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Abstract

SCANPY is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing,

visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene

regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells

(https://github.com/theislab/Scanpy). Along with SCANPY, we present ANNDATA, a generic class for handling

annotated data matrices (https://github.com/theislab/anndata).
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Background
Simple integrated analysis work flows for single-cell tran-

scriptomic data [1] have been enabled by frameworks such

as SEURAT [2], MONOCLE [3], SCDE/PAGODA [4], MAST

[5], CELL RANGER [6], SCATER [7], and SCRAN [8]. How-

ever, these frameworks do not scale to the increasingly

available large data sets with up to and more than one mil-

lion cells. Here, we present a framework that overcomes

this limitation and provides similar analysis possibilities.

Moreover, in contrast to the existing R-based frameworks,

SCANPY’s Python-based implementation is easy to inter-

face with advanced machine-learning packages, such as

TENSORFLOW [9].

Results
SCANPY integrates canonical analysis methods in a scalable

way

SCANPY integrates the analysis possibilities of established

R-based frameworks and provides them in a scalable and

modular form. Specifically, SCANPY provides preprocess-

ing comparable to SEURAT [10] and CELL RANGER [6],

visualization through TSNE [11, 12], graph-drawing [13–

15] and diffusion maps [11, 16, 17], clustering similar
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to PHENOGRAPH [18–20], identification of marker genes

for clusters via differential expression tests and pseu-

dotemporal ordering via diffusion pseudotime [21], which

compares favorably [22] with MONOCLE 2 [22], and

WISHBONE [23] (Fig. 1a).

SCANPY is benchmarked in comparisons with established

packages

In a detailed clustering tutorial of 2700 peripheral

blood mononuclear cells (PBMCs), adapted from one of

SEURAT’s tutorials (http://satijalab.org/seurat/pbmc3k_

tutorial.html) [2], all steps starting from raw count data to

the identification of cell types are carried out, providing

speedups between 5 and 90 times in each step (https://

github.com/theislab/scanpy_usage/tree/master/170505_

seurat). Benchmarking against the more run-time opti-

mized CELL RANGER R kit [6], we demonstrate a speedup

of 5 to 16 times for a data set of 68,579 PBMCs (Fig. 1a,b,

https://github.com/theislab/scanpy_usage/tree/master/

170503_zheng17) [6]. Moreover, we demonstrate the

feasibility of analyzing 1.3 million cells without subsam-

pling in a few hours of computing time on eight cores of

a small computing server (Fig. 1c, https://github.com/

theislab/scanpy_usage/tree/master/170522_visualizing_

one_million_cells). Thus, SCANPY provides tools with

speedups that enable an analysis of data sets with more

than one million cells and an interactive analysis with run

times of the order of seconds for about 100,000 cells.
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Fig. 1 a SCANPY’s analysis features. We use the example of 68,579 peripheral blood mononuclear cells of [6]. We regress out confounding variables,

normalize, and identify highly variable genes. TSNE and graph-drawing (Fruchterman–Reingold) visualizations show cell-type annotations obtained

by comparisons with bulk expression. Cells are clustered using the Louvain algorithm. Ranking differentially expressed genes in clusters identifies

the MS4A1 marker gene for B cells in cluster 7, which agrees with the bulk labels. We use pseudotemporal ordering from a root cell in the CD34+

cluster and detect a branching trajectory, visualized with TSNE and diffusion maps. b Speedup over CELL RANGER R kit. We consider representative

steps of the analysis [6]. c Visualizing and clustering 1.3 million cells. The data, brain cells from E18 mice, are publicly available from 10x Genomics.

PCA = principal component analysis, DC = diffusion component

In addition to the mentioned standard clustering-based

analyses approaches, we demonstrate the reconstruc-

tion of branching developmental processes via diffusion

pseudotime [21] as in the original paper (https://

github.com/theislab/scanpy_usage/tree/master/170502_

haghverdi16), the simulation of single cells using

literature-curated gene regulatory networks based on

the ideas of [24] (https://github.com/theislab/scanpy_

usage/tree/master/170430_krumsiek11), and the analysis

of deep-learning results for single-cell imaging data [25]

(https://github.com/theislab/scanpy_usage/tree/master/

170529_images).

SCANPY introduces efficient modular implementation

choices

With SCANPY, we introduce the class ANNDATA—

with a corresponding package ANNDATA—which stores

a data matrix with the most general annotations pos-

sible: annotations of observations (samples, cells) and

variables (features, genes), and unstructured annotations.

As SCANPY is built around that class, it is easy to add new

functionality to the toolkit. All statistics and machine-

learning tools extract information from a data matrix,

which can be added to an ANNDATA object while leaving

the structure of ANNDATA unaffected. ANNDATA is sim-

ilar to R’s EXPRESSIONSET [26], but supports sparse data

and allows HDF5-based backing of ANNDATA objects on

disk, a format independent of platform, framework, and

language. This allows operating on an ANNDATA object

without fully loading it into memory—the functionality

is offered via ANNDATA’s backed mode as opposed to its

memory mode. To simplify memory-efficient pipelines,

SCANPY’s functions operate in-place by default but allow

the optional non-destructive transformation of objects.

Pipelines written this way can then also be run in

backed mode to exploit online-learning formulations of

algorithms. Almost all of SCANPY’s tools are parallelized.

SCANPY introduces a class for representing a graph

of neighborhood relations among data points. The com-

putation of neighborhood relations is much faster than

in the popular reference package [27]. This is achieved

by aggregating rows (observations) in a data matrix to

submatrices and computing distances for each submatrix

using fast parallelized matrix multiplication. Moreover,

the class provides several functions to compute random-

walk-based metrics that are not available in other graph

software [14, 28, 29]. Typically, SCANPY’s tools reuse a

once-computed, single graph representation of data and

hence, avoid the use of different, potentially inconsistent,

and computationally expensive representations of data.

Conclusions
SCANPY’s scalability directly addresses the strongly

increasing need for aggregating larger and larger data
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sets [30] across different experimental setups, for

example within challenges such as the Human Cell

Atlas [31]. Moreover, being implemented in a highly

modular fashion, SCANPY can be easily developed fur-

ther and maintained by a community. The transfer of

the results obtained with different tools used within

the community is simple, as SCANPY’s data storage

formats and objects are language independent and

cross-platform. SCANPY integrates well into the exist-

ing Python ecosystem, in which no comparable toolkit

yet exists.

During the revision of this article, the loom file for-

mat (https://github.com/linnarsson-lab/loompy) was pro-

posed for HDF5-based storage of annotated data. Within

a joint effort of facilitating data exchange across different

labs, ANNDATA now supports importing and exporting to

loom (https://github.com/linnarsson-lab/loompy). In this

context, we acknowledge the discussions with S. Linnar-

son, which motivated us to extend ANNDATA’s previously

static to a dynamic HDF5 backing. Just before submis-

sion of this manuscript, a C++ library that provides sim-

ple interfacing of HDF5-backed matrices in R was made

available as a preprint [32].

Methods

SCANPY’s technological foundations

SCANPY’s core relies on NUMPY [33], SCIPY [34], MAT-

PLOTLIB [35], PANDAS [36], and H5PY [37]. Parts of the

toolkit rely on SCIKIT-LEARN [27], STATSMODELS [38],

SEABORN [39], NETWORKX [28], IGRAPH [14], the TSNE

package of [40], and the Louvain clustering package of

[41]. The ANNDATA class—available within the package

ANNDATA—relies only on NUMPY, SCIPY, PANDAS, and

H5PY.

SCANPY’s Python-based implementation allows easy

interfacing to advanced machine-learning packages such

as TENSORFLOW [9] for deep learning [42], LIMIX for

linear mixed models [43], and GPY/GPFLOW for Gaus-

sian processes [44, 45]. However, we note that the Python

ecosystem comes with less possibilities for classical statis-

tical analyses compared to R.

Comparison with existing Python packages for single-cell

analysis

Aside from the highly popular SCLVM (https://github.

com/PMBio/scLVM) [46, 47], which uses Gaussian

process latent variable models for inferring hidden

sources of variation, there are, among others, the visu-

alization frameworks FASTPROJECT (https://github.

com/YosefLab/FastProject) [48], ACCENSE (http://

www.cellaccense.com/) [49], and SPRING (https://

github.com/AllonKleinLab/SPRING) [15]—the lat-

ter uses the JavaScript package (http://d3js.org D3.js

for the actual visualization and Python only for

preprocessing—the trajectory inference tool SCIMITAR

(https://github.com/dimenwarper/scimitar), the cluster-

ing tool PHENOGRAPH (https://github.com/jacoblevine/

PhenoGraph) [19], the single-cell experiment design tool

MIMOSCA (https://github.com/asncd/MIMOSCA)[50],

UMIS (https://github.com/vals/umis) for handling raw

read data [51], the tree-inference tool ECLAIR (https://

github.com/GGiecold/ECLAIR) [52], and the framework

FLOTILLA (https://github.com/yeolab/flotilla), which

comes with modules for simple visualization, simple clus-

tering, and differential expression testing. Hence, only

the latter provides a data analysis framework that solves

more than one specific task. In contrast to SCANPY,

however, FLOTILLA is neither targeted at single-cell nor

at large-scale data and does not provide any graph-based

methods, which are the core of SCANPY. Also, FLOTILLA

is built around a complicated class STUDY, which contains

data, tools, and plotting functions. SCANPY, by contrast,

is built around a simple HDF5-backed class ANNDATA,

which makes SCANPY both scalable and extendable

(law of Demeter).

Availability and requirements
SCANPY’s and ANNDATA’s open-source code are main-

tained on GITHUB (https://github.com/theislab/scanpy,

https://github.com/theislab/anndata) and published

under the BSD3 license.

SCANPY and ANNDATA are released via the Python

packaging index: https://pypi.python.org/pypi/scanpy

and https://pypi.python.org/pypi/anndata.

Demonstrations and benchmarks discussed in the main

text are all stored at https://github.com/theislab/scanpy_

usage and summarized here:

• Analyzing 68,579 PBMCs (Fig. 1) in a comparison

with the CELL RANGER R kit [6]: https://github.com/

theislab/scanpy_usage/tree/master/170503_zheng17.
• Clustering and identifying cell types, adapted from

and benchmarked with http://satijalab.org/seurat/

pbmc3k_tutorial.html and one of SEURAT’s tutorials

[2]: https://github.com/theislab/scanpy_usage/tree/

master/170505_seurat.
• Visualizing and clustering 1.3 million cells (Fig. 1c):

https://github.com/theislab/scanpy_usage/tree/

master/170522_visualizing_one_million_cells.
• Reconstructing branching processes via diffusion

pseudotime [21]: https://github.com/theislab/

scanpy_usage/tree/master/170502_haghverdi16.
• Simulating single cells using gene regulatory

networks [24]: https://github.com/theislab/scanpy_

usage/tree/master/170430_krumsiek11.
• Analyzing deep-learning results for single-cell images

[25]: https://github.com/theislab/scanpy_usage/tree/

master/170529_images.
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The data sets used in demonstrations and benchmarks

are three data sets from 10x Genomics.

Programming language: Python

Operating system: Linux, Mac OS and Windows
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