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Abstract - Image fusion is the process of combining
images of differing modalities, such as visible and
infrared (IR) images. Significant work has recently
been carried out comparing methods of fused image
assessment, with findings strongly suggesting that a
task-centred approach would be beneficial to the
assessment process. The current paper reports a pilot
study analysing eye movements of participants
involved in four tasks. The first and second tasks
involved tracking a human figure wearing camouflage
clothing walking through thick undergrowth at light
and dark luminance levels, whilst the third and fourth
task required tracking an individual in a crowd, again
at two luminance levels. Participants were shown the
original visible and IR images individually, pixel-
averaged, contrast pyramid, and dual-tree complex
wavelet fused video sequences. They viewed each
display and sequence three times to compare inter-
subject scanpath variability. This paper describes the
initial analysis of the eye-tracking data gathered from
the pilot study. These were also compared with
computational metric assessment of the image
sequences.

Keywords: Image Fusion, Video Fusion, Scanpath Anal-
ysis, Video Assessment, Eye-Tracking, Psychophysics

1 Introduction

The current paper presents a novel use of an eye-tracking
paradigm to analyse participants' scanpaths across a
range of fused video displays. Recent literature searches
suggest that there has been to date no use of such a
paradigm to assess appropriate fusion methods in any
previous research. The current section introduces
background research in this area, whilst Section 2 reports
the current experimental method. Section 3 considers the
results obtained, which are discussed in the final section.

1.1 Image and Video Fusion

Image fusion is the process of combining multiple images
of varying modalities (e.g. Infrared [IR] and visible light
radiation) to attain a composite that has the most 'useful'

S.G. Nikolov, J. Lewis, E.F. Canga, D.R. Bull,
C.N. Canagarajah

Centre for Communications Research
University of Bristol

Bristol, UK
Stavri.Nikolovgbristol.ac.uk

information for a given task. Whilst much academic
research has recently focused on the methods for fusing
static images, and for the assessment of such images, little
work has been carried out with regard to video fusion.
Loza and colleagues [1] reported that research into fused
video computational metrics is exceptionally scarce.
However, some larger commercial companies in the field
do have their own in-house dedicated video fusion
methods, although these are generally not accessible to
the wider academic world.
Two methods of static image fusion that have recently

been of interest are the Discrete Wavelet Transform
(DWT) and the Dual-Tree Complex Wavelet Transform
(DT-CWT). The shift-variant DWT method [2] is widely
used, and is the most basic of the wavelet transform
methods. These methods involve transforming the input
images into the wavelet domain, with the wavelet
coefficients processed and combined based on some
fusion rule, and the inverse transform being carried out.
The DT-CWT [3] method is an alternative form of a

DWT. This method has greater directional selectivity than
the DWT, and unlike the DWT method is shift invariant
with reduced over completeness. Thus, unlike the DWT,
the DT-CWT can directionally select from positive as
well as negative orientations, giving six sampling sub-
bands at ± 150, ±450° ±750. Additionally, small shifts in the
input images do not cause such great distortions in the
energy distributions of the output wavelet coefficients.
These advantages come at the cost of greater
computational expense. This fusion scheme has been
shown to produce better results than other DWT methods
[4, 5], as well as other pyramid and averaging methods [6,
7], across a range of qualitative and quantitative
assessments. In the current paper, a simple averaging
scheme (AVE) was also used, for reference. This method
is computationally very inexpensive, and simply involves
averaging between pixel values of the input images.
All of these fusion methods can be applied quite simply

to videos. One process involves taking each frame
individually from a registered sequence of IR-visible
video, and fusing each colour plane of the visible camera
separately with the IR sequence. This can then provide a
basic, colour-fused output. For the purposes of the current
paper, this is the method that has been adopted.
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1.2 Fused Image Assessment

Current work has begun to look at objective quantitative
ways of human image assessment. Initiated by Toet and
colleagues [8, 9], definite advances have been made in
applying some form of task to the assessment process,
and moving away from the ever-present subjective quality
assessment. Furthermore, in recent findings [5-7], it has
been shown that objective task results can differ
significantly from subjective ratings. It is thus essential to
choose a good task when assessing fused images or video
sequences, and to go beyond simply applying a subjective
rating to the fused outputs.

Objective task data can also be compared with the other
ubiquitous method of fused image assessment:
computational image quality metrics. The problem often
found with basic metrics is that in the past they have been
found not to correlate well with subjective ratings [1, 10].
As has been shown in work carried by Dixon and
colleagues [5-7], metric comparison with objective
human task results might overcome this explanatory gap.
More recent metrics based on aspects of the human visual
system might be able to overcome some of these
shortcomings [1]. Two such metrics that have been
applied to fused image analysis are Petrovic and Xydeas'
metric [11], and Piella's Image Fusion Quality Index
(IFIQ) [12].

1.2.1 Petrovic andXydeas Metric

Petrovic and Xydeas [ 1] proposed a metric that measures
the amount of edge information 'transferred' from the
source image to the fused image, to give an estimation of
the performance of the fusion algorithm. A Sobel edge
operator calculates strength and orientation information
of each pixel in the input and output images. These
measurements are then used to estimate edge strength and
orientation preservation values reflecting the perceptual
importance of the corresponding edge elements within the
input images. These maps are used to weight the
estimates of the edge information, which gives the
normalised summation of the performance metric

(Q"BF). Note that in this method the visual information
is associated with the edge information whilst the region
information is ignored.

QABIF
P

N M

QAF (n, m)wA (n, m) + QBF (n, m)wB (n, m)
n=l m=l (1)

N M
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wcw

(2)

Finally, to account for the relevance of edge
information, the same measure is computed with the
'edge images' instead of the (grey-scale) images A, B and
F. As with the previous metric, this metric does not
require a ground-truth or reference image.

1.3 The Eye-Tracking Paradigm

One alternative method of attaining data related to visual
input is to record scanpaths with the use of eye-tracking
technology. A broad range of research into scene
perception analysing eye movements, and in particular
fixations of the eye, has been carried out (e.g. [13]).
Furthermore, whilst such research has focused on static
image interpretation, psychologists are also
experimenting with dynamic computer scenes and actual
live action eye tracking [14].
When under ongoing cognitive and perceptual load, eye

movements tend towards larger saccades, with critical
questions revolving around where and how long an
individual fixates a scene or scene-element [13].
However, a range of other eye movements can also occur
under varying circumstances, including smooth pursuit,
slow drift and stabilisation reflex [15]. The kinds of eye
movements that are elicited by a particular task can thus
reveal information about the underlying cognitive
processes in action.

Investigation into eye movements has considered
viewing strategies for people studying complex natural
and computer-generated scenes. Individuals have been
found to be able to grasp the 'gist' of a natural scene very
quickly: within lOOms [16]. Other research has shown
that more successful players of the game Tetris showed
better-maintained two-fixation scanpaths with increased
cognitive load over a period of time [17].

Studies considering smooth pursuit eye movements,
that is, those steady movements associated with slow and
even tracking, have also found significant variation.
Wallace et al. [18] provided evidence for a computational
model of smooth pursuit initiation based on direction and
velocity of a tracked target, combined with the target's
edge and feature information. It has also been found that
the application of a secondary task whilst carrying out
smooth pursuit tracking of a target can significantly
degrade the performance of the pursuit [19]. Given the
broad range of findings, it seems appropriate to apply this
knowledge to the area of fused image assessment.

1.2.2 Piella Metric 1.4 Our Approach

This image fusion quality index (IFQI) measures three
different aspects: correlation, luminance distortion and
contrast distortion. In order to apply this metric for image
fusion evaluation, Piella and Heijmans [12] introduce
salient information to reflect the relative importance of
image A compared to image B within the window w.

The current paper focuses on the combination of
analysing gaze fixation data with the use of secondary
tasks in two tracking scenarios. Whilst our previous work
has been carried out on static images (e.g. [5-7]), the use
of video stimuli also allows for the creation of more
realistic scenarios, in which eye-tracking efficiency and
accuracy may be of paramount importance.
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2.2 Participants

The current experimental design constitutes part of a
larger study yet to be published.

2.1 Design

The current experiment manipulated display method
across five levels: visible (Viz) light video, IR video,
AVE fused, shift-variant DWT fused, and DT-CWT
fused videos. In Session 1 half the participants viewed the
videos in the order given, whilst half viewed in the
reverse order. In the second session all participants
viewed the sequences in the opposite order to that which
they viewed in Session 1, and in Session 3 they viewed in
the original order. This was done to help counterbalance
for ordering effects.
The two tasks carried out by the participants were

based around the video sequences 'Tropical 2.1 i' and
'Tropical 2.1 iii', captured in a larger data-gathering
project, as described in [20] and Section 2.3. A pair of
scenarios was shown to the participants with similar
content, but with one of the pair having much greater
atmospheric luminance than the other. As stated, this
order was reversed in the second session.

Ten participants (5 females, 5 males) took part in the
current study in exchange for monetary compensation,.
Eight were naive to the concepts and videos utilised.
Ages ranged from 21 to 41 years (mean = 27.1, s.d. =

6.76). Participants were required to have normal or
corrected-to-normal vision, and none had any history of
colour vision problems.

2.3 Apparatus and Stimuli

A TobiiTM x50 remote eye tracker [21] was used to collect
eye movement data. This is a table-mounted eye tracker
that works at 50 Hz with an approximate accuracy of 0.50.
This was run using the ClearView 2.5.1 software
package, on a 2.8 GHz Pentium IV dual processor PC,
with 3 GB RAM, and twin SCSI hard drives. Stimuli
were presented on a 19" flat screen CRT monitor running
at 85 Hz, with screen resolution set to 800 by 600 pixels.
Participants were required to use a chin-rest positioned
57cm from the monitor screen.

Figure 2: Two frames from 2.1 i,

Data collected included the raw gaze fixation data on

the screen, as well as reaction accuracy from event data
recorded from key presses whilst carrying out the tasks
set. The eye fixation data was compared with pre-drawn
'target maps'. These were rectangular target boxes drawn
around the soldier (target to be tracked), that were created
using a toolbox which can be used to delineate rectangles
throughout a sequence (see Figure 1). Targets were drawn
at least every 15 frames where possible; when the
tracking target was not visible for longer periods on the
screen, estimations were made. Once the targets were

drawn, the between-frame targets were calculated by
interpolation and then visually inspected. Where
necessary, these were individually readjusted. Thus,
ground truth tracking data was created for the video
sequences and used subsequently to evaluate human
tracking performance.

The two video sequences shown were part of a data-
gathering project carried out at the Eden Project Biome in
Cornwall, UK, and detailed in [20]. This project utilised
an array of different sensors across two mornings and
evenings filming a variety of scenarios. The two selected
for the current paper were subclips from the 'Tropical
Forest' collection sequences 2.1 i (High Luminance: HL)
and 2.1_iii (Low Luminance: LL). These sequences both
showed a 'soldier' (actor) dressed in camouflaged
clothing walking down a pathway amongst foliage,
through a clearing of trees and back across the way he
came, as shown in Figures 2 and 3. The sequences were
fused using the AVE, DWT, and CWT methods detailed
in Section 1.1, yielding fused sequences as shown in
Figure 4.

2 Method
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Figure 3: lIwo trames trom 2. 1 iii, Viz left, IR right.

The sequences (frame size = 576 by 480 pixels) were
displayed in the centre of the screen at 25 frames per
second, with each individual sequence lasting 1711
frames (68 seconds). Each video file was compressed
using the Microsoft Video 1 codec at best quality setting.
All compression was applied after fusion taking place.

(e) LL: DWT

(c) HL: CWT (f) LL: CWT
Figure 4: Frames from HL and LL.

2.4 Procedure

Participants were asked to attend three sessions with each
session consisting of the same experimental conditions. In
Session 1, the first task (sequence HL) involved visually
tracking a soldier walk down a path, as well as signalling
by pressing the space bar when the soldier began and

finished walking past a small electric vehicle present in
the clearing, that is, one press for each incident (see
Figure 4).
The second task (sequence LL) also involved tracking

the soldier down the path. This time participants were
asked to signal when the soldier was at the central point
between two posts. Each sequence was shown five times,
once in each different display, with the task remaining the
same each time. Sixteen point ClearView calibration was
carried out before each set of five films with calibration
background luminance darker for LL to match the lower
luminance in that sequence. In subsequent sessions the
tasks and display orders were altered as described in
Section 2. 1.

2.5 Data Analysis

Raw eye fixation data were taken and compiled so that
they could be compared with the target boxes previously
created (see Figure 1). This is shown in Figure 5. Once it
was known in which frame each recorded gaze point was
located, a direct evaluation could be made with the target
overlays. For each display modality in each task an
accuracy ratio was calculated by dividing the number of
gaze points correctly located inside the target map by the
total number of gaze fixations recorded.

re 5: (laze location comparison with target map. On
the left is a hit, on the right a miss.

The ClearView program also supplied data on how
valid each raw fixation was for each eye. This ranged
from '0' (definitely certain that a particular fixation
belonged to a particular eye) to '3' (very uncertain that a
gaze point corresponds to an eye), with '4' meaning that
no eye was detected. In the current study, only fixation
data with a validity of '0' for both eyes was used. The eye
fixation points of the two eyes were then averaged for
every recorded pair of gaze fixations. This provided the
most valid data, averaged to accommodate any variance
caused by 'drifting' artefacts, which are usually inversely
symmetrical.
The data for the task key presses was also matched to

the number of frames in each sequence. Ground truth
'correct' frames were decided upon, which were then
compared with the timing of the key presses in each
sequence recorded. Timings using the ClearView
timestamps were compared with the ground truth, with
negative numbers entailing a key press before the chosen
point, and positive numbers after.

It is planned that the current data will be analysed more
extensively in the future, accounting for variations in
pupil size, which can correlate with cognitive load.
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3 Results

Initial analysis of the results revealed that one

participant's gaze accuracy scores were significantly
below the others, with scores in LL not reaching much
above 0 in most conditions and across sessions. It was

decided that the eye-tracking system had not been able to
track this individual, verified by some poor calibration
results. This is probably caused by the presence of a slight
squint, and this participant's scores were not used in the
rest of the analyses. As the two counterbalanced groups

were now of differing sizes, initial tests were carried out
to see if the unequal group sizes had a significant effect
on the results: these were not significant so the groups

remained as they were.

3.1 Scanpath Data Analysis

The HL eye location accuracy scores showed a general
pattern of results indicating Viz and IR scored lowest,
whilst AVE and DWT scored highest, as shown in Figure
6. These were analysed using a two-way repeated
measures Analysis of Variance (ANOVA), with display
modality as one factor and session as the second. This
revealed a significant main effect of display (F(4, 32) =

6.50, p = 0.001), but not of session (F(2, 16) = 2.00, p >

0.05), and no interaction (F(8, 64) = 1.23, p>0.05). Post
hoc testing using Tukey's Honestly Significant
Difference (HSD) method revealed significant differences
between Viz and all other display methods except IR
(HSD = 0.0488, p = 0.05). In addition, DWT was

significantly greater than IR, as well as AVE approaching
significant difference, but interestingly, CWT was not
significantly different to the IR condition. These results
indicate that Viz and IR are performing worse than the
three fusion schemes, with DWT performing slightly
better than AVE in comparison to Viz and IR especially.

0.6

modalities themselves (HSD = 0.0439, p = 0.01). This
indicates that the Viz modality has performed much more
poorly in the LL task, but the other methods perform
equally well. It should be noted that the eye tracker could
not scan one participant's left eye for Session 2, so right
eye scores alone were used.

>0 0.25-
2

01
-5 0.215

0.1

.0Vi 0.05-

E Session 1

o Session 2

o Session 3

Viz IR AVE DWT CWT

Display Modality

Figure 7: Means ofLow Luminance Accuracy.

3.2 Task Results

The pattern of the HL task results revealed there was a
trend towards signalling the beginning and end of target
movement before the ideal timing, as shown by the
prevalence of negative numbers in Figure 8. ANOVA
testing revealed no significant main effects of modality
(F(4, 32) = 1.28, p > 0.05), or session (F(2, 16) = 0.645,
p>0.05), or an interaction (F(8, 64) = 0.465, p > 0.05).
This shows no statistically meaningful difference between
the conditions in this task. This is most probably due to
one participant failing to complete the task in the IR and
CWT conditions of Session 1, leading to much higher
standard error than the other conditions (as shown in
Figure 8).

100 I

uw
0

o Session 1 -

E Session 2 .e
o Session 3

E

ul

a Session 1

o Session 2

o Session 3

-300

AVE

Display Modality

Figure 6: Means of High Luminance Accuracy.

Scores for LL (Figure 7) showed Viz to be much lower
than the other methods, with AVE and DWT again
apparently leading to best accuracy. ANOVA testing
revealed a main effect of display method (F(4, 32) = 12.7,
p < 0.001), but no main effect of session (F(2, 16) =

0.406, p>0.05) or an interaction (F(8, 64) = 0.936,
p>0.05). Tukey HSD testing revealed significant
differences between Viz and all of the other modalities
individually, but no further differences between the

Display Modality

Figure 8: Means of High Luminance Reaction.

The task results for LL (Figure 9) indicated another
trend towards reacting before the ideal time, except in
Session 1 IR reactions. The repeated measures ANOVA
revealed a significant main effect of display method (F(4,
32) = 3.78, p = 0.013), but not of session (F(2, 16) =

0.853, p > 0.05), or an interaction (F (8, 64) = 1.44, p >

0.05). Tukey testing revealed significant differences
between Viz and IR (HSD = 147, p = 0.01), and between
IR and DWT (HSD =117, p = 0.05). This indicates that
there was the smallest latency in reaction time accuracy
for IR, and the largest for Viz, with most people pressing
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the button much earlier than required in this condition,
and somewhat more in the DWT condition.

200
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0
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analyses of participants' scores, collapsing 0 Session 3
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-300

-400-

Display Modality

Figure 9: Means of Low Luminance Reaction.

3.3 Individual Comparison of Session

Due to the large variation in individual accuracy scores
across sessions, it was decided to carry out separate
analyses of participants' scores, collapsing across display
modality for each participant. One-factor repeated
measures ANOVAs of HL results revealed significant
increase in accuracy across sessions for participant four
(F(2, 8) = 16.3, p = 0.002; Figure 10), with two more
participants close to significance. Tukey post-hoc testing
on participant four's results revealed that the accuracy in
Session 1 was significantly lower than Sessions 2 and 3,
but no difference between Sessions 2 and 3 themselves
(HSD = 0.0571, p = 0.05). This indicates an increase
between Sessions 1 and 2, but not between the later
sessions.

0.4

0.38 -
0

% 0.36 i

< 0.34 T
03

03

2C 0 28-

02

EC 0324-

0 22

02

2

Session

3

Figure 10: High Luminance Session Scores
for Participant 4.

The individual analyses for LL revealed that participant
one significantly increased in accuracy across sessions
(F(2, 8) = 21.0, p = 0.001; Figure 11), and one other
participant was approaching significance. Post-hoc testing
also revealed significant differences between Session 1
and the other two, but not between Sessions 2 and 3
(HSD = 0.0571, p = 0.05). This again suggests any
increase in accuracy will occur between Sessions 1 and 2.

0.28-

0.12
1 2 3

Session

Figure 11: Low Luminance Session Scores
for Participant 1.

Despite the two participants' results presented here
showing a trend towards increasing accuracy over
sessions, it should be noted that some of the results that
were close to significance did not show this trend. In HL
participant two (F(2, 8) = 6.46, p = 0.060), showed much
worse accuracy in Session 2 than Sessions 1 and 3, as did
participant eight (F(2, 8) = 3.77, p = 0.070) in LL. This
indicates that there was not necessarily a regular pattern
of accuracy increase across participants, as indeed is
shown in Figures 6 and 7.

3.4 Metric Results

The metrics discussed were computed for the two
sequences using 35 frames evenly distributed throughout
each sequence: roughly every 49 frames. As can be seen
in Figure 12, for sequence HL Piella's [16] metric rated
the DWT and CWT methods equally highly and AVE
much lower, with Petrovic's [14] metric following this
trend.

UoB-Tropical-2.1
1

0.9 _

0.8, ,

0.7 -.. --. .- Ooooo. oo
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DVVT:QABEF
AVE :0B F

O 01 cv\r:IQM
DW\r-: QM

0_ AVEAIQM
5 101M5 20 25 30

Frame No.

Figure 12: Metric Ratings of High Luminance.

The metric results for the LL sequence follow the
trends of HL, as shown in Figure 13. CWT and DWT are
again shown to be much better than the AVE fusion
method. Interestingly, the AVE fusion method has
performed well in the gaze accuracy ratings, but has not
yielded such good results with the metric scores.

1

35
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UoB-Tropical-2.1 iii

Frame No.

Figure 13 : Metric Ratings ofLow Luminance.

4 Discussion

The current pilot study has produced some very

interesting initial findings, utilising a novel approach to
the increasingly important problem of fused image
assessment. This combined with task and metric results,
has created the starting point for a new field of
assessment possibilities.
The first point of interest is the finding that the AVE

and DWT fusion methods were found to perform best in
the HL tracking task. From a subjective point, the DWT
appeared to create a sequence that was much noisier than
the CWT method. However, it did delineate the edges of
the soldier well, possibly allowing for a better match
between one dimensional edge information and structural
information, as predicted by [18]. Moreover, the
computationally inexpensive AVE method has performed
well, and might thus provide a 'cheap and dirty' method
of quick video fusion when such a fused output is
required. This is despite the AVE method reducing
contrast in the fused image output. Critically, all of the
fusion methods performed significantly better than the
inputs (with the exception of CWT over IR), highlighting
the advantages of using a fused sequence even when
luminance levels are high, and the anticipated additional
advantage of having IR information might be low. Thus
far, only total hit/miss scores for the whole video have
been counted and presented. Splitting the sequence into
several parts (which differ in content) may reveal more

significant differences between input and fused displays.
Secondly, the improvement seen across the three

sessions in the individual participant results provides
some evidence to show that people are learning more

optimal looking strategies across time. As was found by
Underwood [17], scanning strategies can vary, with more

successful people (at the game Tetris) retaining certain
eye movements, whilst less successful stop using such
movements. In the current experiment, participants were

able to learn the path of the soldier over explicit retrials of
the tracking task. A more detailed analysis of the scanpath
behaviour of the participants than is available here might
yield a similar retention of certain strategies in the more

accurate participants. However, as stated in Section 3.3,
this trend only held for a few of the participants over the
sessions, and therefore little theoretical claim can be
made.

The lack of significant result for the HL sequence task
might indicate several things. First, as the luminance was
high in this sequence, the task was only a certain amount
harder in the IR condition, where the (cold) vehicle did
not show up as well. Thus participants may have found
the experiment simply too easy, although the significant
trend towards responding pre-emptively does seem to
indicate that there is more occurring here. One other
possibility is that the presence of the second task is
affecting participant performance to some degree. In
effect, this is the reverse of [19], which found that the
addition of a secondary task to smooth pursuit tracking
would affect the tracking. However, it is hard to make
any stronger claims without a more exact task involved.
The results for LL suggest that when luminance is low,

any method of attaining additional information regarding
the target location will significantly improve upon a
visible light camera alone. When combined with the task
results, it becomes clear that the visible light display is
seriously deprived in the amount of information it can
provide to participants. Interestingly, the IR modality
allowed most accurate button presses in the task, which is
somewhat surprising as the IR image did not on its own
supply much information about the location of the two
posts, which were much more clearly visible in Viz. It
might thus be that the IR display left participants in a
state of uncertainty, which cancelled out to some degree
the pre-emptive reactions seen in the other conditions.
The metric results presented a somewhat different

picture to that shown in the tracking and task accuracy
findings. CWT and DWT outperform AVE in both
sequences, results which were not found in the tracking
data. What is more interesting is what results would have
been found if some subjective ratings task had been
carried out. From the perceived quality of the three fusion
methods, it could easily be posited that the DWT method
would score lower than the AVE method in a subjective
quality assessment, suggesting that the 'image quality'
metrics might not even be modelling 'quality' per se.
Importantly, both the metric results found, and the
hypothetical subjective rating experiment present a
different pattern of results to those yielded by the
objective human tasks used.
The final issue of interest raised in the current paper is

the general efficacy of an eye tracking image assessment
paradigm. It is clear that such an approach can lead to
significant results, and as far as pilot studies go, this one
can be deemed a success. What is of more importance is
how the findings could be improved upon in the future.
Whilst the Tobii eye tracking system is easy to use, it
lacks the much greater scan rates of some of the head-
mounted systems. In addition, the current findings
suggest that even though a relatively reliable calibration
can be made with this system, this does not necessarily
mean that the system will be able to accurately read eye
movements in every case. Additionally, whilst the results
were stable enough to provide statistical significance,
they appear somewhat lower than might be expected.
However, this can be accounted for by the large camera
movement and the soldier also out being of sight for
periods of time leading to incorrect tracking. As the
tracking data used was verified against the original videos
produced by the ClearView program, we are confident

a
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that the scores are an accurate representation of
participants' scanpaths. It is anticipated that further
studies will be able to corroborate the current findings.
One other issue that may have affected the results

adversely (although the presence of statistically
significant results suggests not too much so) is the
methods of counterbalancing used. In the current study
there may have been some ordering effects, caused by the
participants only viewing the sequences in two
arrangements. Ideally, all conditions of the independent
variable should be presented in every order, but this
would entail a sample cohort of at least 120 people.
However, what is probably of greater significance is
whether participants have viewed the inputs first, or the
fused images. By strategically counterbalancing the input
images on the one hand and the fused images on the
other, a suitably sophisticated viewing order can be
created.
The current study has shown that the use of an eye

tracking paradigm can lead to a new and highly relevant
method of assessing the value of fused images. The
results obtained suggest that in certain task scenarios,
simpler fusion methods can outperform more complex
ones. Future work is planned as detailed, including more
complex scanpath analysis accounting for scanpath
similarity and using attention maps. Further, applying
more complex tasks might allow for additional task-based
response data to have more impact.
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