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Scanning gate imaging in confined geometries
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(Received 27 October 2015; published 2 February 2016)

This article reports on tunable electron backscattering investigated with the biased tip of a scanning force

microscope. Using a channel defined by a pair of Schottky gates, the branched electron flow of ballistic electrons

injected from a quantum point contact is guided by potentials of a tunable height well below the Fermi energy.

The transition from injection into an open two-dimensional electron gas to a strongly confined channel exhibits

three experimentally distinct regimes: one in which branches spread unrestrictedly, one in which branches are

confined but the background conductance is affected very little, and one where the branches have disappeared

and the conductance is strongly modified. Classical trajectory-based simulations explain these regimes at the

microscopic level. These experiments allow us to understand under which conditions branches observed in

scanning gate experiments do or do not reflect the flow of electrons.

DOI: 10.1103/PhysRevB.93.085303

Whoever has looked at twinkling starlight has witnessed

how atmospheric inhomogeneity randomly focuses light [1].

The inhomogeneity consists of small, random, but spatially

correlated fluctuations of the refractive index. This rather

common phenomenon is only one of many examples in which

small random potentials generate regions of exceedingly high

flow density, a bunching of particle trajectories, also known as

caustics [2]. In two-dimensional systems caustics form pairs

of lines with an appearance like the branches of a tree. Topinka

et al. were the first to observe such branches at the nanoscale in

high-quality two-dimensional electron gases [3]. In this system

charged doping atoms randomly placed in a plane remote

from the electron gas generate a smooth spatially correlated

potential landscape. At liquid helium temperatures and below,

the electrons emanating from a narrow constriction into this

landscape exhibit branched flow [4]. Topinka and co-workers

observed it using the strongly repulsive electrostatic potential

of a scanning tip to scatter channels of high flow density

back through the constriction. Placing the tip along a caustic

thereby measurably reduced the system’s conductance. A

spatially resolved image of the branch pattern was obtained

by mapping the conductance as a function of tip position.

The method, known as scanning gate microscopy [5], sparked

hopes to observe other predicted phenomena of electron

trajectories in nanostructured systems, such as wave function

scars in ballistic stadiums. However, experimental success

was very limited [6–9]. Theoretically it is straightforward to

calculate a backscattering pattern from known wave functions.

Conversely, it is difficult to impossible to extract the pattern

of wave functions from an experimentally observed branch

pattern. Furthermore, scanning gate measurements are by

definition intrusive experiments and the conclusions one can

draw about unperturbed wave functions are limited. Imaging

and understanding the evolution of branches and caustics in

geometries tunable between free and confined electron motion

therefore remain interesting experimental challenges. Here we

tackle the problem using a sample geometry simple enough

to interpret the resulting conductance maps conclusively.

Our experiments lead to striking general insights into the

*richard.steinacher@phys.eth.ch

imaging mechanism and spatial resolution of the scanning

gate technique in structures with tunable confinement.

We measured two similar samples (labeled A and B)

that are based on a GaAs/AlGaAs heterostructure grown via

molecular-beam epitaxy (the same as in Refs. [10–12]) with

a two-dimensional electron gas (2DEG) 120 nm below the

surface. The electron gas in sample A has a density n =
1.4 × 1011 cm−2 and a mobility μ = 9.3 × 106 cm2/V s; for

sample B, n = 1.4 × 1011 cm−2 and μ = 7.1 × 106 cm2/V s,

both at a temperature of 300 mK. The structure was fabricated

on a Hall bar of 200-μm width and 2-mm contact separation

with Au/Ge/Ni Ohmic contacts. Schottky gates (Ti/Au) defined

by electron-beam lithography complete the device structure

schematically shown in Fig. 1. It consists of three consecutive

channels of width w = 1 μm (channel 1 defined by gates g3

and g4, channel 2 by g7 and g8, and channel 3 by g11 and g12)

and three quantum point contacts (QPCs) with a lithographic

gap of 300 nm (QPC 1 defined by g1 and g2, QPC 2 by g5 and

g6, and QPC 3 by g9 and g10). Neighboring quantum point con-

tacts are separated by l = 15 μm along the channel axis. The

Schottky gates deplete the 2DEG at voltages below −0.35 V.

The samples were mounted in a home-built scanning force

microscope operated in a 3He cryostat [13] with a base

temperature of 300 mK. A phase-locked loop controlled the

microscope’s tuning fork sensor [14,15], to which a Pt/Ir wire

was glued that had been sharpened in a focused ion beam. With

a voltage Vtip = −6 V applied between the tip and 2DEG, we

raster scanned the tip 60 nm above the sample surface. At this

voltage, the tip depleted the 2DEG within a disk of about 800-

nm diameter [12]. While the tip scanned above the surface of

the structure, we determined the two-terminal conductance by

applying an alternating source-drain voltage VSD = 100 μVrms

to the Hall bar and measuring the alternating current ISD

with a home-built current-voltage converter and a commercial

lock-in amplifier. In this way, we recorded maps G(x,y) =
ISD(x,y)/VSD of linear conductance vs tip position (x,y).

In the following we investigate branched electron flow in

sample A by applying depleting voltages to the split gates

g1 and g2 such that QPC 1 has a quantized conductance

of 3 × 2e2/h. All the other gates have 0 V applied. The

resulting scanning gate image in Fig. 2(a) has the outline

of the gates superimposed with gray solid lines. In Fig. 2(b)
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FIG. 1. Schematic of the gate geometry and measurement setup.

Gates are labeled g1 to g12. The pink area indicates the movable

tip-depleted region.

the tip-position-dependent variations of the conductance are

emphasized by showing the horizontal derivative dG(x,y)/dx

of the conductance in Fig. 2(a). On a large scale, both images

consist of three regions that we label I–III in Fig. 2(a), with

region II being within the channel and regions I and III outside.

Most remarkably, the spatial conductance variations induced

by the scanning tip are confined to the channel region II,

(a) (b)

3 2.9G [2e /h]
2

1 -1 dG/dx [2e /h μm ]
2 -1

0

x

y

g3 g4

1 μm

I II III

α

FIG. 2. (a) Conductance G(x,y) of QPC 1 on sample A. Gray

solid lines mark the outlines of the gates. Roman numbers label the

channel region (II) and the two regions outside the channel (I and III).

(b) Derivative dG(x,y)/dx of the data in (a).

whereas the conductance images are smooth in the outer

regions I and III. This made us suspect that placing the

tip-induced potential outside the channel does not lead to

scattering of electrons back through the QPC.

The branching pattern of conductance variations observed

within channel region II are reminiscent of the branched

electron flow that Topinka et al. [3,16] and later also Kozikov

et al. [11] found in scanning gate experiments, where a

QPC tuned to a quantized value of the conductance injects

electrons into a 2DEG reservoir. Heller and Shaw explained the

formation of these branches in Ref. [4] as a conspiracy between

random focusing of electron flow in a weak long-range

spatially fluctuating potential in the absence of the tip and

time-reversal symmetry at zero magnetic field that leads to

backscattering through the QPC of a selected subset of electron

trajectories by the tip.

The finding in Fig. 2, that the branching pattern is confined

to the channel region although we apply 0 V to the channel

gates g3 and g4, suggests that these gates induce a small

potential barrier with height much less than the Fermi energy.

The GaAs surface pins the Fermi energy roughly in the center

of the band gap [17–19]. Depositing the metallic gate on top

of the surface nevertheless changes the surface potential by an

amount small compared to the band gap and thereby induces

a small potential barrier in the 2DEG. In addition, strain

fields originating from a difference of the thermal expansion

coefficients of the gate metal and the semiconductor will

induce a small potential in the 2DEG via deformation or

piezoelectric coupling [20–25]. Therefore, we interpret the

confinement of the branching pattern of the conductance to

be the result of a shallow potential barrier below the unbiased

gate electrodes.

In regions I and III of Fig. 2(a), the smoothly varying

change of the background conductance arises due to the

long-range capacitive influence of the tip on the potential in

QPC 1. The closer the tip moves towards the constriction,

the more the saddle point of the QPC potential will be lifted

towards the Fermi energy. As a consequence, the conductance

is gradually reduced [3,11,16].

In the next step we compensate for the shallow potential

barrier existing at zero applied voltage for electrons below

gates g3 and g4 by the application of finite positive voltages.

Figures 3(b)–3(f) show scanning gate images for a selection of

gate voltages between −150 and 300 mV, where the QPC

supports two spin-degenerate modes. In this transmission

mode the guiding of the branches can be seen best without

making the density of branches inside the channel too high (for

Vch = 0 V). Figure 3(c) reproduces Fig. 2(a) for convenience,

whereas Fig. 3(d) was obtained with 150 mV applied to the

channel gates g3 and g4. Faint branches appear in this image

in regions I and III, where no structure had been seen at zero

applied gate voltage. The branches penetrate these regions

even more in Figs. 3(e) and 3(f), where even more positive

voltages were applied to the channel gates. In these images,

the presence of the channel gates cannot easily be guessed

from the measured image without prior knowledge.

We see contrasting behavior in Figs. 3(b) and 3(c), where

the channel gate voltage becomes increasingly negative. In

Fig. 3(b) the conductance pattern reminds us of mesoscopic

conductance fluctuations, but the underlying branch pattern
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FIG. 3. Scanning gate images for different channel gate voltages as indicated in the images. (a) Conductance as a function of tip position

for the QPC transmitting four spin-degenerate modes and Vch = −400 mV to electrostatically define the channel. (b)–(f) Series of scans with

different, nondepleting Vch showing �G = G − 4e2/h in color. The QPC transmits two spin-degenerate modes in the absence of the tip.

seen in Fig. 3(c) still leaves its traces. The potential barrier

below the channel gate is still lower than the Fermi energy in

Fig. 3(b).

Figure 3(a) shows a scan where the electron gas below the

gates is completely depleted. In contrast to Figs. 3(b)–3(f), we

plot conductance G rather than conductance change �G. No

matter what color scale we choose for this image, the branches

have disappeared and given way to smooth variations of the

conductance on a scale of 1 μm along the channel axis. Placing

the tip in the center of the channel blocks transport completely,

because electrons cannot escape into regions I and III.

This series of measurements demonstrates that the branches

of enhanced backscattering observed in scanning gate mea-

surements near a QPC can be guided by intentionally patterned

shallow potentials. This main experimental finding is natural

given the notion that the observation of branches are a

result of the shallow random potential landscape in the

2DEG. However, it opens new opportunities for controlling

mesoscopic fluctuations in ultrahigh mobility structures where

artificial shallow potential landscapes steer the electron flow

and thus dominate the static potential fluctuations.

We may ask a number of questions at this point. How is it

possible that the branching pattern is confined by a shallow

potential barrier? Does the large and invasive tip-induced

potential still image the electron flow in the absence of the

tip as it does in an open 2DEG? How does the presence

of the tip change the electron flow? What can we learn

from our measurements for the general case of scanning gate

measurements in confined geometries? Let us answer these

questions by presenting additional analysis and by digging

deeper into the microscopic physics of the experiment.

The branch-guiding property of a shallow potential may be

seen as an effect of geometric electron optics. The potential

barrier below the channel gates plays the role of a medium

reflecting or transmitting incoming electron beams according

to Snell’s law. Electrons at the Fermi energy EF impinging

on the barrier of height V at an angle (measured with

respect to the barrier normal) larger than the critical angle

085303-3



R. STEINACHER et al. PHYSICAL REVIEW B 93, 085303 (2016)

P
o
ten

tial [m
eV

]

0 mV 0 mV+200 mV

1 μm

5

4

2

1

0

3

+200 mV

(a) (b) (c) (  )d ( )f( )e

-350 mV0 mV

FIG. 4. Trajectories of electrons injected through the QPC (conductance 4e2/h) for different situations: (a) only the QPC, no channel

(Vch = 200 mV), and no tip; (b) QPC and tip, but no channel (Vch = 200 mV); (c) QPC and shallow channel potential (Vch = 0 mV), but no

tip; (d) QPC and shallow channel potential (Vch = 0 mV) with tip; (e) three distinct backscattered trajectories in QPC, tip, and shallow channel

potential (Vch = 0 mV); and (f) one backscattered trajectory with depleting QPC, channel (Vch = −350 mV), and tip.

αc = arcsin
√

1 − V/EF are totally reflected back into the

channel with their momentum parallel to the channel axis

conserved [see the schematics in Fig. 2(b)]. In our structure

we estimate V/EF ≈ 0.36 at zero channel gate voltage1 giving

αc = 53◦. Collimation of the electron beam due to QPC 1 is

expected to lead to an injection characteristic essentially cut

off by a critical injection angle βc (measured with respect to the

channel axis) [26,27]. We may obtain an experimental estimate

of the angular distribution of injected electrons from Fig. 3(c).

In this figure we see that the observed backscattering branches

outside the wire fan out at a maximum angle βc ≈ 45◦.

This maximum injection angle leads to a fraction of 85%

of electrons that would remain within the channel boundaries

after the first reflection. The remaining 15% are typically not

visible because of the experimental limit in sensitivity.
Classical trajectory-based simulations of the conduc-

tance [28,29] help us to understand electron branching and the
classical background resistance. We find that they qualitatively
reproduce the experimental behavior [see Fig. 5(d)] and give
further insight into the flow of electrons in the structure with
and without the tip and therefore on the imaging mechanism at
work. We calculate trajectories by solving Newton’s equations
in two dimensions for a given potential landscape. Gate-
induced potentials are modeled using the analytic expressions
of Davies et al. [30]. A Lorentzian profile represents the
tip-induced potential [3,31].2 We introduce a random disorder
potential landscape caused by ionized impurities in the doping

1For this estimate we assume complete compensation of the barrier

(flat band) at 200 mV and pinchoff at −350 mV. At 0 V we

therefore find V/EF = 200/(200 + 350) = 0.36. The precision of

compensation voltage is on the order of ±50 mV.
2Note that the tip-depletion size for the simulation is smaller

than the one in the experiment to get similar scanning gate maps.

Electrostatic screening of the tip-induced potential, finite resolution,

plane that accounts for Thomas-Fermi screening [32], finite
thickness of the 2DEG [32,33], and charge correlations in the
doping plane [34]. All the parameters of the disorder potential
are given by the sample geometry and the electron density at
zero gate voltage, except for the correlation parameter, which
is used to tune the theoretical electron mobility to be the same
as in the experiment. The conductance is a weighted sum of
individual trajectory contributions.

In agreement with Topinka et al. [3], Heller and Shaw [4],
and Metzger et al. [35,36], our model reproduces the formation
of caustics and branched electron flow in the absence of
the scanning tip in an open 2DEG past a QPC [Fig. 4(a)].
Caustics are bundles of higher than average (in theory even
diverging) trajectory density caused by accidental lensing in
the random disorder potential. Heller and Shaw argued in
Ref. [4] that a hard-wall cylinder-shaped tip potential would
reflect branches with close to normal incidence back through
the QPC on time-reversed paths. He explained in this way the
superb spatial resolution of scanning gate microscopy that is
much better than the diameter of the tip. A more realistic soft
tip potential modifies this description in two ways. First, the
disorder potential distorts the Fermi contour of the tip-induced
potential changing the direction of normal incidence [see the
distorted Fermi contour in Figs. 4(b), 4(d), and 4(e)]. Second,
the long-range tail of the tip potential slightly diverts the
branches present in the absence of the tip. Both effects lead
to differences between the branched flow in the absence of
the tip and the scanning gate images. Less severe for the
appearance of the scanning gate image is the fact that the
electron flow is strongly modified by the presence of the tip
[cf. Figs. 4(a) and 4(b)]: Trajectories that are only diverted but
not backscattered will not reduce the measured conductance.

and signal-to-noise ratio in the experiment naturally lead to less

sensitivity compared to the simulation.
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FIG. 5. (a) Smoothed conductance cuts along y, roughly 80 nm

from the channel center of sample B for different channel gate

voltages between complete pinchoff (−350 mV) and a flat band below

channel gates (250 mV). (b) Smoothed conductance cuts along x at

y = 5 μm for a set of channel gate voltages. Smoothing is extended

over a range of 1 μm [shaded region in (a)]. (c) Symbols denote the

measured average conductance of the system with the tip in the center

of the channel as a function of Vch. Solid lines show the calculated

transmission and reflection probabilities (see the text). (d) Simulated

scanning gate images with a QPC conductance of 6e2/h at different

channel gate voltages.

The trajectory model confirms that the branches are guided

by shallow channel potentials [see Fig. 4(c)]. Like in the open

2DEG, the tip scatters most trajectories out of the channel

but not back trough the QPC [Fig. 4(d)] and hence does

not change the conductance. Nevertheless, an increasingly

negative channel gate voltage increases the proportion of

trajectories scattered back through the QPC. In the open system

only direct backscattering from the tip is possible [like the

white trajectory in Fig. 4(e)], whereas the channel potential

gives rise to trajectories scattering once [orange curve in

Fig. 4(e)] or multiple times [black curve in Fig. 4(e)] from

the channel gates before they are backscattered through the

QPC. These trajectories include paths with normal incidence

on the tip but also others that enclose a finite area. This implies

that the ability to image branchlike classical trajectory families

is reduced the more strongly the channel is confined. When the

channel gate voltage depletes the underlying electron gas most

trajectories spend a long time in the cavity between the QPC

and the tip, bouncing chaotically from wall to wall, leaving the

structure only accidentally through the QPC [see Fig. 4(f)] or

the opening between the tip and the channel gate.

Since the spatial potential fluctuations are caused by

the random distribution of ionized donors, the branching

pattern differs from sample to sample and even for different

cool downs. To compare experiment and simulation not

only qualitatively [see Fig. 5(d) for simulated scanning gate

images], we therefore average the measured conductance such

that only the classical background remains. Accordingly, we

compare these averaged quantities with simulations without a

disorder potential.

To this end we analyzed a series of scanning gate images at

QPC 3 with different voltages applied to channel 3 of sample

B. In Fig. 5(a) we plot the conductance of the system along

a line parallel to the channel axis. We smooth the cuts with

a running average of a 900-nm width to remove most of the

modulations that are caused by branches from the background.

It is not possible to remove them completely: Variations on

length scales larger than 900 nm remain.

In Fig. 5(a) the conductance increases with increasing

tip-QPC distance reaching a constant value at dtip-QPC > 2 μm.

The strong increase of the conductance within the first 2 μm

is due to strong backscattering with the tip in close vicinity to

the constriction as well as due to the gating effect. We obtain

the curves shown in Fig. 5(b) by taking average saturation

values [see gray-shaded region in Fig. 5(a)] of similar curves

taken parallel to the channel axis at different x coordinates.

The channel is seen as a pronounced dip in the conductance

with a strength that increases with increasing confinement of

the channel, as expected. Figure 5(c) shows the conductance

values at x = 0 of two channels (data 1 and data 2) on sample

B plotted against the channel voltage. The trajectory physics

differs significantly in the regions colored differently. In the

green-shaded region most electrons scattered off the tip are

not backscattered through the QPC. Backscattering occurs

preferentially along branches modulating the conductance at

a level of a few percent. In the red region the electron flow is

strongly channeled by the gate-induced potential in the absence

of the tip. This effect leads to the observed guiding of branches.

However, the channel potential is still too low to prevent the

majority of electrons scattering off the tip from propagating

into regions I and III. This changes in the violet region

where the electrons are increasingly kept inside the channel,

enhancing their chance to scatter back through the QPC.

We compare the experimental behavior in Fig. 5(c) with

the transmission and reflection probabilities calculated with

the classical trajectory model. The transmission probability is

split into two contributions, namely, the probability of being

transmitted and leaving the structure through region I or III (red

denotes Goutside) and the probability of transmitting beyond the

tip within the wire region II (yellow denotes Ginside). The model

supports our interpretation by showing that in the green region

almost all electrons are scattered out of region II, whereas in

the red region the electrons increasingly stay in the channel

with growing wire potential. In the violet region, however, the

number of electrons that make it past the tip starts to decrease,

because the channels between tip and wire potential shrink.

In summary, we have studied branched electron flow in a

wire geometry tunable between weak and strong confinement

using scanning gate microscopy. A comprehensive under-

standing of the measured conductance was reached based on

classical trajectories. Weak confinement guides the branches

known from open two-dimensional electron gases. In contrast,

stronger confinement generates a chaotic cavity with strongly

enhanced backscattering. Closely associated with the change

in trajectory dynamics, the scanning gate technique gradually

loses its spatial resolution for backscattered electron flow from

the weakly to the strongly confined regime. These insights bear

importance for previous experiments [7–9,27] on scanning

gate imaging of open quantum dots. Our results should lead

to educated designs of future scanning gate experiments on
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cavities. Guiding branches with shallow potentials promises

experiments in the realm of mesoscopic physics, in which

caustics are controlled by external voltages. Our results raise

the interesting theoretical question of which information about

the disorder potential can be extracted from measurements

of the branch pattern.
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