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ABSTRACT 

Actinic mask inspection for EUV lithography with targeted specification of sensitivity and throughput is a big challenge 

and effective solutions are needed. We present a novel method for actinic mask inspection, i.e. scanning scattering 

contrast microscopy. In this method the EUV mask is scanned with a beam of relatively small spot size and the scattered 

light is recorded with a pixel detector. Since the mask layout is known, the scattering profile of a defect-free mask at the 

detector can be calculated. The signal between the measured and calculated signal provides the deviation between the 

real mask and its ideal counterpart and a signal above a certain threshold indicates the existence of a defect within the 

illumination area. Dynamic software filtering helps to suppress strong diffraction from defect free structures and allows 

registration of faint defects with high sensitivity.  With the continuous scan of the whole mask area, a defect map can be 

obtained with high throughput. Therefore, we believe that this method has the potential of providing an effective solution 

for actinic mask inspection. Here we discuss the basic principles of the method, present proof-of-principle experiments, 

describe the basic components of a feasible stand-alone tool and present early results of the performance estimations of 

such a tool.  
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1. INTRODUCTION 

One of the major challenges of EUV lithography is actinic mask inspection. The true nature and printability of the 

defects can be fully validated by optical metrology at the illumination angle of 6 degrees and 13.5 nm wavelength. 

Therefore actinic metrology is an indispensable part of EUV mask infrastructure [1]. Actinic metrology is needed for 

blank inspection, patterned mask inspection, mask review and final (thru pellicle) inspection. Tools for mask review and 

blank mask inspection are in progress [2, 3]. However, in particular patterned mask and final inspection still remain as a 

major challenge. Effective solutions with targeted specifications of sensitivity, throughput, and resolution as well as with 

high availability, small footprint, and low cost of ownership and maintenance are on high demand for this metrology gap. 

Here we propose a solution to this challenge. We present a novel method for actinic mask inspection, i.e. scanning 

scattering contrast microscopy. We discuss the basic principles of the method, present proof-of-principle experiments, 

describe the basic components of a feasible stand-alone tool, and present early results of the performance estimations of 

such a tool. 

 

2. LENSLESS METROLOGY 

Conventional optical microscopy employs a series of lenses in its optical setup, where the field-of-view on the sample is 

uniformly illuminated and scatters the incoming light according to its spatial frequencies. The pass through the objective 

collects part of the angular spectrum and the optics effectively perform (inverse) Fourier transforms to produce a 

magnified aerial image of the sample at the image plane.  Spatial filtering is an effective and well-established method to 

increase the sensitivity in optical inspection methods. A spatial filter can be easily placed at an aperture plane (i.e. 

Fourier space) of the microscope, and can be designed to absorb the strong signals coming from the designed mask 

layout to detect the low signals due to defects. Such spatial filters correspond to the Fourier transform of the ideal pattern 

and are either pre-manufactured absorber plates or programmable liquid crystal filters. For example, dark-field imaging 
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is the simplest form of spatial filtering in which the low spatial frequencies of the illumination function are blocked by 

the collection optics in order to see the small defects on a highly reflecting EUV mask blank [2, 4, 5, 6].  

For EUV patterned mask inspection, which requires extremely high throughput and sensitivity, there has been 

continuous and forward-looking progress. Nevertheless, the availability of effective actinic mask inspection tools has 

been bootstrapped with several issues. The major challenge turned out to be EUV sources with high brightness, stability, 

and availability and low maintenance. Moreover, EUV inspection needs a detector with high dynamic range, since the 

quantum yield of a single EUV photon is about 25 electrons. In addition, the complexity of the systems and optics are 

also challenging. The progress in these technologies is ongoing and there is a significant potential of improvement. 

While the developments in conventional microscopy techniques saturated over the last century, lensless microscopy 

techniques have emerged as a field of intense research and current progress [7-12]. A comparison between the lens-based 

(real space) and lensless (reciprocal space) microscopy is illustrated in Fig. 1. In general, these methods rely on the fact 

that the intensity profile at the detector plane corresponds to the Fourier domain (reciprocal space) of the sample. 

However, as the detector records only the intensity of the incoming radiation, the phase information gets lost during the 

detection process. This so-called phase problem prevents the use of a single Fourier transform back projection to recover 

the aerial image at the sample plane.  Therefore, lensless microscopy techniques employ various computational 

algorithms and real and reciprocal space constraints to recover the phase and reconstruct the aerial image of the sample  

Lensless microscopy bears several appealing properties over conventional microscopy, including: (1) Reciprocal space 

imaging does not require any imaging optics, leading to a greatly simplified optical setup. (2) The resolution is provided 

by the solid angle covered by the detector and therefore can be easily tuned by the placement of the detector or by 

changing the size of the one single component – the detector.  (3) Diffractive imaging does not have a strict focal depth 

limitation, given that condenser-to-sample and sample-to-detector distances are relatively long. (4) Since the 

aforementioned distances are long, imaging through pellicle is possible. (5) Since, the reconstruction algorithms 

naturally retrieves the phase, the reciprocal techniques provide inherent phase contrast maps, which is crucial in 

identifying phase defects. 

On the other hand, it also has certain disadvantages: (1) It requires a source of much higher brightness compared to full-

field microscopy, since it relies on the coherence properties of the light. (2) Since the interpretation of diffraction 

patterns is not straightforward, the iterative algorithms employed for aerial image recovery are more demanding in 

computational power. (3) Existing algorithms generally require high data quality. 

Owing to its obvious advantages compared to real-space imaging, several research groups studied the use of 

scatterometry [13], CDI [14] or ptychography [15,16] for actinic mask metrology.  This can also be observed from the 

present conference, where a considerable number of contributions explored the possibility of coherent diffraction for 

mask metrology. Experimental techniques like CD-SAXS [17] have been successfully employed for the measurement of 

roughness or CD uniformity. Reciprocal space imaging techniques, like coherent diffractive imaging (CDI) [13], 

ptychography [15, 18] or Fourier ptychography [19] have been successfully demonstrated by several groups. Along with 

other research groups, we made significant progress in lensless EUV imaging [16], yet it needs substantial further 

development to address all issues required to meet the strict target specifications of EUV mask inspection.  This 

prompted us to look for out-of-the-box solutions using the additional information that the masks layouts are given and 

thereby the aerial image of the sample can be calculated. Coupling this a-priori knowledge into the defect inspection 

system can substantially simplify the lensless imaging methods and boost their performance. There are several ways of 

making use of this a-priori information. 

 

Here, we propose a novel, high throughput method for lensless actinic mask inspection, i.e. scanning scattering contrast 

microscopy (SSCM). The proposed method is analogous to scanning small angle X-ray scattering (scanning SAXS) and 

exploits the advantage of a-priori knowledge of the expected absorber pattern. In this method EUV mask is scanned with 

a beam of relatively small spot size (of the order of 10s of microns) and its diffraction patterns are recorded with a pixel 

detector (as shown in Fig. 1). Since the mask layout is known, the diffraction patterns of a defect free mask can be 

calculated through exact, non-iterative algorithms. By calculating the difference between the measured and calculated 

signal, one can obtain a map of deviations between the real and ideal mask. When the difference is, above a certain 

(adaptive) threshold, it indicates the presence of a defect within the illumination area. In addition to calculated patterns, 

die-to-database and die-to-die approaches are also feasible because of the low density of the defects compared to the 

whole area of the mask. 
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Since mask structures are often relatively regular repeating structures within a limited range of size and shapes 

(compared to samples from nature), they have a limited range of spatial frequencies. Therefore the diffraction pattern 

from many mask structures exhibit strong peaks while defect scattering can be detected as a faint signal in the 

background. Figure 2 shows a detector image of a typical memory device, revealing strong diffraction peaks. The signal 

from a small defect is only visible when the intensity is scaled up. The signal to noise ratio can be substantially increased 

when the strong peaks are not taken into account in the scattering contrast signal. As the measurement plane is the 

Fourier domain, the spatial frequency filtering is straightforward in SSCM by applying software filters on them. 

Moreover, using software methods, several filters can be defined on the same diffraction pattern to obtain different 

contrast mechanisms. For example in Fig. 2, the saturated peaks cannot be measured anyway, but two complementary 

filters can be employed on the rest of the measured patterns. One filter can be looking at areas between the peaks, where 

no signal is expected from perfect structures.  The second filter can be monitoring the intensity difference of the non-

saturated peaks. These two contrast mechanisms should work complementary to each other, with the second mechanism 

better suited for complex, non-periodic patterns and the first one aimed at high periodicities. Beyond the mentioned two, 

several other filters can also be applied to other parts of the detector to improve sensitivity. 

With the continuous scan of the whole mask area and calculating the differences with a particular filter, a defect map can 

be obtained with high throughput. The position accuracy of a detected defect is limited to the spot size and overlap factor 

of spots, and is, therefore, limited (e.g. to several microns). After high-throughput localization of the defect sites, the 

defects can be localized more accurately and characterized in detail by either performing a slow SSCM (e.g. small spot 

and more overlap) or by reconstructing the aerial image using scanning coherent diffraction imaging (SCDI) methods 

with the same tool.  

 

 

 

 
 

Figure 1: Comparison between the lens-based (real space) and lensless (reciprocal space) microscopy. In real space imaging (left), the 

resolution is given by the NA of the objective which must be placed close to the mask surface, making the system spatially 

constrained over the pellicle. In reciprocal space imaging (right), resolution is rather given by the NA of the detector, which due to its 

larger rectangular layout offers more space over the mask surface, relaxing the constraints on design and in pellicle management. 
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Table 1:  COSAMI electron beam and undulator parameters 

Parameter Symbol Value 

Beam and lattice parameters 

Beam energy  430 

Beam current  150 

Horizontal emittance  232 

Emittance coupling  10 

Relative rms energy spread  3.3x10-4 

H-Beta value at U-center  4.5 

V-Beta value at U-center βy[m] 2.5 

Undulator parameters 

Resonance wavelength  13.5 

Length  288 

Period length 16 

Number of periods  180 

Gap  8 

K value  0.63 

Magnetic field  0.42 

 
Table 2:  Photon beam characteristics 

Parameter Symbol Value 

Photon flux  1,17×1015 

Brilliance 3,24×1016 

Brilliance  210 

Horizontal beam size at the U center  1.00 

Vertical beam size at the U center 0.25 

Horizontal beam divergence  at the U center 0.23 

Vertical beam divergence at the U center 0.10 

  

 

Compact sources based on accelerator technologies have been developed in the early 1980’s and 90’s for X-ray 

lithography. For EUVL they are not feasible because the maximum flux is limited to about 10 W [23]. Nevertheless the 

requirements for metrology sources are significantly lower than that for lithography. Therefore, we performed some 

conceptual studies by the accelerator group at the Swiss Light Source, which lead to the COSAMI (Compact Source for 

Actinic Mask Inspection) project. This is designed to be in line of the needed specifications for actinic mask inspection 

while occupying the smallest possible footprint and relying only on well-established technologies and concepts. It has 

5×10 m footprint, in which linac, booster ring and storage ring are integrated in a compact manner as shown in Fig. 5. 

Some of its important parameters are provided in Tables 1 and 2. We note that these specifications are subject to change 

and evaluation of different options and further conceptual studies on the source design are in progress. 

5. PERFORMANCE ESTIMATION OF A STAND-ALONE TOOL 

In this section, we will briefly discuss the initial performance estimation studies of the tool using simulations. In order to 

evaluate the expected sensitivity, the throughput has been fixed by setting the probing spot diameter to 40 µm and the 

step size of 15 μm, corresponding to about 6.1 hours scan time for a 10×10 cm2 patterned mask area. The illumination 

NA was set to 0.002. Optical models of wave field propagation through the mask have been evaluated using rigorous 

coupled wave calculations to account for volumetric effects like shadowing within the absorber. The mirror was modeled 
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via the transfer matrix method. The diffraction patterns were collected on a 0.33/4 NA detector based on Jungfrau’s 

design with each shot having 5 µJ or 3.4×1011 photons arriving on the mask.  

5.1 Simulation of defect scattering 

In order to get a good overview of the expected scattering patterns and intensities from defects, simulations have been 

performed on a simple, ideal line pattern with 50 nm half pitch on mask with 5 nm pixel size. As a simple, perfect 

periodic pattern, it produced three sharp and intense diffraction peaks and with negligible intensity between the peaks. 

Following the simulation of the perfect pattern, we simulated a total of six different defects, including a large CD error, 

line gap, bridge, phase defect, small added particle and intrusion and extrusion. Moreover to evaluate potential defect 

impact on the printed pattern, we also generated the actinic aerial image as would be seen by the scanner. This is a rather 

important question as shadowing, wave guiding and reflection effects on the mask lead to the “self-healing” of certain 

defects, reducing their printability. 

As seen on Fig. 6, each simulated defect pattern provides clearly distinct scattering pattern that can be easily 

distinguished from the main diffraction peaks. This allows the easy separation of defect and structure scattering without 

the need of any imaging optics. As will be seen in Table 1, even the smallest, barely printable defects scatter several tens 

of thousands photons out of the main diffraction peaks, therefore we have a considerable amount of total intensity that 

can be detected on the detector thus providing a large error budget for noise and measurement inaccuracies. 

5.2 Sources of noise 

The accurate evaluation of possible noise sources is of key importance towards a reliable assessment of the final 

sensitivity. Using the above described measurement conditions; so far we have identified three major sources of noise, of 

which two are coming from the measurement setup and one from the studied mask. 

• Poisson noise: The photon count noise within the individual pixels may lead to poor statistics, in scanning 

scattering contrast microscopy thousands of pixels are summed up, eliminating the need for the evaluation of 

count noise within the individual pixels. Instead, it will be the count noise of the total scattered intensity that 

appears in our measurement. As even the smallest simulated defects are above 60000 photons at the calculated 

flux, the shot noise will be on the order of a few 100 photons, which is very small compared to the total signal. 

• Detector noise: The average readout noise of the detector is 50 e- which is equivalent to 2 photons per pixel. 

This is a much more significant source of measurement errors, especially for faint defects. While the large 

number of pixels on the detector helps to average out major fluctuations, there will always be some uncertainty 

left in the sum of total background with a standard deviation equivalent to ~1000 photons. As the detector 

readout noise is constant and independent from the incoming flux, fainter defects will show a linear dependence 

on the illuminating flux.   

• Diffuse scattering:  While large, printable defects produce strong scattering by themselves, the mask also 

contains a large number of small, non-printable defects in the form of surface or line-edge roughness.  These 

defects, while not strong scatterers by themselves, are present in large numbers on any mask area and produce a 

diffuse scattering background with similar frequencies as printable defects. This background can be 

considerably higher than the scattering from fainter printable defects, but as the small defects are spread all over 

the mask, they represent an even background. Therefore, it will only influence the signal to noise ratio via its 

Poisson noise and site-to-site fluctuations. Modeling realistic roughness is a challenging task all by itself, but as 

the ITRS roadmap specifies 3σ=2.1 nm absorber roughness we expect its total intensity to be on the order of 

1e7 photons per frame. This would provide additional fluctuations similar to detector noise, but thanks to the 

large error budget, such fluctuations will not prevent defect recognition using suggested parameters. However it 

might cause problems at larger spot sizes as the ratio between the defect and background scattering scales 

proportional with flux density or inversely proportional to the spot area.  
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Gap 20x50 4.93E+05 260.1 135.3 

DOT defect 20x20 3.83E+05 207.1 105.2 

Extrusion (up) 20x20 3.22E+05 176.9 88.7 

Extrusion (down) 20x20 8.97E+04 52.4 24.8 

Intrusion (up) 20x20 1.03E+05 59.8 28.4 

Intrusion (down) 20x20 6.21E+04 36.6 17.2 

 

6. SUMMARY AND OUTLOOK 

In this paper we have presented a novel method for high throughput actinic EUV mask inspection, aimed to locate 

potential defect sites over extended areas of the mask. The method uses simple, robust algorithms based on scanning 

scattering. We have experimentally demonstrated the feasibility for such a setup and have provided performance 

estimates towards a dedicated setup. Our calculations have shown that with available source and detector technologies, 

large sensitivity margins with high throughput are feasible, providing plenty of headroom for the inclusion of additional 

uncertainties. Further short-term studies include improvement of experimental setup, in particular the optics, and 

simulations and experiments with more complex mask patterns. These will hopefully increase our confidence level in 

this method to meet the requirements of actinic mask inspection. 
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