
SCAP: Smart Caching in Wireless Access Points to Improve P2P Streaming

Enhua Tan1, Lei Guo1, Songqing Chen2, and Xiaodong Zhang1

1Dept. of Computer Science and Engineering 2Dept. of Computer Science

The Ohio State University George Mason University

Columbus, OH 43210, USA Fairfax, VA 22030, USA

{etan, lguo, zhang}@cse.ohio-state.edu sqchen@cs.gmu.edu

Abstract

The increasing number of wireless users in Internet P2P

applications causes two new performance problems due to

the requirement of uploading the downloaded traffic for

other peers, limited bandwidth of wireless communications,

and resource competition between the access point and

wireless stations. First, an active P2P wireless user can

significantly reduce the downloading throughput of other

wireless users in the WLAN. Second, the slowdown of a

P2P wireless user communication can also delay its relay

and data sharing service for other dependent wired/wireless

peers.

In order to address these problems, in this paper, we pro-

pose an efficient caching mechanism called SCAP (Smart

Caching in Access Points). Conducting intensive Inter-

net measurements on representative P2P streaming appli-

cations, we observe a high percentage of duplicated data

packets in successive downloading and uploading data

streams. Through duplication detection and caching at

the access point, these duplicated packets can be com-

pressed so that the uploading traffic in the WLAN is signif-

icantly reduced. Our prototype-based experimental evalua-

tion demonstrates that by effectively reducing the redundant

P2P traffic in the WLAN, SCAP improves the throughput of

the WLAN by up to 88% and reduces the response delay to

other Internet users meanwhile.

1 Introduction

Peer-to-peer (P2P) techniques have been successfully

utilized in many daily applications on the Internet, such as

large file distribution with BitTorrent [5], and VoIP tele-

phony with Skype [16]. With the increasing demands of

streaming media on the Internet [7], P2P techniques begin

to be used to deliver streaming media on the Internet. The

number of users of P2P-based IPTV and live media systems,

such as PPLive [8], keeps increasing.

Meanwhile, wireless accesses to the Internet have be-

come pervasive with widely deployed Wi-Fi networks on

campus, in offices, at home, and public utilities, due to its

low cost and ease of use. More and more people access

Internet services via wireless connections, on both mobile

devices such as laptops and stationary desktop computers.

However, media streaming over wireless channels is

challenging due to the high bandwidth and real-time deliv-

ery requirement, and the unpredictable degradation of sig-

nal quality caused by noise, fading, attenuation, and inter-

ference in the physical communication channel. For P2P-

based live streaming through wireless channels on the Inter-

net, these challenges are even more serious for the following

three reasons:

First, in a P2P-based streaming system, each peer has to

upload the media content it receives to other peers as well

as download media data from other peers. Due to the het-

erogeneity of P2P communications, some peers may work

like a server and upload much more traffic to other peers

than they consume. Thus, in a WLAN, the limited network

bandwidth may be congested by the P2P uploading traffic.

Furthermore, the slowdown of the P2P wireless peer com-

munication can also delay its relay and data sharing service

for other dependent wired/wireless peers.

Second, different from a wired network, in a wire-

less LAN, a station normally accesses the Internet through

an access point (AP). In commonly deployed 802.11

WLANs equipped with the Distributed Coordination Func-

tion (DCF) channel access mechanism [12], all stations in

the WLAN, including the AP, share the entire upstream and

downstream bandwidth in the network. Since all down-

stream traffic must go through the AP, the downstream traf-

fic has a lower priority for delivery due to the competition

among physical stations [14]. The extra upstream traffic in-

troduced by P2P streaming aggravates the channel competi-

tion between upstream and downstream traffic remarkably.

Third, the quality of streaming in a WLAN is very

susceptible to the packet delay, loss, and retransmission

caused by channel congestion [9] and signal quality degra-

dation [11]. For a station running P2P streaming, when the

possibility of transmission errors exists due to channel con-

dition problems, the extra upstream traffic can increase the

number of transmission errors correspondingly, and the cost

of contention window back-off caused by these errors may

increase exponentially.

Thus, P2P-based live streaming over wireless LANs not

only brings challenges on its own delivery quality, but may

also degrade the performance of other network applications

in the WLAN.

To address the above mentioned problems, in this paper,

we propose an efficient caching mechanism to reduce the

upstream traffic in P2P-based live streaming, called SCAP

(Smart Caching in Access Points). We conduct Internet

measurements on several representative P2P streaming ap-

plications, and find that a high temporal locality among the

P2P streaming traffic exists. Our measurements show that,

on average, for P2P-based streaming, there are more than

80% duplicated data packets in successive downloading and

uploading data streams. Motivated by the measurement re-

sults, we propose a low overhead traffic reduction scheme

based on Rabin fingerprinting [15] to quickly identify the

downstream packets that will be uploaded to or relayed to

other peers. Instead of uploading the entire data packet,

SCAP temporarily caches the corresponding downloaded

packets in the AP, and the relay peer only uploads a small

identity tag to the AP, significantly reducing upstream traffic

in the WLAN. Upon receiving a data tag, the AP recapsu-

lates the uploaded packet from the associated data packet

in its cache, and sends it to the remote peer on the Inter-

net. SCAP can effectively reduce the competition for the

limited bandwidth in WLANs, and improve service quality

for the Internet peers. Our prototype-based experimental

evaluation results demonstrate that by effectively reducing

the redundant P2P traffic in WLAN, SCAP improves the

throughput of the WLAN by up to 88% while also reducing

the response delay to other Internet users.

The rest of the paper is organized as follows. We

sketch our proposed application-independent traffic reduc-

tion scheme in section 2. Our measurements are conducted

in section 3. Section 4 details our design and implementa-

tion. The prototype system is evaluated in section 5. Sec-

tion 6 describes some related work and we make concluding

remarks in section 7.

2 Basics of the Traffic Reduction Scheme

For P2P-based streaming, the received data should be

forwarded to other peers, and thus, if a wireless user is in-

volved, the same media content will be downloaded through

the AP first, and then will be uploaded through the AP to

other peers successively several times depending on how

many peers this wireless station needs to upload to. This

Access Point (AP) Wireless Station

(1)
(4)

(2)
(3)

In co m i n g

O u t g o i n
g

Figure 1. A workflow of the traffic reduc-

tion scheme: AP stores downstream data in

buffer (1), which is the same as the content
stored in buffer (2) on the wireless station.

If the upstream data in buffer (3) is same or

largely duplicated with that in buffer (2), the
wireless station only needs to supply the dif-

ference to the AP, which assembles with data
in buffer (1) to deliver.

data communication pattern provides us with an opportunity

to reduce the amount of traffic between the AP and the wire-

less station by exploiting temporal locality through caching.

The basic idea is as follows: we reserve a buffer in the AP

to store the recently transmitted downstream data. In each

wireless station, a buffer is also reserved to store the re-

cently received data from the AP. Once the wireless station

needs to send data out, it compares whether the upstream

data is the same as the downloaded data in its buffer. If they

are the same, the wireless station only needs to send infor-

mation about the destination of this upstream data chunk to

the AP, and the AP can simply assemble the original packet

with the data stored in its local buffer and send it out. Fig-

ure 1 shows such a workflow.

There are two technical merits in our scheme. First, it

is application independent; and second, it should work well

for wireless users in all P2P applications, since it is expected

that a wireless user will upload the same data it just received

to the next peer(s).

However, in practice, even for P2P streaming applica-

tions, upstream and downstream data may not always be

the same for two reasons. First, the local client software

may impose some processing on the received data. For ex-

ample, the local client software may reduce the encoding

rate (or resolution) of the media content before uploading.

Second, the network stack may perform some processing as

well. For example, several downloaded packets may be as-

sembled and re-packetized before uploading. For the former

case, the data duplication could be very small, even with a

very large buffer. For the latter case, if a reasonably sized

buffer is reserved, it is still possible to identify and reduce

most redundant traffic, in which the buffer size should take

the delay into consideration.

Thus, the effectiveness of our traffic reduction scheme is

highly dependent on the applications, although the scheme

itself is application-independent. Since the amount of data

duplications is critical to the success of our scheme, we will

present in the next section a measurement study of data du-

plications in several representative P2P streaming applica-

tions.

3 Duplication Detection Methods

3.1 Hash and Rabin Fingerprinting based
Duplication Detection

To efficiently identify data duplications between up-

stream and downstream channels, an option is to use a hash

function. However, if the application re-packetizes the data

before sending it out, running the hash function with con-

tinuously varying input length starting from various offsets

may lead to low efficiency.

In contrast, fingerprints may result in better performance

in such situations. Similar to hash values, fingerprints are

short tags for large objects. Generally, if two fingerprints

are different, then the corresponding objects are different,

because the probability that two different objects have the

same fingerprint is very small. For our purpose, we particu-

larly adapt Rabin Fingerprinting.

Rabin Fingerprinting [15] is a method for implement-

ing public key fingerprint using polynomials over a finite

field, which works as follows. Let A denote a string of

A = (a1, a2, ..., am). If we associate the string A with a

polynomial A(t) of degree m − 1,

A(t) = a1t
m−1 + a2t

m−2 + ... + am,

and if P (t) is an irreducible polynomial of degree k, then

Rabin Fingerprint of A is the polynomial

RF (A) = A(t) mod P(t).

Robin Fingerprinting has the property of the distributive

over addition, i.e., RF (A+B) = RF (A)+RF (B). Based

on this, Rabin Fingerprinting is particularly computation-

ally advantageous in that if

RF (a1, ..., am)

= (a1t
m−1 + a2t

m−2 + ... + am) mod P(t)

= r1t
k−1 + r2t

k−2 + ... + rk

then

RF (a1, ..., am, am+1)

= r1t
k + r2t

k−1 + r3t
k−2 + ... + rkt + am+1 mod P(t)

= (RF (a1, ..., am)t + am+1) mod P(t)

This leads to fast fingerprint computation for a contin-

uous data stream. Instead of generating a new fingerprint

from scratch for a string, advancing the fingerprint requires

just some linear computation: an addition, a multiplication,

and a mask.

This property enables Rabin Fingerprinting to compute

tags for a continuous input stream easily, which would be

difficult if MD5 or SHA were used. Rabin Fingerprinting

has been used in a number of applications for similarity or

redundant traffic finding (see e.g. [17]). In our study, we

will use it and compare our algorithm with hash-based al-

gorithms.

3.2 Measurement and Analysis of Internet
P2P Streaming Traffic

In this subsection, we study the traffic characteristics of

several P2P streaming applications. We aim to answer the

following questions: (1) how much is there duplicated traf-

fic in practice? (2) what is the cost, in terms of computing

cycles and buffer sizes, to identify such duplications?

We have collected traces from several representative

P2P applications, including PPLive [1], TVAnts [2], and

ESM [3], in our LAN/WLAN with Ethereal by running

these applications from September to November in 2006.

The outgoing bandwidth for the LAN is 100 Mbps, and

the effective connection speed for the wireless station is 5.5

Mbps. We collect traffic in both WLAN and LAN, in order

to compare whether their characteristics are different.

Two algorithms have been used for data duplication de-

tection in our traces. The first one is based on Rabin Fin-

gerprinting (simplified as RF). This algorithm scans each

downstream packet and extracts certain fingerprints (ending

with γ zeros) for a fixed-length (β) content, which are used

as landmarks for later searching based on the fingerprints of

an upstream packet. Another detection algorithm is based

on hashing at a fixed position of a packet (simplified as FH

for Fixed Hashing), which computes the hash value for the

first β bytes of the downstream packet starting from the first

α bytes (which is possibly the application level header), and

stores this value for later comparison with the hash value

computed from an upstream packet. We restrict the num-

ber of buffered downstream packets to 50,000 (which needs

about 75MB memory for a packet size of 1,380 bytes), and

we use γ = 8, β = 64 settings. We use α = 16 for all ap-

plications except for ESM, since its application level header

is much larger, in which case we set α = 54.

Table 1 summarizes the statistics of the workloads. PPL

represents PPLive trace, and TVA is short for TVAnts work-

load. The workload name ending with WL is collected in

WLAN. According to the Up/Down Ratio column, the up-

stream to downstream traffic ratio is different among these

workloads, affected by a number of possible factors, includ-

ing the numbers of peers, layers, and file chunks to upload.

Compared with the traces collected in the wireless environ-

Table 1. Workload summary
Workload Duration Downstream Upstream Up/Down Downstream Upstream Downstream UDP bytes

Name (sec) Bytes(MB) Bytes(MB) Ratio(%) Packet # Packet # Tput(Mbps) Ratio(%)

PPL-LAN 953 50.504 509.304 1008.45 406,804 561,117 0.444 0.66

PPL-WL 14989 697.566 497.906 71.38 1,123,534 1,213,308 0.390 2.58

TVA-LAN 5054 234.765 890.948 379.51 884,892 1,189,054 0.390 21.72

TVA-WL 8073 415.741 859.389 206.71 979,864 1,314,854 0.432 73.89

ESM-LAN 10845 403.512 110.399 27.36 758,170 600,122 0.312 1.30

ESM-WL 11237 389.513 178.394 45.80 782,350 663,400 0.291 1.17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Upstream Packet Length(bytes)

PPL-LAN
PPL-WL

TVA-LAN
TVA-WL

ESM-LAN
ESM-WL

(a) Upstream packet length (b) Duplication ratio (c) Throughput

Figure 2. Workload analysis

ment, PPLive and TVAnts workloads collected in the LAN

have a larger volume of upstream traffic (up to 10 times

more than the downstream traffic), while ESM has a mod-

est amount of upstream traffic. Most of PPLive and ESM’s

traffic is delivered in TCP, while TVAnts is more favorable

in UDP. The average downloading throughput is around 300

to 400 Kbps. Figure 2(a) shows the upstream packet length

distribution for our workloads (packets with zero payload

length are not included). As shown in the figure, most of

the upstream packets of PPLive are sent in 1,380 bytes, and

most of ESM are in 800 bytes, while TVAnts’ are in be-

tween. A larger packet length could lead to more benefit

from our traffic reduction scheme because the overhead of

transmitting a upstream packet in 802.11 protocol would be

better amortized by the heavier compression of the payload.

Figure 2(b) shows the duplication ratio, which is the de-

tected upstream packet duplication bytes over the total up-

stream bytes. The RF-BufAll represents the computed du-

plication ratio when all the downstream packets are buffered

with the RF-based algorithm. The figure shows that dif-

ferent applications have different duplication ratios for up-

stream traffic, and in our long term run, such trends do

not vary significantly. In addition, the duplication ratio of

traffic through the LAN does not differ much from that in

the WLAN. As indicated in the figure, RF achieves better

performance on average (above 70% duplication ratio on

all workloads, and about 90% for the popular PPLive and

80% for TVAnts) with the exception on ESM. For ESM, FH

achieves an even slightly better result. Our further analysis

indicates that this is because ESM does not impose any lo-

cal processing. Thus, the randomized fingerprint selection

in RF performs a little bit worse than fixed hashing in FH.

Figure 2(c) shows the processing throughput for each al-

gorithm on different workloads. The throughput of the RF-

based algorithm ranges from 90 Mbps to 256 Mbps, which

implies that the computing overhead will be very small for

manipulating P2P streaming traffic with about 400 Kbps

throughput.

Comparing the RF-based algorithm with the FH-based

one, we find that while the RF-based detection costs more

CPU cycles, it generally performs better than the FH-based

algorithm due to its flexible duplication offset handling. In

practice, an upstream packet may contain the content from

two consecutive downstream packets depending on the ap-

plication implementation of handling the data to be trans-

ferred to another peer. The FH-based algorithm cannot ef-

fectively detect this kind of duplications since it will only

compute the hash value of the first several bytes of the pack-

ets by assuming an upstream packet is exactly a replica of its

corresponding downstream packet (except the application

level header). The RF-based algorithm avoids this problem

by randomly generating fingerprints throughout the packet

content for later lookup. Figure 3 shows the duplication

beginning offset distribution for each workload computed

with the RF-based algorithm. If the beginning offset in

the downstream packet is not equal to that in the upstream

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Duplication beginning offset (bytes)

PPL-LAN: downstream
PPL-LAN: upstream

PPL-WL: downstream
PPL-WL: upstream

(a) PPLive

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Duplication beginning offset (bytes)

TVA-LAN: downstream
TVA-LAN: upstream

TVA-WL: downstream
TVA-WL: upstream

(b) TVAnts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Duplication beginning offset (bytes)

ESM-LAN: downstream
ESM-LAN: upstream

ESM-WL: downstream
ESM-WL: upstream

(c) ESM

Figure 3. Duplication beginning offset in the downstream and upstream packet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F

Forwarding delay (sec)

PPL-LAN
PPL-WL

(a) PPLive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F

Forwarding delay (sec)

TVA-LAN
TVA-WL

(b) TVAnts

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.01 1 100 10000

C
D

F

Forwarding delay (sec)

ESM-LAN
ESM-WL

(c) ESM

Figure 4. Duplication packets forwarding delay

packet, or if they are equal, but both are larger than the pre-

assumed application level header size, the FH-based algo-

rithm fails to find the duplications. As shown in Figure 3,

TVAnts performs more local processing than PPLive, while

ESM does not do any. These results explain the difference

of RF and FH detected duplication ratio for different appli-

cations shown in Figure 2(b).

Figure 4 shows the distribution of the duplication pack-

ets forwarding delay in upstream and downstream flows.

As shown in the figure, more than 70% of PPLive dupli-

cation upstream packets are forwarded in 10 seconds after

they are received, and more than 60% of TVAnts duplica-

tion upstream packets are forwarded in 10 seconds. Both

PPLive and TVAnts forward most of their received traffic

within 200 seconds. The average forwarding latency is 20.5

seconds for PPL-LAN, 27.0 seconds for PPL-WL, 46.1 sec-

onds for TVA-LAN, and 51.6 seconds for TVA-WL. Most

of ESM’s upstream packets are forwarded within 1 second.

Small forwarding latency means that a small buffer size for

downstream packets can be sufficient for duplication detec-

tion.

Our measurement results show that there is a signifi-

cant portion of data duplications in the upstream and down-

stream channels in WLANs, which can be detected with

very low overhead. The results also show that the upstream

throughput is comparable to the downstream throughput,

which may lead to severe unfairness to the other download-

ing traffic [14]. If such P2P traffic is not well managed with

in a WLAN, the users of the WLAN could be severely im-

pacted, including the wireless peer itself, which would fur-

ther affect the performance of other Internet peers who rely

on its service. In the next section, we will present the design

and implementation of our application-independent traffic

reduction scheme to address these problems.

4 Design and Implementation of SCAP

Figure 5 illustrates the workflow of our design. For

the RF (Rabin fingerprinting) based duplication detection

algorithm, both the AP and the station need to scan the

entire downstream packets in order to generate the finger-

prints and to store them to the downstream buffer (a FIFO

queue). When the station has an upstream packet to send, it

computes several fingerprints that end with γ zeros for the

packet. Each fingerprint is looked up in a hash table record-

ing the index of the downstream packet and the starting off-

set of the bytes mapping to that fingerprint. Once a finger-

print is found in the hash table, the upstream packet is com-

pared with the corresponding downstream packet(s) byte-

by-byte to expand that duplication area. Then, the upstream

�����������
	�
�������
����

�����
 �������
���
������
�
������

������
�
������
�����
�
����������
����

������ !�"#�$!$�!�"#%&"'�($))�#*+,,-./
�$�"'�($))�#*�"0#)!($ '� �1$!2�!($ '� �1$! &"'�($))$3��)!($ '� �1$!

Figure 5. Traffic reduction scheme workflow

packet is compressed to the length of non-duplication area

with additional headers indicating the information of du-

plication. The AP will decompress the received upstream

packet to its original state by identifying the duplication

downstream packet(s) in its buffer and copying the dupli-

cation area back to the packet. For the FH (fixed hashing)

based algorithm, the AP and the station only need to scan β

(64) bytes to get one hash value for a downstream/upstream

packet.

The buffer size of downstream packets is an important

factor for our scheme to be cost-effective. For example, as

shown in Figure 4, most of PPLive and TVAnts’ duplica-

tion packets are sent in 200 seconds. Thus, assuming the

downstream bit rate is 300 Kbps, a buffer size to store 200-

second traffic will be 7.5 MB, which is very small for a

modern computer device. However, considering that an AP

may need to serve many wireless stations, its memory space

is more precious than a station. In fact, an adaptive algo-

rithm that dynamically adjusts the buffer size according to

the detected duplication ratio on line is more effective. A

simplest design could work as follows: the system monitors

the duplication ratio in a small time interval (e.g., the last

few minutes (ORm)) and in a larger time interval (e.g., the

last hour (ORh)). If ORm is less than a threshold, which

could be set as a certain percentage of ORh, the buffer size

is increased by a corresponding scale; if it is larger than

another threshold, the buffer size is reduced accordingly.

On the other hand, the thresholds for ORm can also be ad-

justed. For example, if the upstream traffic is much heavier

than the downstream traffic, the low threshold should be in-

creased to reduce more upstream traffic. Furthermore, each

station only needs to monitor the duplication ratio of its own

traffic for changing the buffer size, while the AP needs to

monitor the duplication ratio for each station in order to dy-

namically partition the buffer for it.

Another important design issue is that the downstream

content of a station should always be present in the AP. Oth-

erwise, the compressed upstream packet cannot be decom-

pressed in the AP. Thus, when a station is running a P2P

streaming application, it notifies the AP to buffer the down-

stream buffer for it. If a compressed upstream packet cannot

be decompressed in the AP, the TCP flow will be stalled by

trying to send the compressed packet again and again. To

recover from this kind of buffer inconsistency, the station

caches several copies of the latest sent original upstream

packets, and sends the original copy when the station finds

the compressed one is being resent 3 times.

As shown in Figure 1, to implement the scheme, we need

to modify the network stack of the AP and wireless stations.

Although this scheme can be implemented in the IP layer of

the network stack, since it is mainly compressing and de-

compressing the content of TCP/UDP payload, we actually

implement it in the wireless network adapter driver so that

only wireless packets are affected. In addition, we can also

get more header information there than in the IP layer.

We have implemented a prototype system by modifying

the HostAP driver in the Linux 2.6.16 kernel for the AP and

wireless stations based on [6]. Our wireless cards are based

on the Intersil Prism 2.5 chipset.

In the implementation, the identification of the down-

stream packet is critical, since when an upstream packet is

found to be duplicated with a downstream packet in the sta-

tion buffer, the AP needs to determine which downstream

packet it should locate in its buffer. Although it is straight-

forward to use the Sequence Control field (2 bytes) in the

802.11 frame header together with the station’s MAC ad-

dress for such identification, this method fails because the

sequence number is not generated by the driver, but by the

firmware of the card. Thus, in our implementation, we use

the first fingerprint (or hash value for FH) of the down-

steam packet instead, which introduces extra overhead for

its length (8 bytes).

5 Performance Evaluation

In order to verify the effectiveness of the traffic reduc-

tion scheme, we evaluate the prototype system in our exper-

imental environment. The wireless stations are placed close

to the AP to ensure the signal quality. The data transfer

rate is 11 Mbps. We set the buffer size to 500000 packets

(75 MB memory), and set α = 54, γ = 8, β = 64. We

manually set the AP to only buffer the downstream packets

for the wireless station using the modified driver, thus the

two buffers in the AP and the wireless station are always

synchronized.

We first tested a microbenchmark on our prototype sys-

tem. The benchmark runs on a wireless station and a

wired station in the LAN. The wireless station first down-

(a) Downstream throughput (b) Upstream throughput

Figure 6. Microbenchmark results

loads a file from the wired station, then sends it back.

Figure 6 shows the downstream and upstream throughput

by running the benchmark on the original kernel, the RF-

based one, and the FH-based one. The RF-based algorithm

demonstrates little overhead for the downstream through-

put (1.5% decrease) and about 88% improvement of the up-

stream throughput in the 70 MB file transfer case. When

the file size gets larger, the improvement decreases because

of fewer buffered downloading packets. However, the FH-

based algorithm does not show any improvement because

the downstream duplication beginning offset is always 1024

bytes, while the upstream duplication beginning offset is 0.

Thus fixed hashing cannot detect any duplication content.

The overhead of FH-based algorithm is close to zero com-

paring with the original kernel.

In the next experiment, we evaluated PPLive, TVAnts,

and ESM as representative P2P streaming applications. Be-

cause they are all Windows based applications, we used

VMware to run the application in a Windows XP guest OS.

Our modified driver in the host OS can capture the pack-

ets from the guest OS and compress the upstream packet

when duplication is detected. We run the P2P application

on one wireless station with our modified kernel. On an-

other station with unmodified kernel driver, we run one TCP

session using iperf 1.7.0 1, and run a Ping session with a

packet size of 1500 bytes, in order to observe the impact

of throughput and response time of our schemes. Because

our experiments are running in an open environment with

different peers each time, we run the experiment multiple

times to capture the trials with similar P2P downstream and

upstream throughput for comparison. Each trial runs for 10

minutes.

Table 2 shows the average results of PPLive by running

the original, RF and FH based kernel drivers. As shown

1http://dast.nlanr.net/Projects/Iperf/

Table 2. PPLive evaluation

TCP Tput DS Tput US Tput Ping RTT Duplication

(Mbps) (Mbps) (Mbps) (ms) Ratio(%)

Orig 3.25 0.410 0.533 179.6 -

FH 3.35 0.396 0.462 172.7 22.25

RF 3.52 0.408 0.532 165.6 71.82

Table 3. TVAnts evaluation

TCP Tput DS Tput US Tput Ping RTT Duplication

(Mbps) (Mbps) (Mbps) (ms) Ratio(%)

Orig 1.59 0.413 1.555 316.9 -

FH 2.19 0.433 1.841 276.9 34.83

RF 2.54 0.399 1.766 234.2 86.60

in the table, RF can detect more (a larger duplication ra-

tio) than FH, which leads to better performance for the TCP

session and the Ping session. By reducing about 70% of the

upstream traffic (which is 0.38 Mbps), RF successfully in-

creases the average throughput of the TCP session by 0.27

Mbps (71% of the reduced traffic). RF also decreases the

average Ping round-trip time (RTT) by 14 ms, which im-

plies that the delay to the serviced Internet peers of P2P

streaming is also reduced.

Table 3 shows the corresponding results of TVAnts. The

upstream throughput for TVAnts is much larger than that of

PPLive. Reducing 86% of the upstream traffic (1.53 Mbps),

RF increases the TCP throughput by 0.95 Mbps (62% of

the reduced traffic), and decreases the Ping round-trip time

by 83 ms. FH also shows good performance improvement

by reducing over 30% of the upstream traffic (0.64 Mbps)

to increase the TCP throughput by 0.60 Mbps and decrease

the Ping round-trip time by 40 ms.

Table 4. ESM evaluation

TCP Tput DS Tput US Tput Ping RTT Duplication

(Mbps) (Mbps) (Mbps) (ms) Ratio(%)

Orig 3.86 0.319 0.319 143.3 -

FH 3.97 0.319 0.312 139.2 89.17

RF 3.96 0.318 0.320 139.0 85.94

The results of ESM are shown in Table 4. Because of the

smaller amount of upstream traffic and the smaller packet

size, the improvement is not as high as that of PPLive and

TVAnts. The performance of FH is comparable to that of

RF because the detected duplication ratios are comparable.

6 Other Related Work

An early study [17] has noticed that even after the proxy

caching, a significant amount of traffic that a proxy cannot

cache carries similar information. A protocol independent

technique is proposed to detect and reduce such redundant

traffic. Similarly, LBFS in [13] also exploits the similarities

between files and versions of the same file on the slow or

wide area network file systems.

In work [4], network coding was first proposed to im-

prove the throughput of a network by considering the rout-

ing characteristics. The work in [10] further improves the

throughput of multi-hop wireless networks by utilizing the

broadcasting nature of wireless networks. Our proposed

traffic reduction scheme differs from network coding in the

sense that the effectiveness of our scheme is highly related

to the traffic pattern of the P2P streaming applications (traf-

fic duplication ratio) instead of other factors.

7 Conclusion

With the increasing popularity of P2P streaming appli-

cations on the Internet and the pervasive deployment of

802.11 WLANs, an increasing number of peers in P2P net-

works are wireless users. In this work, we study the impact

of the increase of wireless users in Internet P2P applications

to the performance of wired and wireless users. Focusing on

quality sensitive live streaming applications, we show that,

without a proper control of P2P traffic between the access

point and wireless peers, the performance of both the Inter-

net users that rely on the wireless peer’s service and other

wireless users in the WLAN can be significantly affected.

We have designed and implemented an effective traffic re-

duction scheme through caching and coordination between

the AP and the wireless users. Our prototype based perfor-

mance evaluation results show that such a P2P streaming

traffic reduction could effectively improve the throughput

of the WLAN and reduce the delay to other Internet users.

8 Acknowledgment

We thank the constructive comments from the anony-

mous referees. This work is partially supported by the

National Science Foundation under grants CNS-0405909,

CNS-0509054/0509061, and CNS-0621629/0621631.

References

[1] http://www.pplive.com/en/.
[2] http://www.tvants.com/.
[3] http://esm.cs.cmu.edu/.
[4] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network infor-

mation flow. In IEEE Transaction on Information Theory,

volume 46, pages 1204–1216, July 2000.
[5] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.

Measurement, analysis, and modeling of BitTorrent-like

systems. In Proc. of IMC, Oct 2005.
[6] L. Guo, X. Ding, H. Wang, Q. Li, S. Chen, and X. Zhang.

Exploiting idle communication power to improve wireless

network performance and energy efficiency. In Proc. of

IEEE INFOCOM, Barcelona, Spain, April 2006.
[7] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and

X. Zhang. Delving into internet streaming media delivery:

a quality and resource utilization perspective. In Proc. of

IMC, Oct 2006.
[8] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. Insights into

PPLive: A measurement study of a large-scale P2P IPTV

system. In Proc. of IPTV Workshop, Edinburgh, Scotland,

UK, May 2006.
[9] A. Jardosh, K. Ramachandran, K. Almeroth, and E. Belding-

Royer. Understanding congestion in IEEE 802.11b wireless

networks. In Proc. of IMC, Oct 2005.
[10] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and

J. Crowcroft. XORs in the air: Practical wireless network

coding. In Proc. of ACM SIGCOMM, Pisa, Italy, September

2006.
[11] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of

wireless-network research. Technical Report TR2003-467,

Computer Science, Dartmouth College, July 2003.
[12] LAN/MAN Standards Committee of the IEEE Computer

Society. Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. Technical Report

IEEE Std 802.11, the Institute of Electrical and Electronics

Engineers, Inc., 1999.
[13] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-

bandwidth network file system. In Proc. of SOSP, 2001.
[14] S. Pilosof, R. Ramjee, D. Raz1, Y. Shavitt, and P. Sinha.

Understanding TCP fairness over wireless LAN. In Proc. of

IEEE INFOCOM, Apr. 2003.
[15] M. O. Rabin. Fingerprinting by random polynomials. Tech-

nical Report TR-15-81, Department of Computer Science,

Harvard University, 1981.
[16] S. Ren, L. Guo, and X. Zhang. ASAP: an AS-aware peer-

relay protocol for high quality VoIP with low overhead. In

Proc. of IEEE ICDCS, July 2006.
[17] N. Spring and D. Wetherall. A protocol-independent tech-

nique for eliminating redundant network traffic. In Proc. of

ACM SIGCOMM, Stockholm, Sweden, 2000.

