

circumvents the common shortcomings of high throughput

electrochemical techniques.

Scanning droplet cells and microcells refer to a variety

of two- and three-electrode electrochemical cell designs in

which capillary tubing delivers a small volume of electrolyte

solution to a working electrode surface.14, 15 Initial microcells

were developed for characterizing sub-200 μm heterogeneity

in the electrochemical properties of surfaces, especially for

corrosion studies.16, 17 Optimizing the cell design for spatial

resolution, capillary cells with diameter as small as 10 μm

diameter were developed and used to contact single crystal-

lographic grains of a polished metal electrode.18, 19 The ca-

pabilities of such cells have also been expanded with the

addition of light sources and downstream analytics for mea-

suring reaction products.20, 21 A similar device with high spa-

tial resolution has recently been incorporated in a probe

station configuration and optimized for air-sensitive charac-

terizations of thin films.22 In essence, a composition library

is a heterogeneous electrode whose properties can be mapped

with a microcell, but the typical lateral sample dimension of

1 mm and the high premium placed on experiment through-

put invoke new design principles. We enumerate the design

criteria for high throughput library screening in the context of

(photo)catalysis and present a cell design, which uniquely ful-

fills these criteria. The (photo)electrochemical performance

of the cell is presented and the efficacy of this cell for

high throughput screening is demonstrated by mapping the

oxygen evolution electrocatalysis of a 5456-sample compo-

sition library. These high throughput experiments are inte-

gral to the discovery of new (photo)catalysts for solar-driven

water-splitting.5, 23
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II. EXPERIMENTAL

A. Cell design criteria

For high throughput (photo)electrochemical screening

of composition libraries, the spatial resolution of the elec-

trochemical cell must match the length scale for composi-

tion variations within the library. For continuous composition

spreads, this length scale is the ratio of the desired compo-

sition resolution and the composition gradient. For discrete

libraries, this length scale can be either the sample dimen-

sion or the sample pitch. In either case, this length scale is

typically on the order of 1 mm and may be dictated by the

resolution of material synthesis or chosen to match require-

ments of processing and measurement experiments.23 The

electrochemical experiment must also avoid the transport of

sample material across this length scale as such contamina-

tion compromises the combinatorial experiment. Since ele-

mental constituents may be amenable to dissolution during an

electrochemical experiment, each sample should receive fresh

solution.

The current density of interest can vary by many orders of

magnitude depending on the application. For (photo)catalysis

in energy-related applications, catalytic currents below

10 μA cm−2 are generally not of interest and some ap-

plications such as fuel cell catalysis require currents up to

1 A cm−2. At the low current end, this requirement sets a

limit for the electrochemical and electronic noise and sen-

sitivity. At the high current end, the uncompensated resis-

tance, i.e., the resistance from working to reference electrode,

should be minimized to avoid undesirable voltage losses.

The solution resistance between any pair of electrodes must

be low enough to avoid issues with potentiostat compliance

voltages.

With these requirements in place, cell design should be

optimized for throughput. The cell must be capable of tran-

sitioning between samples rapidly and with vanishing failure

rate. Upon arrival at a working electrode location, the settle

time for stable solution contact to electrodes and stable solu-

tion flow should be minimized.

With these considerations, the critical design criteria

can be succinctly listed: (1) incorporation of reference and

counter electrodes with optimal configurations for low un-

compensated resistance; (2) measurement of current densi-

ties from 10 μA cm−2 –1 A cm−2 during potentiostatic

measurements using a standard commercial potentiostat; (3)

1 mm-scale spatial resolution on a planar working electrode;

(4) efficient mass transport of reactants and products in both

liquid phase and gas phase; (5) rapid movement between

experiments and low settle time before starting an experi-

ment; (6) mitigated sample cross-contamination from both

dissolved and particulate species; (7) efficient integration of

illumination sources for photoelectrochemical experiments.

B. High throughput scanning droplet cell design

We describe the design and function of a compact scan-

ning droplet cell that can be used to attain solution contact to a

planar working electrode with contact diameters varying from

FIG. 1. A photograph of the scanning droplet cell suspended over a com-

position library. The drop of solution at the bottom of the cell contacts a

2.5 mm-diameter region of the working electrode containing a single 1 mm

square sample. Nine ports (labeled A through I) are used for the solution flow

and insertion of electrodes and fiber optic. The 385 nm light from an internal

fiber optic illuminates the working electrode and produces a visible purple

glow in the port A PTFE tube.

below 1 mm (0.0079 cm2) to above 3 mm (0.28 cm2). The

cell shown in Fig. 1 was used for the (photo)electrochemical

experiments described below and we provide the dimen-

sions used to attain a 2.5 mm-diameter electrode contact. The

droplet-forming tube at port A is fixed at a height of approx-

imately 0.5 mm above the planar working electrode. Port A

is terminated by tubing with inner and outer diameters of

1 mm and 1.55 mm, through which solution flows at a rate

RA = 10 μL/s. This solution influx is removed by ports B,

C, and D, which are each terminated by the capillary tubing

of inner and outer diameters of 0.2 mm and 0.38 mm, respec-

tively. These ports are each pumped at a constant rate of ap-

proximately twice that of RA. The excess pump rate results

in suction of ambient gas into the ports. The port termination

with the smallest radius from port A restricts the radius of

the solution drop and thus defines the electrode contact area.

When the cell moves with respect to the planar electrode in

a direction away from the termination of port B, C, or D, the

solution is efficiently removed by the respective trailing tube,

with no visible solution drop left behind. With the three suc-

tion ports as arranged in Fig. 1, the cell can be rapidly rastered

over a planar composition library.

This novel drop-restricting scheme circumvents the need

for a gasket or a similar contact-based solution confinement

mechanism. This property of the cell permits on-demand cell

movement with no alteration to the solution flow and no ver-

tical motion. The lateral accessibility of the solution droplet

between the port A termination and the working electrode

allows for the insertion of a capillary reference electrode at

port E.

The counter electrode is introduced through the sealed

port F and extends to the vertical channel that terminates at
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port A. The cell can operate in two solution flow modes. The

most direct scheme involves solution introduction at a rate RA

through port G. The solution then flows over the counter elec-

trode and to port A. The counter electrode can also be differ-

entially pumped by introducing solution at a rate RH>RA into

port H and pumping solution through port G at a rate RH-RA.

This differential pumping mode has no effect on the solution

drop at port A and flushes the counter electrode effluent to

waste.

Port I is sealed and unused for electrochemical measure-

ments. For photoelectrochemical experiments, an optical fiber

is inserted in this bubble-free solution pathway and terminates

in port A, which serves as a light guide for completing the

optical path from the optical fiber to the working electrode.

In Fig. 1, a 0.4 mm fiber optic is shown in this configura-

tion, which facilitates illumination with any wavelength not

strongly absorbed by the electrolyte.

The cell shown in Fig. 1 is made for compatibility with

aqueous alkaline solutions. The housing is a 4.8 mm wide slab

of plexiglass and all solution port terminations are either stan-

dard polyether ether ketone (PEEK) tubing or polytetrafluo-

roethylene (PTFE) tubing. For maximum droplet contact sta-

bility, the solution supply is provided by a syringe pump or

gravity feed. Ports B, C, and D are continuously pumped by

peristaltic pumps.

C. Combinatorial experiment

A quaternary metal-oxide library containing 5456 sam-

ples was screened for oxygen evolution electrocatalysis

to demonstrate the throughput and reliability of the scan-

ning droplet cell. The (Fe-Co-Ni-Ti)Ox thin-film catalyst

library was deposited onto three glass plates coated with

400 nm of fluorine-doped tin oxide (FTO) according to

previously reported ink-jet printing assisted cooperative-

assembly methods.24, 25 Briefly, each Fe-Co-Ni-Ti composi-

tion in the library was synthesized by combining four “inks,”

each with an elemental precursor (FeCl3, Co(NO3)2•6H2O,

Ni(NO3)2•6H2O, and TiCl4 obtained from Sigma Aldrich).

Using vigorous stirring, 5 mmol of each metal precur-

sor, 6 mmol of acid (HCl or HNO3), and 0.5 g of F127

(EO96PO70EO96, MW = 12000; Sigma Aldrich) were dis-

solved into 45 mL of ethanol. Using the inkjet printer (modi-

fied Epson Stylus Pro 4880), each composition sample was

deposited onto a 1 mm2 substrate area by dispensing a

fixed volume of solution. The volumetric ratio of the inks

was chosen to provide the desired metal stoichiometry, and

each sample contained approximately 10 nmol of metal. The

5456 unique samples were deposited to cover the quater-

nary composition space with 3.33 at. % interval. The samples

were evenly divided among the three glass plates and were

processed with identical drying and precursor calcination

steps. The as-deposited precursor library was then calcined at

350 ◦C for 5–6 h in a box furnace with flowing air. This

calcination efficiently volatilized and removed the precursor

ligands and other ink components, and additionally yielded

oxidation of the metals. The resulting samples were non-

contiguous metal oxide coatings with each sample well ad-

hered to the FTO coating and contained within the designed

1 mm2 electrode area. The grid of samples on each plate

shared the common FTO contact layer.

High throughput electrochemical and photoelectrochem-

ical experiments were performed on each library using the

cell shown in Fig. 1 and a Gamry G 300 potentiostat con-

trolled with custom automation software. The 3-electrode

cell was outfit with a Pt wire counter electrode and cus-

tom made Ag/AgCl reference electrode. The capillary ref-

erence electrode was pulled from 1 mm outer diameter,

0.5 mm inner diameter glass tube and then broken as a

micro-injection needle, yielding a tip with approximate in-

ner and outer diameters of 25 and 75 μm. Using this cap-

illary and a 0.2 mm Ag wire, a Ag/AgCl reference elec-

trode was synthesized by standard techniques and calibrated

to a commercial electrode before and after electrochemical

experiments.

A standard 2-axis translation stage was used to raster the

library below the fixed droplet cell with an average speed

of approximately 2.5 mm s−1 over the 2 mm sample pitch.

Cyclic Voltammetry (CV) was performed on each sample.

After approximately 0.8 s of translation to the sample, the

working electrode was held at the starting potential of the

CV for 2 s. A settle time of at least 1 s was needed to sta-

bilize the droplet volume and electrode contact, and the total

2 s duration was used to additionally stabilize the electrode

at this potential and mitigate electrochemical transients at the

beginning of the CV measurement. To screen the library sam-

ples for electrocatalysts (EC) of the oxygen evolution reaction

(OER), the CV measurement was performed from –0.09 V

to 0.51 V with respect to the O2/H2O Nernst potential in the

aqueous electrolyte solution of O2-bubbled 0.1 M NaOH. At

a scan rate of 1 V s−1, this voltage range was covered on

both the forward and reverse legs of the single cycle CV mea-

surement for a total experiment time of 1.2 s and a sample

throughput of one sample every 4 s.

The composition library was also scanned for OER pho-

toelectrocatalysis (PEC) in a similar manner. After sample-

cell positioning, open circuit was maintained for 2 s followed

by a chronoamperometric measurement in which the sample

was held at the O2/H2O equilibrium potential and the sample

was illuminated with a 2 Hz square wave profile alternating

between no illumination and 2.5 mW from a 385 nm light

emitting diode (LED). The incident power on the working

electrode was measured before the high throughput experi-

ment using a transparent quartz plate contacted by the droplet

cell with a standard power meter pressed against the other side

of the plate in transmission geometry. Chopped-illumination

CVs and other electrochemical techniques can similarly be

performed, but the throughput is limited by the equilibra-

tion time of the measured current after toggled illumination,

which is approximately 0.25 s for these samples. While in

principle this photoelectrochemical experiment can be per-

formed in 1 s so that the 4 s per sample throughput can be

attained, a 6.5 s experiment containing 6 illumination pulses

was used in this study to demonstrate the stability of the

photocurrent measurement. A variety of electrochemical and

photoelectrochemical experiments can also be performed on

each sample to avoid the duplication of the motion and settle

time.
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FIG. 2. (a) The photoelectrochemical characterization of a

Fe0.6Co0.26Ni0.07Ti0.07Ox sample in 0.1 M NaOH. The current (black)

at a fixed potential was measured during 2 Hz cycling of illumination.

The measured current after each illumination transition (blue, dashed) was

analyzed and indicated a 70 nA photocurrent (red, right vertical axis).

(b) CVs for characterization of a Fe0.57Co0.23Ni0.1Ti0.1Ox (blue) and a

Co0.94Ni0.03Ti0.03Ox (green) sample for OER electrocatalysis in 0.1 M

NaOH. The forward (solid) and reverse (dashed) sweeps are shown along

with the residual current for the forward sweep (dotted). The FOM of

catalytic current at 0.5 V is labeled on the blue trace.

III. RESULTS AND DISCUSSION

A. (Photo)electrochemical results

Figure 2 shows example electrochemical data from the

PEC and EC experiments described above. The PEC data of

Fig. 2(a) shows the measured current at fixed potential as the

ultraviolet illumination is chopped. Visual inspection of the

measured current reveals 10 Hz sinusoidal noise, the source

of which is under investigation. The data clearly show higher

anodic current during illumination. After the approximately

0.25 s transient, the average current for each illuminated and

dark segment was calculated. The photocurrent was calcu-

lated as the difference between illuminated current and the

average neighboring dark currents. For the 6 illumination cy-

cles, the measured photocurrent for the 1 mm2 electrode was

70 ± 3 nA. While this sample is not a noteworthy photocat-

alyst, this result demonstrates sub-10 μA cm−2 photocurrent

detection, as required by criterion 2.

Figure 2(b) contains two typical CV scans in the quater-

nary library provided by the droplet cell. Both forward traces

contain residue current from capacitive charging through the

series resistance in the system and an exponentially increasing

current indicative of OER catalysis. Additionally, the green

trace shows clear redox activity of the sample material near

0.3 V vs. the Nernst potential of OER in the solution. For

each CV, the forward sweep was processed by automatically

calculating and subtracting the linear residual current. At a

given overpotential, the catalytic current was measured as the

difference between the forward sweep anodic current and the

modeled residual current. We used the current at 0.5 V over-

potential as a figure of merit (FOM) for OER electrocatalyst

screening. For the sample of Fig. 2(b), the figure of merit of

58 μA is labeled, which for this 1 mm2 of planar electrode

area corresponds to a current density of 5.8 mA cm−2. Simi-

lar analysis was performed for every sample in the library.

For one of the three plates containing the (Fe-Co-

Ni-Ti)Ox library, Fig. 3(a) shows an optical image while

Fig. 3(b) shows the FOM map. Combined with the corre-

sponding data for the additional two plates, the FOM com-

position map is constructed and displayed in Figs. 3(c) and

3(d). The former contains a 2-d projection of the quaternary

composition space, which is not sufficient for identification

of the quaternary composition trends. To facilitate this visual

analysis, Fig. 3(d) contains a series of ternary composition

plots, each a flattened slab from Fig. 3(c) of thickness 10 at.

% Ti. These plots show that appreciable current is attained

in a wide composition range surrounding the 3-metal compo-

sition (Fe0.2Co0.2Ni0.6)Ox and that the ternary region of high

FOM narrows with increasing Ti content up to 40 at. % Ti. At

all higher concentrations of Ti, the FOM is quite low, which is

expected given the very low catalytic current of titanium ox-

ides. At 0.5 V overpotential, the FTO coating yields a small

background current, which is comparable to the lowest FOM

value in these figures.

The repeatability of electrochemical characterizations

with this scanning droplet cell was verified by several meth-

ods and here we show the results for repeated mapping of

the ternary (Fe-Ni-Co)Ox compositions in the library. Fig. 4

shows the resulting FOM maps for 3 separate raster scans of

the ternary library and demonstrates that the FOM value and

composition trend was well reproduced for the majority of the

composition range. The FOM for the Ni-rich region increased

with repeated testing, which we assert is due to evolution of

these catalysts.

B. Cell performance

For the (photo)electrochemical experiments highlighted

in Figs. 2–4, the scanning droplet cell meets each of the es-

tablished design criteria. The droplet volume is flushed ap-

proximately once per second, which is sufficient for the mass

transport of reactants and products. Upon the completion of

electrochemistry on a given sample, the droplet volume is

completely captured by the lagging suction port during sam-

ple movement, which precludes sample cross-contamination

by dissolved species. During sample motion, consistent solu-

tion contact with the planar electrode is maintained by contin-

uing the pumping schedule, but it is worth noting that contact

with the working electrode can be severed through interrup-

tion of the solution flow into port A during cell movement. We

also note that static solution experiments are easily performed

by ceasing solution flow into port A at a fixed cell position,

which results in a sub-1 s transient during which the removal

of solution at the perimeter of the droplet results in a pinch-

ing off of the droplet such that it is no longer in contact with
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FIG. 3. Mapping of the OER catalytic current at 0.5 V overpotential in 0.1 M NaOH. This FOM for each sample of a metal oxide composition library plate

(photograph in (a)) is shown in (b) using the false color scale at the bottom right. Combined with two additional plates, the quaternary composition map is shown

in (c), where the horizontal planes of data points correspond to 3.3 at. % intervals of Ti concentration. Sets of three planes are plotted together in each of 10

ternary composition plots shown in (d).

the suction ports. The resulting static droplet makes contact to

a slightly smaller and highly reproducible working electrode

area.

For different screening applications, the scan rate

in the CV measurements can be adjusted to facili-

tate the throughput of the screening without compro-

mising (photo)electrochemical data quality. For screening

(photo)electrocatalysis of solar-driven water-splitting reac-

tions, the relevant catalytic current density is on the order

of 10 mA cm−2 at an overpotential no more than 0.5 V.23 In

the study discussed above, the CV parameters were chosen to

cover the applicable range of overpotential while keeping the

measurement duration (1.2 s) from creating a bottleneck in

the screening process. Chronopotentiometry and chronoam-

perometry measurements were also applied in this study to

identify material compositions with high electrocatalytic ac-

tivity for OER reactions and similar FOM trends were ob-

served using these techniques. The high speed for the CV

measurements as well as the rich information contained in the

current vs. voltage characteristics were considered to be a su-

perior screening technique for this application and material

system.

Miniaturization of an electrochemical cell often leads to

a large uncompensated resistance Ru between working and

reference electrode, yielding undesirably large IRu potential

drops. In the configuration described above, the uncompen-

sated resistance is approximately Ru = σ−1
× 2.7 cm−1,

where σ is the solution conductance. The electrochemical

data in Figs. 2–4 were collected using a low conductivity

solution of σ = 18 mS cm−1, but the IRu loss of less than

0.1 V does not significantly impact the FOM trend. By us-

ing a solution with a more appreciable conductance of σ

= 180 mS cm−1 (1 M NaOH), the uncompensated resistance

is approximately 15 �. With the 1 mm2 samples and the

FIG. 4. The mapping shown in Fig. 3 is repeated by rastering the droplet cell over the (Fe-Co-Ni)Ox ternary compositions in three separate screens. The results

from each of the three screenings demonstrated that the FOM is well repeated for most compositions but increases with repeated testing for Ni-rich compositions

due to an aging phenomenon of Ni-rich electrocatalysts.
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targeted solar-driven water-splitting current density (10 mA

cm−2), the IRu loss is less than 2 mV. This negligible loss

circumvents the need for IRu compensation corrections and

highlights the utility of the scanning droplet cell.

The solution impedance between working and counter

electrodes of the cell design discussed above supports ap-

proximately 0.3 A cm−2 with σ = 180 mS cm−1, assuming a

10 V potentiostat compliance. While higher current densities

are not of interest for our solar water splitting application, cri-

terion 2 was established for broad applicability of this cell

design. While current densities up to 1 A cm−2 can be sup-

ported through an increase in solution conductance or larger

compliance voltage, we note that the geometric resistance can

be reduced by at least a factor of 4 by increasing the inner tube

diameter of port A, shortening the port A tube, and lowering

the position of port F. These modifications are preferable to

placing the counter electrode in the port A tube, which would

yield very low geometric resistance, because this design mod-

ification compromises criterion 4 and blocks the fiber optic

access.

Given these electrochemical capabilities, the primary

throughput metric for scanning serial measurements is the

time between the end of the experiment on one sample

and the beginning of the experiment on the next. A cell

design that uses a gasket to provide a solution-tight seal

requires solution removal, vertical motion before and af-

ter lateral movement to the next sample, and solution fill-

ing. By avoiding these time consuming steps, the scanning

droplet cell attains an unprecedented experiment throughput

for (photo)electrochemical measurements with a 3-electrode

cell.

For cost-effective high throughput synthesis, the conduc-

tive layer on the plate is not patterned, resulting in a com-

mon working electrode for the grid of samples. If groups of

isolated contacts exist on the library, increased measurement

throughput can be attained with parallel measurements. That

is, an array of electrochemical cells can easily be constructed

by laterally stacking duplicates of the slab construction shown

in Fig. 1, provided that the working electrode of each cell is

electrically isolated.

IV. SUMMARY

We present a scanning droplet cell optimized for

scanning-serial mapping of the (photo)electrochemical prop-

erties of a composition library. The cell is suspended at

a controlled distance above the working electrode and a

carefully engineered flow pattern of the electrolyte solution

provides solution contact to a well-defined working elec-

trode area. This unique construction permits rapid raster-

ing of the cell over a planar working electrode, a capabil-

ity that enables increased experiment throughput for com-

binatorial (photo)electrochemical studies. The sensitivity of

the cell to sub-10 μA cm−2 photocurrent was demonstrated

in a chronoamperometric experiment with chopped illumina-

tion. The high throughput operation of the cell was demon-

strated by performing a 0.6 V, full-cycle CV measurement at

a throughput of one sample every 4 s. With this latter experi-

ment, a (Fe-Co-Ni-Ti)Ox quaternary composition space with

5456 samples was mapped for OER electrocatalysis.
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