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Abstract

Predicting scanpath when a certain stimulus is pre-
sented plays an important role in modeling visual
attention and search. This paper presents a model
that integrates convolutional neural network and
long short-term memory (LSTM) to generate re-
alistic scanpaths. The core part of the proposed
model is a dual LSTM unit, i.e., an inhibition of
return LSTM (IOR-LSTM) and a region of interest
LSTM (ROI-LSTM), capturing IOR dynamics and
gaze shift behavior simultaneously. IOR-LSTM
simulates the visual working memory to adaptively
integrate and forget scene information. ROI-LSTM
is responsible for predicting the next ROI given the
inhibited image features. Experimental results indi-
cate that the proposed architecture can achieve su-
perior performance in predicting scanpaths.

1 Introduction

Selective visual attention mechanism of human vision sys-
tem automatically extracts information from a subset of visual
input by shifting our eyes to bring region of interest (ROI)
onto the fovea where fine-grained analysis can be carried out.
Most studies concerning selective visual attention are deal-
ing with overt attention involving eye movements [Zhang and
Lin, 2013]. Successive eye movements during scene explo-
ration, called the visual scanpaths, are comprised of a series
of saccades and fixations. Fixations indicate ROIs of ob-
servers and saccades represent rapid changes of gaze. Unlike
saliency models that aim to measure the probability distribu-
tion of fixations with respect to the spatial layout of a stim-
ulus, visual scanpath prediction models can record not only
attention locations but also the order among fixations. Under-
standing and predicting scanpaths is a challenge yet important
task, potentially contributing to advancements of vision re-
search, visual art design, robot vision, virtual reality, which
has received great research interests recently [Boccignone,
2016; Le Meur et al., 2017].

Visual inhibition of return (IOR) facilitates foraging by dis-
couraging re-examination of recently fixated locations and
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objects [Samuel and Kat, 2003; Wang and Klein, 2010].
Due to the limited capacity of the visual working memory
(VWM), effects of IOR gradually fade over time, which al-
lows the possibility to re-fixate previously attended regions.
Such a process is fundamental to computational models of se-
lective visual attention [Bays and Husain, 2012]. [Itti et al.,
1998] firstly implemented a bottom-up saliency model that
outputs a sequence of fixations using a winner-take-all neu-
ral network and IOR. [Wang et al., 2011] introduced a sac-
cadic scanpath prediction model based on information max-
imization criteria, which incorporates the VWM to integrate
fixated regions and to forget earlier ones at a constant rate.
[Le Meur and Liu, 2015] proposed a new framework to pre-
dict visual scanpaths by modeling bottom-up saliency, oculo-
motor biases, and IOR. [Jiang et al., 2016] presented a rein-
forcement learning approach, also employed IOR, with least-
squares policy iteration to predict a sequence of human fixa-
tions, simulating the recorded eye-fixation examples.

A few studies have been conducted to integrate deep learn-
ing frameworks into scanpath generation. [Assens Reina et
al., 2017] introduced the saliency volume to generate scan-
path on 360◦ images by sampling fixations from each tem-
poral saliency slice in the saliency volume. But the accuracy
of the generated scanpath heavily depends on the quality of
saliency volume and sampling strategies. [Ngo and Manju-
nath, 2017] proposed a model that generates scanpath using
both convolutional neural network (CNN) and recurrent neu-
ral network (RNN). High-level image features extracted by
a pre-trained CNN are sent to RNN which predicts fixation
transition probability from the current position to possible lo-
cations. This model utilized the standard LSTM [Hochreiter
and Schmidhuber, 1997] to simulate the VWM, but the in-
put to the LSTM is essentially a one-dimensional vector dis-
carding relative spatial information which is indispensable to
simulate human vision.

In this paper, we propose a bio-inspired and inter-
pretable scanpath prediction architecture based on convolu-
tional LSTM (ConvLSTM) [Shi et al., 2015] that incorporates
a novel IOR-LSTM along with ROI-LSTM to capture IOR
dynamics and gaze shift behavior simultaneously. Results on
the OSIE dataset [Xu et al., 2014] and MIT dataset [Judd et
al., 2009] have verified the effectiveness of our model.
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Figure 1: Architecture of the proposed scanpath prediction model,
which includes three major components: an image feature extrac-
tor (light gray), the IOR-ROI LSTM module (light blue), and the
saliency guidance network (light green).

2 Model Architecture

Figure 1 shows the overview of the proposed scanpath pre-
diction architecture. There are three major components pre-
sented in this model: an image feature extractor, the IOR-ROI
LSTM module and a saliency guidance network. The image
feature extractor is responsible for synthesizing the foveated
image and extracting visual feature maps using CNN. The
IOR-ROI LSTM plays a critical role in predicting the next
eminent ROI to which subjects tend to pay attention. The
saliency guidance network is only employed during the train-
ing phase, forcing the feature extractor to encode more global
saliency information. A new prediction loop is started by up-
dating the foveated image using the latest fixation selected
from the predicted ROI. In order to ensure that the IOR-ROI
LSTM module can effectively learn visual IOR pattern, pre-
dicted IOR map is used to compute distance against its corre-
sponding ground truth as an auxiliary training loss which will
be jointly optimized with the ROI prediction loss.

2.1 Foveated Image and Image Feature Extractor

Thanks to the foveal system of human eyes, human can con-
centrate on a specific region with significant detail [Wandell,
1995]. The most area of the retina outside the foveal region
is called peripheral vision which only occupies limited re-
sources of the brain by perceiving visual information in a
low-resolution manner. In our work, we employ the com-
putational foveation model described in [Wang et al., 2017]

and implement it on the modern GPU to efficiently simulate
the foveation process of the human vision system.

The image feature extractor can be any form of CNNs,
e.g., VGG-Net [Simonyan and Zisserman, 2014] and ResNet
[He et al., 2016]. We employ all convolutional and pooling
layers of a pre-trained VGG-19 network to extract convolu-
tional features. However, original VGG-19 is composed of

Figure 2: The IOR-ROI LSTM module consists of two parts: IOR-
LSTM which is used to capture IOR pattern; attentive ROI-LSTM
which is used to predict the next ROI.

five blocks where each of them is followed by a max pool-
ing layer with the stride of 2× 2, which considerably reduces
spatial resolution of the resulting feature maps by a factor of
32. This could significantly degrade the quality of the feature
maps. To circumvent this issue, we modify the original VGG-
19 structure to produce feature maps with a downscale factor
of 8, while maintaining the same receptive field of convolu-
tional kernels. Last two max-pooling layers of the original
VGG-19 is discarded and convolution operation in block 5
is replaced with dilated convolution [Yu and Koltun, 2016]

which has kernel size of 3× 3 and dilation rate of 2.

2.2 IOR-ROI LSTM Module

IOR behavior is individual dependent and reacts differently to
various visual features [Hotta et al., 2010]. Thus, it is not bio-
plausible to mimic IOR using linear models which are usually
integrated into computational visual attention and gaze shift
models [Itti et al., 1998; Wang et al., 2011; Le Meur and Liu,
2015; Wang et al., 2017]. To this end, we devise the IOR-ROI
LSTM module that is capable of capturing IOR dynamics and
gaze shift behavior of human observers simultaneously. As
shown in Figure 2, the IOR-ROI LSTM module is designed to
incorporate inhibited attentive mechanism in predicting ROI
from which the next fixation is generated.

To be self-contained, basic knowledge of ConvLSTM is
first introduced. In ConvLSTM, fully connected structures
in standard LSTM are substituted with convolutional layers
which can process spatial features while reducing parameters.
Like standard LSTM, ConvLSTM is also driven by three self-
parameterized controlling gates, i.e., an input gate it, a forget
gate ft, and an output gate ot. Gates controlling and states
transition of ConvLSTM can be described as follows:

it = σ(Wi ∗ xt + Ui ∗ ht−1 + bi)

ft = σ(Wf ∗ xt + Uf ∗ ht−1 + bf )

ot = σ(Wo ∗ xt + Uo ∗ ht−1 + bo)

gt = tanh(Wg ∗ xt + Ug ∗ ht−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(1)

where xt is the input at time step t; ht−1 and ht are the hidden
states of the ConvLSTM at time step t−1 and t, respectively;
gt is candidate content to be written into the cell state ct; all
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Figure 3: Inner structure of the IOR-LSTM. It is a modified version
of original ConvLSTM, better simulating working mechanism of the
VWM.

W s, Us, and bs are learned weights and biases. The ∗ and ⊙
represent convolution operation and Hadamard product, re-
spectively.

1) IOR-LSTM: IOR-LSTM is in charge of learning to cap-
ture IOR dynamics when generating scanpaths. It should be
fed with information from currently and previously attended
regions. Specifically, its input is combined by:

X̃t = f(WIOR ∗ [Xt, h
ROI
t−1

]) (2)

where Xt ∈ R
W ′

×H′
×C represents image features, contain-

ing hints of currently fixated location due to the foveation pro-
cess. W ′, H ′ and C denotes width, height and dimension of

the extracted feature maps, respectively. hROI
t−1

∈ R
W ′

×H′
×D

is the hidden state of the ROI-LSTM which encodes attention
history. D is the dimension of state maps. The fused repre-

sentation of current and previous attention X̃t ∈ R
W ′

×H′
×D

is obtained by convolving the concatenation of Xt and hROI
t−1

through a non-linear activation function f(·).
The IOR-LSTM is modified from the original ConvLSTM

to better simulate operating mechanism of the VWM where
recently attended objects are retained, and earlier attended
regions are gradually decayed. As shown in Figure 3, the
learned forget gate selectively removes earlier information
from previous cell state ct−1 by multiplying it with an adap-

tive forgetting factor in (0, 1)W
′
×H′

×D. Currently observed
information is first transformed into gt and then modulated by
the input gate which determines what and how much infor-
mation should be passed in. Different from the original Con-
vLSTM that updates memory through an addition operation,
we simulate the iterative process of the VWM in the mental
representation by updating cell state with the element-wise
maximal values between decayed memory and information
to be written as suggested by [Wang et al., 2011], which can
be described mathematically as:

ct = max(ft ⊙ ct−1, ⌈it ⊙ gt⌉) (3)

where ⌈·⌉ is used to truncate values to the range [0, 1], which
essentially simulates the saturation of memory neurons. Be-
sides, the original non-linear activation of candidate memory
gt is replaced with ReLU(·) to only retain positive activation.

In the IOR-LSTM, each channel of ct indicates the spatial
VWM usage of one type of features. Hence, values of the cell
state ct can be considered as the inhibition strength of each
feature map. The more memory is occupied, the intenser that
spatial location should be inhibited. To guide the ROI-LSTM
to explore regions where its corresponding VWM has no or

shallow footprint, hidden state of the IOR-LSTM is updated
as:

hIOR
t = 1− ot ⊙ ct (4)

As expressed by Eqn. 4, unexplored regions will have higher
values than attended areas. The feature-wise inhibition masks
hIOR
t produced by IOR-LSTM are multiplied with feature

maps of the foveated image Xt element-wisely, which forms
the inhibited feature maps XI that can be considered as the
context describing where should not be focused during the
next attention.

2) ROI-LSTM: In determining the next ROI, we use the
soft attention model described in [Cornia et al., 2017] that
convolves XI along with hidden state of the ROI-LSTM
hROI
t−1

to output a 3D tensor summarizing the hidden represen-
tations focusing on the input XI . The hidden representations
are then projected into a single channel output using 1 × 1
convolution filters. This is followed by a softmax(·) func-
tion to normalize the input across spatial pixels. The whole
process can be expressed as:

A = softmax(K ∗tanh(WA ∗XI +UA ∗hROI
t−1

+bA)) (5)

The attention map A is then applied to each channel of the
inhibited image feature maps XI through the element-wise
product to produce the inhibited attentive image features:

XIA = A⊙XI (6)

Finally, the ROI-LSTM, with original ConvLSTM struc-
ture driven by Eqn. 1, takes XIA as input and updates its
hidden state hROI

t which will be used to generate the ROI dis-
tribution map from which the point with the maximum value
is selected as the next fixation.

2.3 Saliency Guidance Network

Visual saliency is one type of visual attention representa-
tions and saliency map demonstrates rich information about
to what extent a specific region grabs observers’ visual at-
tention. Therefore, encoding saliency information into im-
age features provides the IOR-ROI LSTM with better cues
on where it should fixate. This is achieved by partially adopt-
ing readout network from the DeepGaze II [Kümmerer et al.,
2017] which takes the original image features as input and
outputs the predicted saliency map. Thus, the ground truth
saliency map of the input image can be used to guide the
training of the high-level image feature extractor. The read-
out network, consisting of four 1 × 1 convolution layers fol-
lowed by ReLU activation functions, transforms image fea-
tures across various channels into the final saliency map. We
train the saliency guidance network to encourage last convo-
lutional features to output higher activation corresponding to
more salient regions of the original image.

2.4 Loss Function

During the training phase, outputs produced by the IOR-ROI
LSTM at time t are the IOR distribution IORt ∈ [0, 1]W×H

and the next ROI distribution ROIt ∈ [0, 1]W×H . W and
H represent width and height of the input image. These two
outputs are functions of the hidden state hIOR

t and hROI
t , re-

spectively. They are modeled as one 1×1 convolutional layer
followed by Sigmoid non-linearity. Besides, another output
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(a) Raw fixations (b) Refined fixations

Figure 4: Example scanpath from the OSIE dataset.

during training phase is the predicted saliency map St from
the saliency guidance network. To jointly optimize the entire
model, we define the loss function at time step t as:

Lt(IORt, ROIt, St) =

αL(IORt, IOR∗

t ) + βL(ROIt, ROI∗t ) + γL(St, S
∗

t )
(7)

where IOR∗

t , ROI∗t and S∗

t denote ground truth of the IOR,
ROI and saliency map, respectively; L(·) is the binary cross
entropy function, while α, β and γ are three scalar factors
setting to balance the three loss functions.

3 Experiments

3.1 Datasets

We trained and evaluated our proposed model on the widely
used public OSIE and MIT eye-tracking datasets consisting
of natural images along with eye-tracking data from different
participants. In the OSIE dataset, there are 700 images with
800 × 600 pixels. Eye-tracking data was acquired from 15
participants for each image. The MIT dataset is composed
of 1003 images with resolution ranging from 405 to 1024.
Eye-tracking data was also recorded from 15 subjects for each
image.

We observed a common phenomenon in both OSIE and
MIT datasets that most scanpaths have consecutive fixations
located within very close distance, i.e., those fixations fall
into the same ROI. Assuming that ROI corresponds to valid
receptive field of the fovea, i.e., 5◦ of central field of vision
[Wandell, 1995], 94.85% scanpaths in the OSIE dataset and
81.36% scanpaths in the MIT dataset have successive fixa-
tions belonging to the same ROI. To be consistent with the
IOR theory, it is appropriate to combine successive fixations
within the same ROI into one fixation, the merge process is
iteratively executed until no consecutive fixations are within a
given ROI. According to the experiment setup collecting the
OSIE and MIT dataset, 1◦ of visual angle contains 24 pixels
in the OSIE images [Xu et al., 2014] and 35 pixels in the MIT
images [Judd et al., 2009], thus radius of ROI for the OSIE
and MIT dataset are 60 pixels and 88 pixels, respectively. Fig-
ure 4(a) shows an example scanpath in the OSIE dataset. All
(n+1)-th fixation located within a radius of 60 pixels around
the n-th fixation should be merged into one fixation. Figure
4(b) shows the refined scanpath in which the fourth and fifth
fixation are merging results of (4, 5) fixations and (6, 7, 8, 9)
fixations shown in Figure 4(a).

3.2 Inhibition and ROI Map Generation

It is important to retrieve ground truth IOR to supervise our
model to learn reasonable and interpretable IOR behavior.

(a) (b) (c)

(d) (e) (f)

Figure 5: Ground truth inhibition map for each state of the scanpath
shown in Figure 4(b).

However, datasets we used do not provide any IOR informa-
tion. Therefore, we need to define what re-fixation is and how
IOR attenuates only with the given fixations’ location and or-
der information. We consider re-fixation as an action that the
n-th fixation falls into ROI centered at the (n − t)-th fixa-
tion. The (n − t)-th fixation is called re-fixated point of the
n-th fixation. When re-fixation happened, inhibition effects
exerted around the re-fixated point should fade completely.
Hence, inhibition decay rate of the re-fixated point depends
on the number of time steps that re-fixation happened since
the re-fixated point has been visited for the first time. For
other locations, inhibition effects decline to a given thresh-
old until the end of the scanpath. Initial inhibition strength
around the i-th attended location pi is computed as:

Φi(x) = exp(−
||x− pi||

2

2

σ2
) (8)

where x represents location in the inhibition map and σ con-
trols the spread of the inhibition which is set to 2.5◦ of visual
angle in our experiments. The ground truth inhibition map
is a combination of previous decayed inhibition map and the
latest inhibition map via the max operation:

Φ∗(x) =
k

max
i=1

Decay(Φi(x)) (9)

Figure 5 illustrates the synthesized ground truth inhibi-
tion maps with respect to the scanpath shown in Figure 4(b).
When predicting the first fixation, Figure 5(a), there is no
inhibition effect presented. But when predicting the second
fixation, Figure 5(b), regions around the first fixation is in-
hibited. It is worth noting that the second fixation is the
re-fixated point of the fifth fixation, thus, inhibition effects
around the second fixation disappeared after two time steps
when the fifth fixation shown in Figure 5(e) is going to be
predicted. Inhibition effects applied on other area decay step-
by-step but will not die out.

Each ground truth fixation associates with one unique
ground truth ROI map. ROI map is modeled as Gaussian
blob, computed with the similar formula as Eqn. 8, centered
at the ground truth fixation with the σ setting to 2.5◦ of visual
angle which is the common valid fovea radius.

3.3 Implementation Details

We randomly splitted the OSIE and MIT datasets into 80%
training data and 20% test data. We fully trained the IOR-
ROI LSTM and saliency guidance part while only fine-tuning
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Models DTW↓
MultiMatch↑

ScanMatch↑
Vector Direction Length Position

Inter-subject 1344 (154.71) 0.867 (0.008) 0.708 (0.018) 0.89 (0.008) 0.836 (0.01) 0.451 (0.017)

Itti’s model (Ground truth saliency) 2254 (75.36) 0.83 (0.011) 0.639 (0.019) 0.877 (0.012) 0.71 (0.013) 0.263 (0.018)
SGC 2157 (73.4) 0.828 (0.005) 0.634 (0.013) 0.869 (0.003) 0.717 (0.011) 0.261 (0.018)

SaltiNet 2062 (52.26) 0.838 (0.005) 0.655 (0.014) 0.869 (0.004) 0.725 (0.007) 0.279 (0.013)
Wang’s model 2089 (47.96) 0.832 (0.016) 0.718 (0.022) 0.834 (0.019) 0.761 (0.02) 0.283 (0.016)

Le Meur’s model (Ground truth saliency) 1533 (94.78) 0.849 (0.006) 0.651 (0.012) 0.872 (0.007) 0.765 (0.012) 0.36 (0.021)

Single ConvLSTM 1468 (102.67) 0.863 (0.011) 0.658 (0.024) 0.893 (0.012) 0.797 (0.013) 0.37 (0.023)
Dual ConvLSTM 1449 (92.26) 0.864 (0.01) 0.679 (0.022) 0.892 (0.011) 0.801 (0.014) 0.387 (0.022)
IOR-ROI LSTM 1453 (97.14) 0.867 (0.01) 0.678 (0.023) 0.89 (0.011) 0.803 (0.013) 0.399 (0.021)

IOR-ROI LSTM + Saliency guidance 1431 (82.78) 0.868 (0.007) 0.691 (0.017) 0.896 (0.009) 0.806 (0.015) 0.413 (0.025)

Table 1: Results (with standard deviation in parentheses) of 3 metrics for different models in the OSIE dataset.

Models DTW↓
MultiMatch↑

ScanMatch↑
Vector Direction Length Position

Inter-subject 1072 (300.07) 0.873 (0.004) 0.663 (0.017) 0.889 (0.004) 0.839 (0.008) 0.421 (0.024)

Itti’s model (Ground truth saliency) 1539 (209.77) 0.849 (0.006) 0.6 (0.014) 0.894 (0.006) 0.753 (0.011) 0.307 (0.009)
SGC 1769 (212.56) 0.831 (0.004) 0.603 (0.019) 0.858 (0.008) 0.712 (0.007) 0.258 (0.012)

SaltiNet 1957 (129.04) 0.844 (0.003) 0.637 (0.026) 0.865 (0.008) 0.734 (0.003) 0.276 (0.026)
Wang’s model 1865 (179.94) 0.809 (0.006) 0.669 (0.028) 0.784 (0.021) 0.731 (0.007) 0.244 (0.015)

Le Meur’s model (Ground truth saliency) 1319 (194.52) 0.863 (0.006) 0.631 (0.018) 0.886 (0.005) 0.789 (0.011) 0.349 (0.029)

Single ConvLSTM 1307 (73.58) 0.884 (0.011) 0.59 (0.033) 0.89 (0.022) 0.826 (0.012) 0.363 (0.03)
Dual ConvLSTM 1298 (161.84) 0.874 (0.014) 0.676 (0.027) 0.898 (0.018) 0.823 (0.017) 0.378 (0.029)
IOR-ROI LSTM 1264 (178.26) 0.876 (0.12) 0.687 (0.029) 0.902 (0.013) 0.829 (0.017) 0.385 (0.028)

IOR-ROI LSTM + Saliency guidance 1231 (141.22) 0.875 (0.006) 0.683 (0.023) 0.904 (0.01) 0.827 (0.007) 0.39 (0.031)

Table 2: Results (with standard deviation in parentheses) of 3 metrics for different models in the MIT dataset.

dilated layers of the pre-trained VGG-19 network. Further-
more, training images and fixation coordinates were ran-
domly flipped horizontally to generate more training data.
The model was trained using the Adam optimizer along with
step learning rate decay strategy which decays learning rate
at a constant rate of 0.9. Initial learning rate for the IOR-
ROI LSTM and saliency guidance part is 1 × 10−4 while
fine-tuning the dilated VGG-19 with an initial learning rate
of 1× 10−5.

3.4 Evaluation Metric

There are a few scanpath evaluation metrics quantifying dif-
ferent aspects of predicted scanpath performance [Anderson
et al., 2015]. The experiments employed three evaluation
metrics. We first adopted the Dynamic Time Warp algo-
rithm (DTW) used in [Le Meur and Liu, 2015], which can
measure the similarity between two sequences with different
lengths. The second evaluation metric, MultiMatch, intro-
duced in [Dewhurst et al., 2012] consists of five separate mea-
sures that assess the similarity between two scanpaths with
respect to shape, direction, length, position, and duration. We
also evaluated scanpath similarity using ScanMatch [Cristino
et al., 2010] which is able to take spatial, temporal and se-
quential similarities into account simultaneously. Similar to
the compared benchmark [Le Meur and Liu, 2015], we only
evaluate the performance on the spatial distribution aspects,
where the fixation duration prediction is out of the scope of
our paper.

3.5 Experimental Results

We compared our results against the state-of-the-art scan-
path prediction models, i.e., Itti’s model [Itti et al., 1998],
SGC [Sun et al., 2012], SaltiNet [Assens Reina et al., 2017],
Wang’s model [Wang et al., 2011] and Le Meur’s model
[Le Meur and Liu, 2015]. To generate scanpath for a spe-
cific image using Itti’s and Le Meur’s model, we need to pro-
vide them with a saliency map corresponding to the image

(a) (b) (c) (d)

Figure 6: Comparison of generated scanpaths with ground truth hu-
man eye-tracking scanpaths. The first row shows the ground truth
scanpaths; The second row presents the generated scanpaths.

and, hence, quality of the generated scanpath can be signif-
icantly affected by the accuracy of the input saliency map.
Thus, in comparison experiments, we fed Itti’s and Le Meur’s
model with the test image and its ground truth saliency map.
Moreover, to validate that the superiority of our model does
come from incorporating learned IOR dynamics, a perfor-
mance comparison between scanpath prediction model us-
ing just single ConvLSTM and the model with the IOR-ROI
LSTM was also conducted. To better demonstrate the effec-
tiveness of the designed IOR-LSTM, we compared the per-
formance of the dual ConvLSTM model, by replacing the
IOR-LSTM with original ConvLSTM, with that of the IOR-
ROI LSTM. Furthermore, since inter-subject scanpaths sim-
ilarities evaluate different natural and real human scanpaths.
Thus, inter-subject scanpath similarities can be used as a ref-
erence quantifying the quality of generated scanpaths. The
less performance gap between the generated scanpaths and
that of the real human scanpaths, the more realistic the gen-
erated scanpaths are.

When comparing scanpaths from various subjects on the
same stimulus, it can be observed that they can be either sim-
ilar or very different. Due to the explicit supervision of IOR
behavior during the training phase, the IOR-ROI LSTM tends
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(a) 1→2 (b) 2→3 (c) 3→4 (d) 4→5 (e) 5→6 (f) 6→7 (g) 7→8

Figure 7: Visualization of the IOR dynamics and attention shift behavior for each fixation prediction step when generating a scanpath with
8 fixations. The first row shows IOR effects when estimating the next fixation; The second row shows heat maps of attention in which the
region with the highest value is selected as the next fixation position.

to be confused if we provide it with scanpaths of the same
image from different observers with very different IOR be-
havior. Therefore, we trained the IOR-ROI LSTM for each
subject separately to model a consistent IOR dynamics and
ROI shift behavior. We randomly selected 10 subjects from
the OSIE and MIT dataset for training, and evaluation scores
of each subject-specific model were averaged as the final re-
sult.

For each model, 10 scanpaths were generated for a given
image. The length of each scanpath was determined as mean
scanpath length of the training dataset, i.e., 8 fixations for
scanpaths in both the OSIE and MIT datasets. All three eval-
uation metrics were computed by comparing each predicted
scanpath to all subjects’ ground truth scanpath and final re-
sults were the average of the 10 scores of each evaluation
metric. To measure inter-subject performance, we first evalu-
ated the performance of each subject by treating scanpaths of
other subjects as the ground truth. Then, the average value of
all subjects was used as inter-subject performance.

Tables 1 and 2 report performance of different models on
the OSIE and MIT datasets in terms of the mentioned eval-
uation metrics, respectively. From Table 1, we can see that
the model combined the IOR-ROI LSTM with saliency guid-
ance network outperforms all the other models, except the
inter-subject reference model, in all three evaluation metrics.
However, as presented in Table 2, MultiMatch vector mea-
sure of the IOR-ROI LSTM based model does not perform
very well when compared with that of the single ConvLSTM
model. This may be caused by the inconsistency of image
content type and image scale in the MIT dataset, which is
also confirmed by [Wang et al., 2017]. The overall perfor-
mance of scanpath prediction using just a single ConvLSTM
is higher than that of Le Meur’s saccadic scanpath predic-
tion model, while the IOR-ROI LSTM model can signifi-
cantly boost scanpath generation performance, which clearly
indicates that performance improvement does come from the
advantage of explicitly modeling of IOR dynamics and at-
tention shift. Furthermore, the incorporating of saliency in-
formation brings another performance gain, especially in the
ScanMatch. The dual ConvLSTM can achieve similar per-
formance in separate measures of the MultiMatch when com-
pared with that of the IOR-ROI LSTM model. But it can be
obviously observed that the IOR-ROI LSTM model outper-
forms the dual ConvLSTM model in the ScanMatch, which
suggests that our proposed IOR-LSTM, combined with the

ConvLSTM for ROI prediction, can better capture sequential
characteristics of scanpaths in the test dataset. It is also worth
noting that our proposed model can achieve comparable re-
sults in the MultiMatch vector, direction, and length simi-
larity metrics when compared with that of the inter-subject,
which means that the proposed model is able to well capture
the overall shape, saccade direction and saccade amplitude
characteristics of scanpaths in the test dataset.

In addition to qualitative evaluation, Figure 6 illustrates the
visual comparison of scanpaths generated by our proposed
model with the ground truth human eye-tracking scanpaths.
As is shown in the figure, fixations of the generated scanpath
almost cover the same locations as fixations of the ground
truth scanpath do. We can also observe that the generated
scanpaths have high shape similarity with the ground truth
scanpaths, which manifests the effectiveness of our proposed
scanpath prediction model and also gives a well visual explain
on why the proposed model can obtain comparable perfor-
mance in MultiMatch vector, direction and length measures
shown in Tables 1 and 2.

We also visualized the IOR dynamics and attention shift
behavior for each fixation prediction step in Figure 7. As
shown in the first row of Figure 7(a), when generating the
second fixation, surrounding region of the first fixation is
strongly inhibited and its corresponding region in the ROI
map, shown in the second row of Figure 7(a), has relatively
low value, then another salient object is going to be attended.
Another thing should be noted is that as the scanpath pro-
ceeds, IOR effects on previously fixated location decay adap-
tively and ROI value of that region can gradually recover to
a high level, which finally results in the re-fixation. This
process is illustrated in Figure 7(c). When predicting the
fourth fixation, inhibition in the first fixation declines below
a threshold and ROI of that area becomes the highest. Figure
7(d)(f)(g) also demonstrate the occurrence of re-fixation.

4 Conclusion

In this paper, we present a model to predict scanpath. In
the proposed model, a novel IOR-ROI LSTM module can
simultaneously model IOR dynamics and attention shift be-
havior. Compared with existing computational scanpath es-
timation approaches which model IOR in a linear manner,
our IOR-LSTM, simulating the VWM, learns IOR dynam-
ics based on visual features extracted by CNNs. Experimen-
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tal results show that our proposed scanpath prediction model
outperforms state-of-the-art computational saccadic scanpath
generation approach. Explicitly modeling IOR in scanpath
estimation can effectively boost fidelity of the generated scan-
path.
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Wallis, Leon A. Gatys, and Matthias Bethge. Understand-
ing low- and high-level contributions to fixation predic-
tion. In ICCV, 2017.

[Le Meur and Liu, 2015] Olivier Le Meur and Zhi Liu. Sac-
cadic model of eye movements for free-viewing condition.
Vision Res., 116:152–164, 2015.

[Le Meur et al., 2017] Olivier Le Meur, Antoine Coutrot,
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