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Scans as Primitive Parallel Operations 
GUY E. BLELLOCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstmct- In most parallel random access machine (PRAM) 
models, memory references are assumed to take unit time. In 
practice, and in theory, certain scan operations, also known as 
prefix computations, can execute in no more time than these 
parallel memory references. This paper outlines an extensive 
study of the effect of including, in the PRAM models, such 
scan operations as unit-time primitives. The study concludes 
that the primitives improve the asymptotic running time of many 
algorithms by an O(log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) factor greatly simplify the description 
of many algorithms, and are significantly easier to implement 
than memory references. We therefore argue that the algorithm 
designer should feel free to use these operations as if they were 
as cheap as a memory reference. 

This paper describes five algorithms that clearly illustrate how 
the scan primitives can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe used in algorithm design: a mdix- 
sort algorithm, a quicksort algorithm, a minimum-spanning-trae 
algorithm, a line-dmwing algorithm, and a merging algorithm. 
These all run on an EREW PRAM with the addition of two 
scan primitives, and are either simpler or more efficient than 
their pure PRAM counterparts. 

The scan primitives have been implemented in microcode on 
the Connection Machine System, are available in PARIS (the 
parallel instruction set of the machine), and are used in a large 
number of applications. All five algorithms have been tested, 
and the radix sort is the currently supported sorting algorithm 
for the Connection Machine. 

Index Terms- Connection Machine, parallel algorithms, par- 

allel computing, PRAM, prefix computations, scan. 

I. INTRODUCTION 

LGORITHMIC models typically supply a simple abstrac- A tion of a computing device and a set of primitive opera- 

tions assumed to execute in a fixed “unit time.” The assump- 
tion that primitives operate in unit time allows researchers to 

greatly simplify the analysis of algorithms, but is never strictly 

valid on real machines: primitives often execute in time de- 
pendent on machine and algorithm parameters. For example, 

in the serial random access machine (RAM) model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141, mem- 

ory references are assumed to take unit time even though the 

data must fan-in on any real hardware and therefore take time 

that increases with the memory size. In spite of this inaccu- 

racy in the model, the unit-time assumption has served as an 

excellent basis for the analysis of algorithms. 
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In the parallel random access machine (PRAM) models 

[16], [40], [42], [19], [20], memory references are again as- 

sumed to take unit time. In these parallel models, this “unit 

time” is large since there is no practical hardware known 

that does better than deterministic O(log2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn),  or probabilistic 
O(1og n), bit times for an arbitrary memory reference from 

n processors.’ This can lead to algorithms that are practical 

in the model but impractical on real machines. One solution 
is to use lower level models based on a fixed connectivity of 

the processors, such as the shuffle-exchange networks [44] or 

grid networks [47]. This, however, gives up machine indepen- 

dence and greatly complicates the description of algorithms. 

This paper suggests another solution: to add other primitives 
to the PRAM models that can execute as fast as memory refer- 

ences in practice, and that can reduce the number of program 

steps of algorithms- therefore making the algorithms more 

practical. 

This paper outlines a study of the effect of including certain 

scan operations as such “unit time” primitives in the PRAM 

models. The scan operation$ take a binary operator @ with 

identity i ,  and an ordered set [ao, a l , .  . . ,an- l ]  of n elements, 

and returns the ordered set [ i ,  ao, (a0 @ a ]  ), . . . , (a0 CB a1 @ 
. . . @ a,-2) ] .  In this paper, we consider two primitive scan 

operators, integer addition and integer maximum. These have 

a particularly simple implementation and they can be used to 

implement many other useful scan operations. On a PRAM, 

each element ai is placed in a separate processor, and the scan 

executes over a fixed order of the processors- the prefix op- 

eration on a linked list [48], [27], and the fetch-and-op type 

instructions [21], 1201, [37] are not considered. The conclu- 

sions of our study are summarized as follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 The scan primitives improve the asymptotic running time 

of many algorithms by an O(1og n) factor over the EREW 

model and some by an O(1og n) factor over the CRCW model 

(see Table I). 

0 The scan primitives simplify the description of many al- 

gorithms. Even in algorithms where the complexity is not 
changed from the pure PRAM model, the scan version is typ- 

ically significantly simpler. 

0 Both in theory and in practice, the two scan operations 

can execute in less time than references to a shared memory, 

and can be implemented with less hardware (see Table 11). 

This paper is divided into two parts: algorithms and imple- 
mentation. The first part illustrates how the scan primitives 

can be used in algorithm design, describes several interesting 

’ The AKS sorting network [l]  takes O(1og n) time deterministically, but 
is not practical. 

The Appendix gives a short history of the scan operations. 
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- 
Example Algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUses of Scan Primitives 

Split Radix Sort zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.2.1) Splitting 

Quicksort (2.3.1) Splitting, Distributing Sums, Copying, 

Segmented Primitives 

Distributing Sums, Copying, 

Segmented Primitives 

Minimum Spanning Tree (2.3.3) 

Line Drawing (2.4.1) Allocating, Copying, 

Segmented Primitives 

Allocating, Load Balancing Halving Merge (2.5.1) 

T A B L E  I 
THE SCAN MODEL IS THE E R E W  P R A M  MODE WITH THE ADDITION OF 

TOTIC RUNNING TIME OF MANY ALGORITHMS BY AN O(bg  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  FACTOR. 

THE ALGORITHMS NOT DESCRIBED IN THIS PAPER ARE DESCRIBED 

ELSEWHERE [7], 181. SOME OF THE ALGORITHMS ARE PROBABILISTIC 

TWO SCAN PRIMITIVES. THESE SCAN PRIMITIVES IMPROVE THE ASYMP- 

Naorithm 

Graph Algorithms 

(n vertices, m edges, m processors) 

Minimum Spanning Tree 

Connected Components 

Maximum Flow 

Maximal Independent Set 

Biconnected Components 

Sorting and Merging 

(n  keys, n processors) 

Sorting 

Merging 

Computational Geometry 

(n points, n processors) 

Convex Hull 

Building a K-D Tree 

Closest Pair in the Plane 

Line of Sight 

Matrix Manipulation 

(n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx n matrix, n2 processors) 

Matrix x Matrix 

Vector x Matrix 

Linear Systems Solver (with pivotind 

T A B L E  I1 
BOTH IN THEORY AND IN PRACTICE CERTAIN SCAN OPERATIONS CAN 

EXECUTE IN LESS TIME THAN REFERENCES TO A SHARED MEMORY, 

AND CAN BE IMPLEMENTED WITH LESS HARDWARE. FOR THE CM-2 

IMPLEMENTATION, THE SCAN IS IMPLEMENTED IN MICROCODE AND 

ONLY USES EXISTING HARDWARE 

I Memory Reference I Scan Operation I 
Theoretical 

VLSI models 

64K processor CM-2 

Bit Cycles (Time) I 600 

Percent of Hardware 30 

550 I 
0 

algorithms, and proves some of the results of Table I. The 

second part describes a very simple hardware implementation 
of the two scan primitives, and describes how other scan op- 

erations can be implemented on top of these two scans. 
We call the exclusive-read exclusive-write (EREW) PRAM 

model with the scan operations included as primitives, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scan model. Since the term unit time is misleading (both 
memory references and scan operations take many clock cy- 

cles on a real machine), this paper henceforth uses the term 

program step or step instead. The number of program steps 
taken by an algorithm is the step complexity. 

11. ALGORITHMS 

On first appearance, the scan operations might not seem to 

greatly enrich the memory reference operations of the PRAM 
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T A B L E  111 
A CROSS REFERENCE O F  THE VARIOUS USES OF SCANS INTRODUCED IN 

THIS PAPER WITH THE EXAMPLE ALGORITHMS DISCUSSED IN THIS 

PAPER. ALL THE USES CAN BE EXECUTED IN A CONSTANT NUMBER O F  

PROGRAM STEPS 

Uses of Scan Primitives 

Enumerating 

Copying 

Distributing Sums 

Splitting 

Segmented Primitives 

Allocating 

Load-Balancine 

Example Algorithms 

Splitting, Load Balancing 

Quicksort, Line Drawing, 

Minimum Spanning Tree 

Quicksort, Minimum Spanning Tree 

Split Radix Sort, Quicksort 

Quicksort, Line Drawing, 

Minimum Spanning Tree 

Line Drawing, Halving Merge 

Balvine Meree 

models. As we will discover in this paper, this is far from true; 

they are useful for a very broad set of algorithms. We separate 
the uses of scans into four categories. Section 11-B, simple 
operations, shows how scans can be used to enumerate a sub- 
set of marked processors, to copy values across all processors, 

and to sum values across all processors. As an illustration of 
the use of enumerating, we describe a practical radix sort that 
requires O(1) program steps for each bit of the keys. Section 
11-C, segmented operations, shows how segmented versions 
of the scans are useful in algorithms that work over many 
sets of data in parallel. As examples of the use of segmented 
scans, we describe a quicksort algorithm, which has an 

expected complexity of O(1og n)  program steps, and a 

minimum-spanning-tree algorithm with probabilistic complex- 
ity O(1og n). Section 11-D, allocating, shows how the scan 

operations are very useful for allocating processors. As an ex- 
ample, we describe a line-drawing algorithm which uses O( 1) 
program steps. Section 11-E, load-balancing, shows how the 

scan operations are useful to load balance elements across pro- 

cessors when there are more data elements than processors. 
As an examples, we describe a merging algorithm which with 
p processors and n elements has a step complexity of O(n/p + 
log n) .  

Table I11 summarizes the uses of the scan operations and 

the example algorithms discussed in this paper. All the algo- 
rithms discussed in the paper have been implemented on the 

Connection Machine and in some of descriptions we mention 

the running times of the implementation. Before discussing 
the uses of the scan primitives, we introduce some notational 
conventions used in the paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Notation 

We will assume that the data used by the algorithms in 

this paper are stored in vectors (one-dimensional arrays) in 
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the shared memory and that each processor is assigned to one 
element of the vector. When executing an operation, the ith 

processor operates on the ith element of a vector. For example, 

in the operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = [ 5  1 3 4 3 9 2 61 

B = [ 2  5 3 8 1 3 6 21 

C c A + B = [ 7  6 6 12 4 12 8 81 

each processor reads its respective value from the vectors A 
and B, sums the values, and writes the result into the desti- 
nation vector C. Initially, we assume that the PRAM always 

has as many processors as vector elements. 

The scan primitives can be used to scan the elements of a 

vector. For example, 

A = [ 2  1 2 3 5 8 13 211 

C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ +-scan@) = [0 2 3 5 8 13 21 341. 

In this paper, we use five primitive scan operations: 
or-scan, and-scan, max-scan, min-scan, and +-scan. 
We also use backward versions of each of these scans 

operations- versions that scan from the last element to the 

first. Section 111-D shows that all the scans can be imple- 

mented with just two scans, a max-scan and a +-scan. 
To reorder the elements of a vector, we use the permute op- 

eration. The permute operation, in the form permute (A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI), 
permutes the elements of A to the positions specified by the 

indexes of I. All indexes of I must be unique. For example, 

A(data vector) = [UO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 u2 a3 a4 a5 a6 a71 

To implement the permute operation on a EREW PRAM, 

each processor reads its respective value and index, and 

writes the value into the index position of the destination 
vector. 

B.  Simple Operations 

We now consider three simple operations that are based 

on the scan primitives: enumerating, copying, and distribut- 

ing sums (see Fig. 1). These operations are used extensively 

as part of the algorithms we discuss in this paper and all 

have an step complexity of O(1). The enumerate operation 

returns the integer i to the ith true element. This operation 

is implemented by converting the flags to 0 or 1 and execut- 

ing a +-scan. The copy operation copies the first element 

over all elements. This operation is implemented by placing 

the identity element in all but the first element of a vector 

Flag = [ T  F F  T F T T F] 
enurnerate(F1ag) = 1 1 2 41 

A = [5 1 3  4 3 9 2 61 

copy(A) = [5 5 5 5 5 5 5 51 

B = [ 1  1 2  1 1  2 1 1 1  

+-distribute(B) = [ l o  10 10 10 10 10 10 101 

Fig. 1. The enumerate, copy, and +-distribute operations. The enumerate 
numbers the flagged elements of a vector, the copy copies the first element 
across a vector, and the +-distribute sums the elements of a vector 

define split-radix-rort(A, number-of-bits){ 

€or i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom 0 to (number-of-bits ~ 1) 

A - split(A, A(:))} 

A = [5 7 3 1 4  2 7 21 

N O )  

A(1) 

A(2) 

= [ T T T T F  F T  F] 

A c split(A, A(0)) = [4 2 2 5 7 3 1 71 

= [F T T F T T F TI 

A c rplit(A, A(1)) = [4 5 1 2 2 7 3 71 

= [T T F F F T F T I  

A + split(A, A(2)) = [l 2 2 3 4 5 7 7) 

Fig. 2. An example of the split radix sort on a vector containing three bit 
values. The A ( n )  notation signifies extracting the nth bit of each element 
of the vector A and converting it to a Boolean value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T  for 1, F for 0). 
The split operation packs F (0) elements to the bottom and T (1) elements 
to the top. 

and executing any scan.3 Since the scan is not inclusive, we 

must put the first element back after executing the scan. The 

+-distribute operation returns to each element the sum 
of all the elements. This operation is implemented using 

a +-scan and a backward copy. We can likewise define 

a max- distribute, min- distribute, or- distribute, and and- 
distribute. 

1) Example: Split Radix Sort: To illustrate the use of the 
scans for enumerating, consider a simple radix sorting algo- 

rithm. The algorithm is a parallel version of the standard serial 

radix sort [26]. 
The algorithm loops over the bits of the keys, starting at the 

lowest bit, executing a split operation on each iteration. The 

split operation packs the keys with a 0 in the corresponding 
bit to the bottom of a vector, and packs the keys with a 1 in the 

bit to the top of the same vector. It maintains the order within 

both groups. The sort works because each split operation sorts 
the keys with respect to the current bit (0 down, 1 up) and 

maintains the sorted order of all the lower bits since we iterate 

from the bottom bit up. Fig. 2 shows an example of the sort 

along with code to implement it. 

We now consider how the split operation can be imple- 

mented in the scan model. The basic idea is to determine a 
new index for each element and permute the elements to these 

new indexes. To determine the new indexes for elements with 

One might think of defining a binary associative operator first which 
returns the first of its two arguments, and use it to execute the copy operation. 
The problem is that the first operator does not have an identity-a requirement 
for our definition of a scan. 
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Theoretical 

(Bit Serial Circuit) 

Bit Time 

Actual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(64K processor CM-1) 

Bit cycles (sorting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 bits) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

define rplit(A, Flags){ 

I-down zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc enumerate(not(F1ags)); 

I-up zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ n ~ back-enumerate(Flag8) ~ 1; 

Index c if Flags then I-up else I-down; 

permutc(A, Index)} 

A = [ 5  7 3 1 4  2 7 2 1  

I-down = L O  o n o m m 2  a ]  
Flags = [ T  T T T  F F T  F] 

I-up = [ a m m a 6  6 0  7 1  

Index = [ 3  4 5 6 0 1 7  21 

permute(A, Index) = [ 4 2 2 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 3 1 7 1 

The split operation packs the elements with an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF in the correspond- 
ing flag position to the bottom of a vector, and packs the elements with a 
T to the top of the same vector. 

Fig. 3, 

Split Radix Sort Bitonic Sort 

O ( d  log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( d  + lug’ n )  

20,000 19,000 

T A B L E  IV 
COMPARISON OF THE TIMES TAKEN BY THE SPLIT RADIX SORT AND THE 

BITONIC SORT ( n  KEYS EACH WITH d BITS). THE CONSTANTS IN THE 

THEORETICAL TIMES ARE VERY SMALL FOR BOTH ALGORITHMS. ON 
THE CONNECTION MACHINE, THE BITONIC SORT IS IMPLEMENTED IN 

MICROCODE WHEREAS THE SPLIT RADIX SORT IS IMPLEMENTED IN 

MACROCODE, GIVING THE BITONIC SORT A N  EDGE 

a 0 (F)  in the bit, we enumerate these elements as described 
in the last section. To determine the new indexes of elements 
with a 1 (7 )  in the bit, we enumerate the elements starting at 

the top of the vector and subtract these from the length of the 
vector. Fig. 3 shows an example of the split operation along 
with code to implement it. 

The split operation has a step complexity of O(1); so for 
d-bit keys, the split radix sort has a step complexity of O(d). 

If we assume for n keys that the keys are O(1og n) bits long, a 
common assumption in models of computation [45], then the 

algorithm has a step complexity of O(1og n) .  Although O(1og 
n)  is the same asymptotic complexity as existing EREW and 

CRCW algorithms [l], [ l l ] ,  the algorithm is much simpler 
and has a significantly smaller constant. Note that since inte- 

gers, characters, and floating-point numbers can all be sorted 
with a radix sort, a radix sort suffices for almost all sorting 
of fixed-length keys required in practice. 

The split radix sort is fast in the scan model, but is it fast 
in practice? After all, our architectural justification claimed 
that the scan primitives bring the P-RAM models closer to 

reality. Table IV compares implementations of the split radix 
sort and Batcher’s bitonic sort [4] on the Connection Machine. 
We choose the bitonic sort for comparison because it is com- 

monly cited as the most practical parallel sorting algorithm. I 
have also looked into implementing Cole’s sort [ 1 11, which is 

optimal on the P-RAM models, on the Connection Machine. 

Although never implemented, because of its complexity, it was 
estimated that it would be at least a factor of 4, and possibly 

a factor of 10, slower than the other two sorts. The split radix 

sort is the sort currently supported by the parallel instruction 
set of the Connection Machine [46]. 

C .  Segments and Segmented Scans 

In many algorithms, it is useful to break the linear ordering 

of the processors into segments and have a scan operation 
start again at the beginning of each segment; we call such 

scan operations, segmented scans. Segmented scans take two 

arguments: a set of values and a set of segment flags. Each flag 

in the segment flags specifies the start of a new segment (see 
Fig. 4). Segmented scans were first suggested by Schwartz 

[40] and this paper shows some useful applications of these 
scans. 

The segmented scan operations are useful because they al- 

low algorithms to execute the scans independently over the 

elements of many sets. This section discusses how they can 
be used to implement a parallel version of quicksort and how 
they can be used to represent graphs. This graph representa- 

tion is then used in a minimum-spanning-tree algorithm. 
The segmented scan operations can all be implemented with 

at most two calls to the two unsegmented primitive scans (see 

Section 111-D). They can also be implemented directly as de- 
scribed by Schwartz [40]. 

I )  Example: Quicksort: To illustrate the use of segments, 

we consider a parallel version of Quicksort. Similar to the 
standard serial version [24], the parallel version picks one of 

the keys as a pivot value, splits the keys into three sets- keys 

lesser, equal, and greater than the pivot-and recurses on each 
set.4 The algorithm has an expected step complexity of O(1og 

n ) .  
The basic intuition of the parallel version is to keep each 

subset in its own segment, and to pick pivot values and split the 
keys independently within each segment (see Fig. 5) .  The steps 

required by the sort are outlined as follows: 

1. Check if the keys are sorted and exit the routine if they 
are. Each processor checks to see if the previous processor has 
a lesser or equal value. We execute an and-distribute (Section 

11-B) on the result of the check so that each processor knows 

whether all other processors are in order. 

2. Within each segment, pick a pivot and distribute it to the 

other elements. 
If we pick the first element as a pivot, we can use a seg- 

mented version of the copy (Section 11-B) operation imple- 
mented based on a segmented max-scan. The algorithm could 

also pick a random element by generating a random number 

in the first element of each segment, moding it with the length 
of the segment, and picking out the element with a few scans. 

3. Within each segment, compare each element to the pivot 
and split based on the result of the comparison. 

For the split, we can use a version of the split operation de- 
scribed in Section 11-B1 which splits into three sets instead of 
two, and which is segmented. To implement such a segmented 
split, we can use a segmented version of the enumerate op- 

eration (Section 11-B) to number relative to the beginning of 

We do not need to recursively sort the keys equal to the pivot, but the 
algorithm as described below does. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 13:48 from IEEE Xplore.  Restrictions apply.



1530 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index = [ 0  

vertex = [ 1  

segment-descriptor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (T 

cross-pointers = [l 

weights = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[wl 
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1 2  3 4 5 6 7 8 9 1 0 1 1 1  

2 2 2 3 3 3 4 4 5 5  51 

T F F T F F T F T F F] 

0 4 2 7 10 5 11 6 81 

w1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw3 w2 w4 w5 w4 w6 w3 w5 we] 

A 

Sb 

= [5 1 3  4 3 9 2 61 

= [ T F T F F F T F ]  

scg-+-xan(A, Sb) = [0 5 0 3 7 10 0 21 

seg-max-xan(A, Sb) = [0 5 0 3 4 4 0 21 

Fig. 4. The segmented scan operations restart at the beginning of each seg- 
ment. The vector Sb contains flags that mark the beginning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the segments. 

Key = [6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.41 

Segment-Flags = [ T  F F F F F F F] 

Pivots = [6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.41 
F - - [ =  > < < > < > <] 

Key t rplit(Key, F )  = [3.4 1.6 4.1 3.4 6.4 9.2 8.7 9.21 

Segment-Flags = [ T  F F F T T F F] 

Pivots = [3.4 3.4 3.4 3.4 6.4 9.2 9.2 9.21 

F = [ =  < > = = = < =] 
Key t split(Key, F )  = [1.6 3.4 3.4 4.1 6.4 8.7 9.2 9.21 

Segment-Flags = [ T  T F T T T T F] 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Parallel quicksort. On each step, within each segment, we distribute 
the pivot, test whether each element is equal-to, less-than, or greater-than 
the pivot, split into three groups, and generate a new set of segment flags. 

each segment, and we can use a segmented version of the copy 
operation to copy the offset of the beginning of each segment 

across the segment. We then add the offset to the numbers rel- 
ative to beginning of the segment to generate actual indexes 

to which we permute each element. 

4. Within each segment, insert additional segment flags to 

separate the split values. Knowing the pivot value, each 
element can determine if it is at the beginning of 

the segment by looking at the previous element. 

5. Return to step 1. 
Each iteration of this sort requires a constant number of 

calls to the primitives. If we select pivots randomly within 
each segment, quicksort is expected to complete in O(1og zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) 
iterations, and therefore has an expected step complexity of 

O(1og n). This version of quicksort has been implemented on 
the Connection Machine and executes in about twice the time 

as the split radix sort. 

The technique of recursively breaking segments into subseg- 
ments and operating independently within each segment can 

be used for many other divide-and-conquer algorithms [7], 

P I .  
2) Graphs: An undirected graph can be represented using a 

segment for each vertex and an element position within a seg- 

ment for each edge of the vertex. Since each edge is incident 

on two vertices, it appears in two segments. The actual values 

kept in the elements of the segmented vector are pointers to 

the other end of the edge (see Fig. 6) .  To include weights on 
the edges of the graphs, we can use an additional vector that 

contains the weights of the edges. 

By using segmented operations to operate over the edges 

of each vertex, the step complexity of many useful operations 

on graphs can be reduced. For example, for n vertices, the 

vertex 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

vertex 4 

vertex 3 w6 

vertex 2 
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Parent = [T F T 
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8 9  10111 

T F T F F] 

W4 W 6  W 3  '45 W6i 

F T  F F  F F] 

F TI 

all manipulations on graphs using the segmented graph repre- 
sentation. A graph can be converted from most other repre- 

sentations into the segmented graph representation by creating 
two elements per edge (one for each end) and sorting the edges 
according to their vertex number. The split radix sort (Section 

11-B1) can be used since the vertex numbers are all integers 
less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. The sort places all edges that belong to the same 

vertex in a contiguous segment. We suggest, however, that in 

the scan model graphs always be kept in the segmented graph 
representation. 

3) Minimum Spanning Tree: This section describes a prob- 

abilistic minimum-spanning-tree (MST) algorithm. For n ver- 
tices and m edges, it has a step complexity of O(1og n).  The 
best algorithm known for the EREW PRAM model requires 

O(log2 n) time [23], [39]. The best algorithm known for the 
CRCW PRAM model requires O(1og n)  time [3], but this 
algorithm requires that the generic CRCW PRAM model be 

extended so that if several processors write to the same loca- 
tion, either the value from the lowest numbered processor is 
written or the minimum value is written. 

All these algorithms are based on the algorithm of Sollin 
[5], which is similar to the algorithm of Boruvka [9]. The 
algorithms start with a forest of trees in which each tree is a 
single vertex. These trees are merged during the algorithm, 
and the algorithm terminates when a single tree remains. At 

each step, every tree T finds its minimum-weight edge joining 

a vertex in T to a vertex of a distinct tree T'. Trees connected 
by one of these edges merge. To reduce the forest to a single 
tree, @log n)  such steps are required. 

In the EREW PRAM algorithm, each step requires I2(log 
n) time because finding the minimum edge in a tree and dis- 
tributing connectivity information over merging trees might 

require R(1og n)  time. In the extended CRCW PRAM model, 
each step only requires constant time because each minimum 

edge can be found with a single write operation. In our algo- 
rithm, we keep the graph in the graph representation discussed 

in Section 11-C2 so that we can use the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmin-distribute (Sec- 
tion 11-B) operation to find the minimum edge for each 

tree and the copy operation to distribute connectivity in- 

formation among merging trees with a constant number 
of calls to the primitives. The only complication is main- 
taining the representation when merging trees. 

As with the Shiloach and Vishkin CRCW PRAM algorithm 

[43], trees are selected for merging by forming stars. We 
define a star as a set of vertices within a graph with one of the 
set marked as the parent, the others marked as children, and 
an edge that leads from each child vertex to its parent ~ e r t e x . ~  

A graph might contain many stars. The star-merge operation 
takes a graph with a set of disjoint stars, and returns a graph 

with each star merged into a single vertex. Fig. 7 shows an 

example of a star-merge for a graph with a single star. 
The minimum-spanning-tree algorithm consists of repeat- 

edly finding stars and merging them. To find stars, each vertex 
flips a coin to decide whether they are a child or parent. All 
children find their minimum edge (using a min-distribute), 

Index = [ 0  1 2  3 

segment-descriptor = [T T F F F 

weights = [ W l  W1 W 3  W5 W6 

cross-pointers = [ 1  0 5 6 

This definition of a star is slightly different from the definition of Shiloach 
and Vishkin [43]. 

4 5  6 71 

T F F] 

W 3  W5 W61 

7 2  3 41 

child 0 parent 

@ edge belonging to the star 

and all such edges that are connected to a parent are marked 
as star edges. Since, on average, half the trees are children 
and half of the trees on the other end of the minimum edge 
of a child are parents, 114 of the trees are merged on each 

star-merge step. This random mate technique is similar to the 
method discussed by Miller and Reif [33]. Since, on average, 
1/4 of the trees are deleted on each step, @log n)  steps are 

required to reduce the forest to a single tree. 
We now describe how a star-merge operation can be imple- 

mented in the scan model, such that for m edges, the operation 
has a step complexity of O(1). The input to the star-merge op- 
eration is a graph in the segmented graph representation, with 

two additional vectors: one contains flags that mark every star 

edge, and the other contains a flag that marks every parent. 
To implement a star-merge and maintain the segmented graph 
representation, each child segment must be moved into its par- 

ent segment. The technique used for this rearrangement can 
be partitioned into four steps: 1) each parent opens enough 
space in its segment to fit its children, 2) the children are per- 
muted into this space, 3) the cross-pointers vector is updated 

to reflect the change in structure of the graph, and 4) edges 
which point within a segment are deleted, therefore deleting 
edges that point within a tree. 
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Fig. 8. Processor allocation. The vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA specifies how many new ele- 
ments each position needs. We can allocate a segment to each position by 
applying a +-scan to A and using the result as pointers to the beginning of 
each segment. We can then distribute the values of V to the new elements 
with a permute to the beginning of the segment and a segmented copy 
across the segment. 

1) To open space in the parent segments, each child passes 

its length (number of edges) across its star edge to its parent, 

so each parent knows how much space it needs to open up 

for each of its children. Let us call the vector that contains 

the needed space of each child the needed space vector. A 1 

is placed in all the nonstar edges of this vector. We can now 
use a segmented +-distribute on the needed-space vector to 

determine the new size of each parent and a +-scan to allocate 

this new space for each parent (such allocation is discussed 

in more detail in Section 11-D). We also execute a segmented 
+-scan on the needed-space vector to determine the offset 

of each child within its parent segment and the new position 

of each nonstar edge of the parent. We call this vector the 

child-offset vector. 

2) We now need to permute the children into the parent 

segments. To determine the new position of the edges in the 

child vertices, we permute the child-offset back to each child 

and distribute it across the edges of the child. Each child adds 

its index to this offset giving each child edge a unique ad- 

dress within the segment of its parent. We now permute all 

the edges, children and parents, to their new positions. 3) 
TO update the pointers, we simply pass the new position of 

each end of an edge to the other end of the edge. 4) To delete 

edges that point within a segment, we check if each edge points 

within the segment by distributing the ends of the segment, 
and then pack all elements that point outside each segment 

deleting elements pointing within each segment. The pointers 

are updated again. 

D. Allocating 

This section illustrates another use of the scan operations. 

Consider the problem of given a set of processors each with 

an integer, allocating that integer number of new processors 
to each initial processor. Such allocation is necessary in the 

parallel line-drawing routine described in Section 11-D1 . In 

the line-drawing routine, each line calculates the number of 
pixels in the line and dynamically allocates a processor for 

each pixel. Allocating new elements is also useful for the 

branching part of many branch-and-bound algorithms. Con- 

sider, for example, a brute force chess-playing algorithm that 

executes a fixed-depth search of possible moves to determine 

the best next move.6 We can execute the algorithms in parallel 
by placing each possible move in a separate processor. Since 

the algorithm dynamically decides how many next moves to 

generate, depending on the position, we need to dynamically 
allocate new elements. In Section 11-E, we discuss the bound- 

ing part of branch-and-bound algorithms. 

Defined more formally, allocation is the task of, given a 
vector of integers A with elements a; and length I ,  creating a 

new vector B of length 

with ai elements of B assigned to each position i of A .  By 
assigned to, we mean that there must be some method for 

distributing a value at position i of a vector to the a; elements 

which are assigned to that position. Since there is a one-to-one 

correspondence between elements of a vector and processors, 

the original vector requires I processors and the new vector 
requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL processors. Typically, an algorithm does not op- 

erate on the two vectors at the same time, so the processors 

can overlap. 

Allocation can be implemented by assigning a contiguous 

segment of elements to each position i of A .  To allocate seg- 
ments we execute a +-scan on the vector A returning a pointer 

to the start of each segment (see Fig. 8). We can then gener- 

ate the appropriate segment flags by permuting a flag to the 

index specified by the pointer. To distribute values from each 
position i to its segment, we permute the values to the begin- 

ning of the segments and use a segmented copy operation to 

copy the values across the segment. Allocation and distribu- 
tion each require O(1) steps on the scan model. Allocation 

requires O(log n) steps on a EREW P-RAM and @log nllog 
log n) steps on a CREW P-RAM (this is based on the prefix 

sum routine of Cole and Vishkin [ 131). 

When an algorithm allocates processors, the number of pro- 

cessors required is usually determined dynamically and will 

depend on the data. To account for this, we must do one of 

This is how many chess playing algorithms work [6]. The search is called 
a minimax search since it alternates moves between the two players, trying 
to minimize the benefit of one player and maximize the benefit of the other. 
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0 
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Fig. 9. The pixels generated by a line drawing routine. In this example, 
the endpoints are (11, 2)-(23, 14), (2, 13)-(13, 8), and (16, 4)-(31, 4). 
The algorithm allocates 12, 1 I ,  and 16 pixels, respectively, for the three 
lines. 

three things: assume an infinite number of processors, put 

a bound on the number of elements that can be allocated, 
or start simulating multiple elements on each processor. The 
first is not practical, and the second restricting. Section 11-E 

discusses the third. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I )  Example: Line Drawing: As a concrete example of how 

allocation is used, consider line drawing. Line drawing is the 
problem of, given a set of pairs of points (each point is an (x, 
y )  pair), generating all the locations of pixels that lie between 
one of the pairs of points. Fig. 9 illustrates an example. The 

routine we discuss returns a vector of (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  pairs that specify 
the position of each pixel along the line. It generates the same 
set of pixels as generated by the simple digital differential 

analyzer (DDA) serial technique [34]. 
The basic idea of the routine is for each line to allocate a 

processor for each pixel in the line, and then for each allocated 

pixel to determine, in parallel, its final position in the grid. 
To allocate a processor for each pixel, each line must first 

determine the number of pixels in the line. This number can 
be calculated by taking the maximum of the x and y differences 
of the line's endpoints. Each line now allocates a segment of 

processors for its pixels, and distributes its endpoints across 

the segment as described earlier. We now have one processor 
for each pixel and one segment for each line. We can view 
the position of a processor in its segment as the position of 

a pixel in its line. Based on the endpoints of the line and the 

position in the line (determined with a +-scan), each pixel can 
determine its final (x, y )  location in the grid [34]. To actually 
place the points on a grid, we would need to permute a flag to 

a position based on the location of the point. In general, this 
will require the simplest form of concurrent-write (one of the 

[ ? ' I ?  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp52 $ 4 8 ,  -1 
processor 0 processor 1 processor 2 processor 3 

Sum = [12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 18 151 

+-rcan(Sum) = [0 12 19 371 

[,o 4" 1L !2 1.2 17, J 9  2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA29, 27 3.8 4 p  

processor 0 processor 1 processor 2 processor 3 
I 

Fig. 10. When operating on vectors with more elements than processors 
(long vectors), each processor is assigned to a contiguous block of ele- 
ments. To execute an arithmetic operation or the permute operation on a 
long vector, each processor loops over the element positions for which it is 
responsible and executes the operation. To execute a scan, each processor 
sums its elements, executes a scan across processors, and uses the result 
as an offset to scan within processors. 

values gets written) since a pixel might appear in more than 
one line. 

This routine has a step complexity of 0(1) and requires as 

many processors as pixels in the lines. The routine has been 
implemented on the Connection Machine, has been extended 
to render solid objects by Salem, and is part of a rendering 

package for the Connection Machine [38]. 

E.  Load Balancing 

Up to now, this paper has assumed that a PRAM always 
has as many processors as elements in the data vectors. This 
section considers simulating multiple elements on each proces- 

sor. Such simulation is important for two reasons. First, from 

a practical point of view, real machines have a fixed number 

of processors but problem sizes vary: we would rather not re- 
strict ourselves to fixed, and perhaps small, sized problems. 
Second, from both a practical and theoretical point of view, 
by placing multiple elements on each processor, an algorithm 
can more efficiently utilize the processors and can greatly re- 

duce the processor-step complexity (see Table v). Fig. 10 

discusses how to simulate the various vector operations dis- 
cussed in Section 11-A on vectors with more elements than 

processors. 
When simulating multiple elements on each processor, it is 

important to keep the number of elements on the processors 
balanced. We call such balancing, load balancing. Load bal- 
ancing is important when data elements drop out during the 
execution of an algorithm since this might leave the remain- 

ing elements unbalanced. There are three common reasons 
why elements might drop out. First, some elements might 

have completed their desired calculations. For example, in 

the quicksort algorithm described in Section 11-C 1, segments 
which are already sorted might drop out. Second, the algo- 

rithm might be subselecting elements. Subselection is used in 
the halving merge algorithm discussed in Section 11-El . Third, 
an algorithm might be pruning some sort of search. Pruning 

might be used in the bounding part of branch-and-bound al- 
gorithms such as the chess-playing algorithm we mentioned 
in Section 11-D. In all three cases, when the elements drop 
out, the number of elements left on each processor might be 

unbalanced. 
For m remaining elements, load balancing can be imple- 
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Fig. 1 1 .  Load balancing. In load balancing, certain marked elements are 
dropped and the remaining elements need to be balanced across the proces- 
sors. Load balancing can be executed by packing the remaining elements 
into a smaller vector using an enumerate and a permute, and assigning each 
processor to a smaller block. 

mented by enumerating the remaining elements, permuting 

them into a vector of length m, and assigning each processor 

to mlp elements of the new vector (see Fig. 11). We call the 

operation of packing elements into a smaller vector, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApack 
operation. A processor can determine how many and which 

elements it is responsible for simply by knowing its proces- 

sor number and m; m can be distributed to all the processors 

with a copy. In the scan model, load balancing requires 
O ( n / p )  steps. On an EREW PRAM, load balancing requires 

O(n /p  +log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn)  steps. 

I )  Example: Halving Merge: To illustrate the importance 
of simulating multiple elements on each processor and load 

balancing, this section describes an algorithm for merging two 

sorted vectors.' We call the algorithm, the halving merge. 
When applied to vectors of length n and m ( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 m )  on the 

scan model with p processors, the halving merge algorithm 

has a step complexity of O ( n / p  +log n) .  When p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< n/log n ,  
the algorithm is optimal. Although the split radix sort and 

the quicksort algorithms are variations of well-known algo- 

rithms translated to a new model, the merging algorithm de- 
scribed here is original. The merging algorithm of Shiloach 

and Vishkin for the CRCW PRAM model [17], [42] has the 

same complexity but is quite different. Their algorithm is not 
recursive. 

The basic idea of the halving merge algorithm is to ex- 

tract the odd-indexed elements from each of the two vectors 
by packing them into smaller vectors, to recursively merge 

the half-length vectors, and then to use the result of the halv- 

ing merge to determine the positions of the even-indexed ele- 
ments. The number of elements halves on each recursive call, 

and the recursion completes when one of the merge vectors 

contains a single element. We call the operation of taking the 
result of the recursive merge on the odd-indexed elements 

and using it to determine the position of the even-indexed el- 

ements, even-insertion. We first analyze the complexity of 
the halving merge assuming that the even-insertion requires 

A = [l 7 10 13 15 201 

B = [3 4 9 22 23 261 

A' = [l 10 151 

B' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3 9 23) 

merge(A', B') = [l 3 9 10 15 231 

near-merge = [I 9 122 10 13 15 201 23 261 

result = [l 3 4 7 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 13 15 20 22 23 261 

Fig. 12. The halving merge involves selecting the odd-indexed elements 
of each vector to be merged, recursively merging these elements and then 
using the result to merge the even-indexed elements (even-insertion). To ex- 
ecute the even-insertion, we place the even-indexed elements in the merged 
odd-indexed elements after their original predecessor. This vector, the 
nearmerge vector, is almost sorted. As shown in the figure, nonover- 
lapping blocks might need to be rotated: the first element moved to the 
end. 

processor is responsible for is 

If the even insertion requires a constant number of calls to the 

primitives per element, level i has a step complexity of 

The total step complexity is therefore 

log n-1 log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn-1 

= O(n/p  +log n) .  (4) 

We now discuss the algorithm in more detail. Picking ev- 

ery other element before calling the algorithm recursively can 
be implemented by marking the odd-indexed elements and 

packing them (load balancing them). After the recursive call 

returns, the even-insertion is executed as follows. We expand 
the merged odd-indexed vector by a factor of two by placing 

each unmerged even-indexed element directly after the ele- 

ment it originally followed (see Fig. 12). We call this vector 

the near-merge vector. The near-merge vector has an inter- 

esting property: elements can only be out of order by single 

nonoverlapping rotations. An element might appear before a 

block of elements it belongs after. We call such an element 

a block-head. A near-merge vector can be converted into a 

true merged vector by moving the block-head to the end of 

the block and sliding the other elements down by one: ro- 
tating the block by one. The rotation of the blocks can be 

implemented with two scans and two arithmetic operations: 

a constant number of scan and permute operations, and then 

discuss the algorithm in more detail. 
The complexity of the algorithm is calculated as follows. 

Since the number of elements halves at each level, there are at 

define fix-near-merge(near-merge) { 
head-copytmax(max-scan(near-merge), near-merge) 

resultcmin(min-backscan(near-merge), head-copy) }. 
most log n levels and at level i, n/2' elements must be merged. 

With p processors, if we load balance, the most elements any 
The first step moves the block-head to the end of the block, 

and the second step shifts the rest of the block down by one. 
The even-insertion therefore requires a constant number of 

To place the even-indexed elements following the odd- 

' In this algorithm, the elements drop out in a very regular fashion and 
the remaining elements could be balanced without the scan primitives. Load to the vector Operations. 

balancing using scans, however, simplifies the description. 
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indexed elements after returning from the recursive call, we 

must somehow know the original position of each merged 

odd-indexed element. To specify these positions, the merge 
routine could instead of returning the actual merged values, 
return a vector of flags: each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF flag represents an element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A and each T flag represents an element of B. For example, 

A ’ =  [ l  10 151 

B’= [3 9 231 

halving-merge(A’, B’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [F T T F F TI 

which corresponds to the merged values: 

[l 3 9 10 15 231. 

The vector of flags- henceforth the merge$lag vector- both 

uniquely specifies how the elements should be merged and 
specifies in which position each element belongs. 

111. IMPLEMENTATION 

This section describes a circuit that implements two scan 

primitives, integer versions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-scan and max-scan, and 

describes how the other scans used in this paper can be simu- 
lated with the two primitives. From a theoretical orientation, 
efficient circuits for implementing scan primitives have been 

discussed elsewhere [28], [15]. This section therefore con- 
centrates on a practical implementation, described at the logic 

level, and discusses how this implementation could fit into an 
actual machine. Elsewhere we have shown [7] that some of the 
other scan operations, such as the segmented scan operations, 

can be implemented directly with little additional hardware. 

Although the discussion suggests a separate circuit (set of 

chips) to implement the scan operations, wires and chips of a 
scan circuit might be shared with other circuitry. The scan im- 

plementation on the Connection Machine, for example, shares 
the wires with the router and requires no additional hardware. 

A .  Tree Scan 

Before describing details on how a circuit is implemented, 

we review a standard, general technique for implementing the 
scan operation on a balanced binary tree for any binary asso- 
ciative scan operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA69. The technique consists of two sweeps 
of the tree, an up sweep and a down sweep, and requires 2 log 

n steps. Fig. 13 shows an example. The values to be scanned 
start at the leaves of the tree. On the up sweep, each unit ex- 

ecutes @ on its two children units and passes the sum to its 

parent. Each unit also keeps a copy of the value from the left 
child in its memory. On the down sweep, each unit passes to 

its left child the value from its parent and passes to its right 

child applied to its parent and the value stored in the mem- 
ory (this value originally came from the left child). After the 

down sweep, the values at the leaves are the results of a scan. 
If the scan operator @ can be executed with a single pass 

over the bits of its operand, such as integer addition and in- 
teger maximum, the tree algorithm can be bit pipelined. Bit 

pipelining involves passing the operands one bit at a time up 

T = L + R  

M = L  

J$+$JG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 1 2 0 4 1 1 3  

L = T  

R = M + T  

&$J 
0 3 4 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13‘ io ii i2 

(a) (b) 

Parallel scan on a tree using the operator “+.” The number in the 
block is the number being stored in the memory on the up sweep. (a) After 
up sweep. (b) After down sweep. 

Fig. 13. 

the tree so that when the second level is working on bit n,  
the first level works on bit n + 1. Such bit pipelining can 

greatly reduce the hardware necessary to implement the scan 
operations since only single bit logic is required at each unit. 

As an example of how bit pipelining works, we consider 

a bit-pipelined version of +-scan for n, m bit integers. This 
bit-pipelined scan starts by passing the least significant bit 
of each value into the leaf units of the tree. Each unit now 

performs a single bit addition on its two input bits, stores the 
carry bit in a flag, propagates the sum bit to its parent in the 

next layer of units, and stores the bit from the left child in 

an m bit memory on the unit. On the second step, the scan 
passes the second bit of each value into the leaf units of the 
tree while it propagates the least significant bit of the sums 

on the first layer to the second layer. In general, on the ith 
step, at the j th layer (counting from the leaves), the (i - j)th 
bit of the sum of a unit (counting from the least significant 

bit) gets propagated to its parent. After m + log n steps, the up 

sweep is completed. Using a similar method, the down sweep 
is also calculated in m + log n steps. The total number of 
steps is therefore 2(m + log n). The down sweep can actually 

start as soon as the first bit of the up sweep reaches the top, 
reducing the number of steps to m + 2 log n.  

B. Hardware Implementation of Tree Scan 

We now discuss in more detail the hardware needed to im- 

plement the bit-pipelined tree scan for the two primitive scan 

operations +-scan and max-scan. Fig. 14 shows an imple- 
mentation of a unit of the binary tree. Each unit consist of two 

identical state machines, a variable-length shift register and a 

one bit register. The control for a unit consists of a clock, a 

clear signal, and an operation specification, which specifies 

whether to execute a +-scan or a max-scan. The control sig- 
nals are identical on all units. The units are connected in a 
balanced binary tree, as shown in Fig. 13, with two single bit 
unidirectional wires along every edge. 

The shift register acts as a first-in-first-out buffer (FIFO), 
with bits entered on one end and removed from the other. One 

bit is shifted on each clock signal. The length of the register 

depends on the depth of the unit in the tree. A unit at level i 
from the top needs a register of length 2i bits. The maximum 
length is therefore 2 log n bits. The length of the shift register 

can either be hardwired into each unit, in which case different 
levels of the tree would require different units, or could be 
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OP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Clear 

I Clock 
~ 

Fig. 14. Diagram of a unit needed to implement the tree algorithm. It 
consists of a shift register (which acts as a first-in-first-out buffer), a one 
bit register (a D type flip-flop), and two identical sum state machines. 
These units are arranged in a tree as shown in Fig. 13. Each wire is a 
single bit wire. 

S 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q, ' 
Ds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 I 

Combinational 

Clock 
Clear 

! OD 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmax-scan For +-scan 

S = O p ( B C + A Q 2 )  + ~ ( A $ B $ Q I )  

DI = OP(QI+ B A G )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOp(AB + AQ1+ BQ1) 

D2 = Op(Qz + ZBC) 
Fig. 15. Diagram of the sum state machine. It consists of three d-type flip- 

flops and some combinational logic. If the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOp is true, the circuit 
executes a max-scan. If the signal Op is false, the circuit executes a 
+-scan. In the logic equations, the symbol CB is an Exclusive OR, and the 
symbol + is an Inclusive OR. This state machine fits into a unit as shown 
in Fig. 14. 

controlled by some logic, in which case all units could be 

identical, but the level number would need to be stored on 
each unit. 

The sum state machine consists of three bits of state and 

a five-input, three-output combinational logic circuit. Fig. 15 
shows its basic layout and the required logic. The Op control 

specifies whether to execute a +-scan or a max-scan. Two 

bits of state are needed for the max-scan to keep track of 

whether A is greater, equal, or lesser than B (if Q1 is set, A 
is greater, if Q2 is set, B is greater). The +-scan only uses 

one bit of state to store the carry flag (Ql). The third bit of 

state is used to hold the output value (S) for one clock cycle. 

To execute a scan on a tree of such units, we reset the state 
machines in all units with the clear signal and set the Op sig- 

nal to execute either a +-scan or max-scan. We must tie the 

parent input of the root unit low (0). We then simply insert 

one bit of the operand at the leaves on each clock cycle. In 

a max-scan, the bits are inserted starting at the most signifi- 

cant bit, and in a +-scan the bits are inserted starting at the 

least significant bit. After 2 log n steps, the result will start 

returning at the leaves one bit on each clock cycle. We do not 

even need to change anything when going from the up sweep 
to the down sweep: when the values reach the root, they are 

automatically reflected back down since the shift register at 

the root has length 0. The total hardware needed for scan- 
ning n values is n - 1 shift registers and 2(n - 1) sum state 

machines. The units are simple so it should be easy to place 

many on a chip. 

Perhaps more importantly than the simplicity of each unit 

is the fact that the units are organized in a tree. The tree or- 

ganization has two important practical properties. First, only 

two wires are needed to leave every branch of the tree. So, 
for example, if there are several processors per chip, only a 

pair of wires are needed to leave that chip, and if there are 
many processors on a board, only a pair of wires are needed 

to leave the board. Second, a tree circuit is much easier to 

synchronize than other structures such as grids, hypercubes, 

or butterfly networks. This is because the same tree used for 

the scans can be used for clock distribution. Such a clock dis- 

tribution gets rid of the clock skew problem' and makes it 

relatively easy to run the circuit extremely fast. 

C.  An Example System 

We now consider an example system to show how the 

scan circuit might be applied in practice. We consider a 4096 

processor parallel computer with 64 processors on each board 
and 64 boards per machine. To implement the scan primitives 

on such a machine, we could use a single chip on each board 

that has 64 inputs and 1 output and acts as six levels of the 
tree. Such a chip would require 126 sum state machines and 63 

shift registers- such a chip is quite easy to build with today's 

technology. We could use one more of these chips to combine 

the pair of wires from each of the 64 boards. 

If the clock period is 100 ns, a scan on a 32 bit field would 

require 5 ps. This time is considerably faster than the routing 
time of existing parallel computers such as the BBN Butterfly 

or the Thinking Machines Connection Machine. With a more 

aggressive clock such as the 10 ns clock being looked at by 
BBN for the Monarch9 [2], this time would be reduced to 0.5 
ps-twice as fast as the best case global access time expected 

on the Monarch. 
In most existing and proposed tightly connected parallel 

computers [22], [36], [2], [4 13, the cost of the communication 

network is between 1/3 and 1/2 the cost of the computer. It is 

unlikely that the suggested scan network will be more than 1 

percent of the cost of a computer. 

D .  Simulating All Scans with a +-Scan and Max-Scan 

All the scans discussed in this paper, including the seg- 

mented versions, can be implemented with just two scans: 
integer versions of the +-scan and max-scan. This sec- 

* When there are many synchronous elements in a system, the small prop- 
agation time differences in different paths when distributing the clock signals 
can cause significant clock time differences at the elements. 

Because of the tree structure, it would actually be much easier to run a 
clock at 10 ns on a scan network than it is for the communication network of 
the Monarch. 
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define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseg-max-scan(A, SFlag){ 

Seg-Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc SFlag t enumerate(SF1ag); 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ append(Seg-Num, A); 

C + extract-bot(rnax-scan(A’)); 

if SFlag then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC else zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) 

Seg-Number = 

B = [1,5 1,1 2,3 2.4 2,3 2,9 3,2 3,131 

C - 5 5 3 4 4 9  

Result - 5 0 3 4 4 0  

- 

~ 

Fig. 16. The implementation of a segmented max-scan. 

tion discusses the implementation. The implementation re- 
quires access to the bit representation of the numbers. 

An integer min-scan can be implemented by inverting the 

source, executing a max-scan, and inverting the result. A 
floating-point max-scan and min-scan can be implemented 

by flipping the exponent and significant if the sign bit is set, 
executing the signed version, and flipping the exponent and 

significant of the result back based on the sign bit. The or- 
scan and and-scan can be implemented with a 1-bit max- 
scan and min-scan, respectively. The implementation of the 

floating-point +-scan is described elsewhere [7]. 
A segmented max-scan is implemented by first enumerating 

the segment bits, appending the result (plus 1 in positions 

where the flag is set) to the original numbers, executing an 

unsegmented max-scan, and removing the appended bits (see 

Fig. 16). A segmented +-scan is implemented by executing 

an unsegmented +-scan, copying the first element in each 

segment across the segment using a segmented copy (can be 
implemented with a segmented max-scan), and subtracting 
this element. 

The backward scans can be implemented by simply reading 

the vector into the processors in reverse order. 

IV. CONCLUSIONS 

This paper described a study of the effects of adding two 

scan primitives as unit-time primitives to the PRAM models. 

The study shows that these scan primitives take no longer 
to execute than parallel memory references, both in practice 

and in theory, but yet can improve the asymptotic running 
time, and the description of many algorithms. We wonder 
whether there might be other primitives that can be cheaply 
implemented on a parallel architecture. One such primitive 
might be a merge primitive that merges two sorted vectors. 
As shown by Batcher [4], this can be executed in a single pass 

of an omega network. 
We hope that this paper will prompt researchers to ques- 

tion the validity of the pure PRAM models when designing 
and analyzing algorithms- especially when it comes down to 

trying to remove O(1og log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) factors off of the running time 
of an algorithm. 

APPENDIX 
A SHORT HISTORY OF THE SCAN OPERATIONS 

This appendix gives a brief history of the scan operations. 
Scans were suggested by Iverson in the mid 1950’s as oper- 

ations for the language APL [25]. A parallel circuit to execute 
the operation was first suggested by Ofman in the early 1960’s 

1351 to be used to add binary numbers- the following routine 
executes addition on two binary numbers with their bits spread 

across two vectors A and B (@ means Exclusive OR): 

(A  B)  8 seg-or-scan(AB, AB). 
A general scan operator was suggested by Iverson in the mid 
1960’s for the language APL. The history of the scan oper- 

ator in APL is actually quite complex. It did not appear in 
the original definition [25], but appears in some but not all 
subsequent definitions. A parallel implementation of scans on 
a perfect shuffle network was later suggested by Stone [44] 
to be used for polynomial evaluation- the following routine 
evaluates a polynomial with a vector of coefficients A and 

variable x at the head of another vector X :  

A x x-scan(copy(X)). 

Ladner and Fisher first showed an efficient general-purpose 

circuit for implementing the scan operations [28]. Wyllie first 

showed how the scan operation can be executed on a linked 
list using the PRAM model [48]. Brent and Kung, in the con- 
text of binary addition, first showed an efficient VLSI lay- 

out for a scan circuit [lo]. Schwartz [40] and, independently, 
Mago [32] first suggested the segmented versions of the scans. 

More recent work on implementing scan operations in par- 

allel include the work of Fich [15], which demonstrates a 
more efficient implementation of the scan operations, and of 
Lubachevsky and Greenberg [3 11, which demonstrates the im- 

plementation of the scan operation on asynchronous machines. 
As concerns terminology, scan is the original name given 

to the operation. Ladner and Fisher introduced the term par- 
allel prefix operation. Schwartz used the term all partial 
sums. I find the original term, scan, more concise and more 

flexible-it, for example, can be used as a verb, as in “the 
algorithm then scans the vector. ” 
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