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�ere have been researchers working on the design of coding-aware routing protocols to exploit the power of network coding in
static wireless ad hoc networks. However, most of them have overlooked the fact that routing decisions formultiple 	ows need to be
coordinated in order to achievemaximum throughput. Amechanism to alter prior routing decisions is mandatory for this purpose.
In this paper, we propose Self-recommendation coding-aware routing (SCAR), to provide such a mechanism. With intermediate
nodes sensing the arrival of new 	ows, they can send self-recommendations to source nodes, triggering a route-change procedure.
In the route-change procedure, adjustments are applied to the route metrics so that the newly recommended route can be fairly
weighed without bias. A thorough analysis of coding structures is carried out, and a series of indicators are devised to predict
how much throughput bene
ts we can gain from the mere knowledge of the topology. �e rationale behind the protocol design
and the e�ectiveness of the indicators are further justi
ed by a series of simulations. Results show that SCAR can exploit coding
opportunities better and provide higher throughput than other coding-aware routing protocols. It is also shown that the opportunity
of throughput gain is ubiquitous and it is tested on many typical topologies.

1. Introduction

Network coding is a technique that exploits the broadcast
nature in wireless networks to provide throughput improve-
ments. �e idea is 
rst proposed in [1] and later developed as
a practical network protocol in COPE [2].�e latter describes
an “X” scenario, and it is mostly used to illustrate how
network coding can reduce the number of transmissions for
a given task. As shown in Figure 1, a packet from � to �
and a packet from � to � can be transmitted with a total of
3 transmissions using network coding technique. �ey are
as follows: one transmission from � to �, one transmission
from � to�, and a broadcast of the XORed packet by�. �is
“X” structure is the only applicable network structure for the
COPE protocol, which is seen today as the major limitation
of COPE.

To relax the restriction on coding-possible structures
in static wireless ad hoc networks, distributed coding-
aware routing (DCAR) [3] proposes a routing protocol that
is applicable in all network topologies. With the general

coding conditions de
ned, this protocol can discover coding-
possible routes in various kinds of network structures. In
addition, [3] proposes a coding-aware routing metric (CRM)
to quantify and compare the merits between coding-possible
and coding-impossible routes.

Although current coding-aware routing protocols, with
the representative of DCAR, are able to discover coding-
possible routes, they lack a mechanism to conduct coordi-
nation among di�erent 	ows. In this paper, the term “	ow”
is referred to a possible path between a source node and
a destination node. If the route is selected with the mere
information collected from a single 	ow, this routing decision
essentially achieves only a local optimum. If we alter routing
decisions for other 	ows, we might end up with a higher
overall throughput. Our work provides us with a means for
intermediate nodes to sense the arrival of the new 	ow and
to participate in the route-maintenance phase. �is is called
self-recommendation (SR). SR enables a reassessment of prior
routing decisions and provides a procedure to update it.
Consider the scenario shown in Figure 2where each node can
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Figure 1: In “X” scenario, a packet from� to� and a packet from�
to� can be transmitted with a total of 3 transmissions using network
coding technique.
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Figure 2: A simple test scenario for SCAR.

only reach its nearest neighbor. Suppose there is an existing
	ow 1 → 4 → 2. With the arrival of a new 	ow 6 →
3 → 5, new coding opportunities are introduced at node
3. Node 3 can sense this new opportunity as an intermediate
node.Without themechanism of self-recommendation, node
1 will not be aware of the 	ow arrival, not to mention
changing the route to utilize this coding opportunity. Our
protocol speci
es when intermediate nodes will send self-
recommendations and how source nodes will compare the
available routes. In our protocol, node 1 will reroute via 1 →
3 → 2, fully utilizing the coding opportunity.

In order to design a protocol that is able to handle
the case we described, we need to solve several problems.
�e 
rst is how to discover the arrival of new 	ows and
thus new coding opportunities. Secondly, we need to know
how to evaluate these opportunities and decide whether
to change existing routes. To complete the work, we also
need a third step to test whether the newly introduced
complexity is well compensated with higher performances.
Here we 
rst brie	y answer these questions. �e network
dynamics are monitored by intermediate nodes. Like most
routing protocols, our protocol also employs a RREQ-RREP
procedure to discover routes. �e benchmark protocol is
dynamic source routing (DSR) [4] protocol and parts of
technique of DCAR [3] protocol are also included. In an on-
demand routing protocol, RREQ/RREP packets suggest new
incoming 	ows. �is discovered information is encoded in
a self-recommendation (SR) packet and is sent to the source
node, triggering a route-change (RC) procedure to handle it.
�e route-change procedure employs a new unbiased routing
metric to evaluate all possible routes and makes updates

to the routing table. On the other hand, we have carefully
analyzed the causes for the throughput gain and devised a
series of indicators to predict the gain. �rough extensive
simulations on various topologies, we conclude empirically
that throughput gains are observed whenever the indicators
imply so, and the presence of throughput gain indicators is
ubiquitous.

�e contributions of this work are as follows.

(1) We have proposed a practical coding-aware rout-
ing protocol that enables coordination among 	ows.
�is coordination is done with the help of self-
recommendations (SRs) from intermediate nodes.
�e route-change (RC) procedure is devised to syn-
chronize di�erent nodes.

(2) We have studied the coding-aware routing metric
(CRM) for quantifying themerits of candidate routes.
�e concepts of biased and unbiased CRM, as well
as the methods to convert biased CRM to unbiased
CRM, are introduced. We design packet formats
and route-maintenance procedure to gather necessary
information to make the conversion possible.

(3) We have analyzed various coding structures and
propose a series of indicators. �ese indicators can
be used to estimate how much throughput gain is
achievable under SCAR. �ey can also be used as a
guide for modifying network topologies to improve
throughput.

Compared to previous coding-aware routing protocols
[5–8], the performance evaluation of our protocol shows
that our protocol can signi
cantly improve throughput in
many network topologies. It is also shown that our proposed
protocol is robust against di�erent tra�c patterns. �e order
of arrivals of 	ows is generally indi�erent for our protocol.

�e rest of the paper is organized as such. In Section 2 we
introduce more related works as well as some basic building
blocks in coding-aware routing protocols. Section 3 gives an
overview of our SCAR protocol, with Section 4 detailing the
route-change procedure in our protocol. Section 5 analyzes
coding structures and proposes a series of indicators to
estimate throughput gain. �e performance evaluation is
given in Section 6 and we conclude in Section 7.

2. Related Works and Preliminaries

Network coding is a research area that may have interesting
applications in practical networking systems. It can improve
throughput when two wireless nodes communicate via a
common intermediate relay node. Works on network coding
started with a pioneering paper by Ahlswede et al. [1], who
showed that with network coding, as symbol size approaches
in
nity, a source can multicast information at a theoretically
maximum rate. �is rate can be calculated by modelling the
network as a max-	ow min-cut problem in graph theory.
�e studies in [9, 10] focus on the construction of e�ciency
of network coding. A theoretical study on the e�ciency of
network coding in multihop wireless networks is given in
[11, 12]. Recently, there have been several works [2, 13–17] on
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multiple unicast sessions by applying wireless network cod-
ing. �ese approaches are categorized as inter	ow network
coding, which encodes multiple packets destined to di�erent
next hops and broadcasts them together.

�e one-hop coding opportunities were 
rst studied
and exploited by the COPE protocol in [2]. �e simple
one-hop nature and the empirical success of COPE have
sincemotivated numerous subsequentworks. Some examples
include [18], which 
nds the energy-e�cient scheduling with
opportunistic coding [17], which calculates the maximum
number of overhearing opportunities under practical wireless
settings. References [3, 19, 20] develop techniques to select
routes that create more coding opportunities, [21, 22] jointly
optimize network coding and scheduling, [23] picks the
modulation rate that takes into account both coding gain and
data rate, and [24] proposes a technique to XOR packets that
use di�erent modulation schemes. Some recent e�orts con-
sidered cross-layer approaches in the context of coding-aware
routing [19]. Chaporkar and Proutiere [21] also studied the
issue of joint scheduling and COPE-like coding, focusing on
characterizing the capacity region of a simpli
ed version of
COPE combined with scheduling according to backpressure.
In [3], Le et al. proposed an on-demand distributed coding-
aware unicast routing protocol (DCAR) for selecting a high
throughput path with more potential coding opportunities
by introducing a coding-aware routing metric called CRM,
which jointly considers coding opportunities, congestion
levels, and related factors for comparing coding-possible and
coding-impossible routes when multiple routes are available.
In addition, DCAR can detect coding opportunities on an
entire path, thus eliminating the two-hop coding limitation in
COPE. However, both of these existing coding-aware routing
protocols do not consider the dynamic nature of data 	ows in
a network.

Since the metric used in DCAR (CRM) is of great
importance to the formulation of this paper, we will brie	y
incorporate part of the derivation of CRMhere.�eCRMof a
route is the sum of the CRMs through all intermediate nodes.
When comparingmultiple possible routes at the source node,
the route that has the smallest CRM value will be picked.
�e calculation of CRM at a single node is nevertheless
nontrivial, and the calculation process re	ects the evolution
of the design of thismetric.�eCRMof a node starts from the
average queue length of a slidingwindow (�). A smaller value
suggests less tra�c, thus shorter delays. Coding opportunities
are then considered to transform � to MQ (modi
ed queue
length). MQ is calculated as follows. First the queue lengths
of all transmission queues inside the speci
ed node are
summarized. With each transmission queue denoted as a
vertex and each coding-possible queue pair denoted as an
edge, we form a “coding graph.” �e queue length of the
queues is attached to the vertexes in the graph. A�er solving
a max-clique problem on the graph, MQ is calculated as

MQ = ∑
��∈C

max
�∈��
{��} , (1)

where C is the set of cliques that solves max-clique problem
and �� is the average queue length of queue �. �is MQ

measures one node’s ability to transmit packets promptly
while taking into account the e�ect of network coding. MQ
is further extended to MIQ when considering the e�ect of
neighboring interference. Consider the following:

MIQ (
) = MQ (
) + ∑
�∈�(�)

MQ (�) , (2)

where 
 is the speci
ed node and �(
) is the set of neighbors of
node 
. Lastly, CRM is derived by further taking into account
packet losses:

CRM = 1 +MIQ

1 − ��
, (3)

where �� is the probability of packet loss.

3. Protocol Overview

In the following subsectionwe explain themajor components
of the protocol.

3.1. Two Tables to Store Flow Information. �e route-dis-
covery procedure in DCAR [3] has already collected enough
information for future routing coordination, but DCAR
simply dumps it a�er the routes are constructed. In the SCAR
protocol, each nodemaintains two tables: potential-	ow table
and relayed-	ow table.

When an RREP passes by, the node will store the route
information in the potential-	ow-table. A potential-	ow
table entry can be moved to the relayed-	ow table when
data packets are received from this route. It will be moved
back if the node fails to receive data packets from this
route for a period of time. In a traditional coding-aware
routing protocol, a potential-	ow-table entry is only used
for calculating the coding-aware metric when forwarding
RREP back to the source. In our protocol, this potential-
	ow information is stored for a longer time, so that this
intermediate node can possibly recommend the source node
to use this route in the future. Obviously, a route can be either
in the potential- or the relayed-	ow table but could not be
in both simultaneously. Self-recommendationswould only be
done for potential 	ows (because relayed 	ows are already
chosen by their sources).

3.2. Self-Recommendation Sent to the Source. With two
tables storing the necessary information for making self-
recommendation, the next question is when to initiate the SR
procedure.�e SR procedure should be triggered when a new
	ow joins the network and a potential coding opportunity is
found. In addition, when an existing 	ow is terminated, the
source should also be noti
ed of the change and routes should
be updated given the new 	ow pattern.

In the 
rst case, upon receiving an RREP of 	ow ��,
an intermediate node will check whether this new 	ow can
be coded with any of the potential 	ows it has stored. If a
potential 	ow �	 can be coded with ��, this node can send
a self-recommendation to the source node “later,” indicating
a potential coding opportunity. It is sent “later” because
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we need to wait for this new 	ow �� to stabilize. If a�er a
delay, this new 	ow �� is moved to the relayed-	ow table,
we can safely recommend �	 to the source of ��. Otherwise
�� remains in the potential-	ow table, which means that the
source of �� has found a better route than the one via this
intermediate node. To utilize this coding opportunity we will
have to send out two recommendations, whichwill very likely
cause turbulence to the network. For now, our protocol will
send self-recommendation only when�� is latermoved to the
relayed-	ow table in order to reduce overhead.

In the second case, when an intermediate node detects
the queue length for a certain relayed 	ow, �1 is drastically
decreasing, and this decrease has continued for some time, it
then checks whether there is any other existing 	ow �2 being
coded with �1. If so, the source of �2 will be noti
ed of the
change by an SR packet, and the route should be updated.

3.3. Handling Self-Recommendations. Not all recommenda-
tions should be accepted. �e source retains its autonomy
in determining which route to use. In order to compare this
recommended route with other existing routes, the source
node will send modi
ed RREQs to update the CRM of all
existing routes as well as the recommended route. Unlike
RREQ, modi
ed RREQs are unicast packets that use source
routing. �is modi
ed RREQ will request the destination
and relay nodes to append the CRM value in reply packets
(modi
ed RREPs).

3.4. Decision Making. Upon receiving the modi
ed RREP
packets, the source node updates the CRM value of all routes.
Ideally the source node can compare among these routes
and choose the route with the minimum CRM. However, the
CRM values received are biased.�ey will favor the currently
in-use route most of the time. In the next section we will
discuss how to remove this bias and improve the e�ectiveness
of self-recommendations. Altering the routing decision is not
the end of the story. �e routing decision we have just made
can be wrong sometimes because of two reasons.

(1) �e CRM metric proposed in [3] is only a heuristic
indicator for the suitability of a route being used in
the context of network coding. �ere is no guarantee
that using a route with higher CRM will result in a
lower throughput.

(2) �e CRM values calculated can be imprecise. �e
max-clique problem inherent in CRM calculation
is NP complete, so approximation algorithms are
usually used to calculate the CRM.

In order to discover and recover from these errors, each
recommended route is given a probation period. A�er its
probation, the source node will refresh its routing table
through the modi
ed RREQ/RREP procedure again. Mon-
itoring this routing table refresh can give us hints whether
recommending that route is a right decision.

3.5. Controlling the Frequency of Self-Recommendations. For
a particular 	ow, there might be several intermediate nodes
that will send SRs to the source node. An intermediate node

may also send multiple SRs for the same potential 	ow.
�us the source will be constantly 	ooded with requests to
update. To prevent this from happening, a way to control the
frequency of SR is much needed. �is control is done in two
parts.

(1) A�er an intermediate node sends an SR for a certain
path, it is blocked from sending this speci
c SR for a
period of time.

(2) Whenever a source receives a new SR for a particu-
lar destination, the route-change (RC) procedure is
initiated. Subsequent SRs for the same destination
will be taken care of but will not trigger sending of
modi
ed RREQ again. Details for the RC procedure
are explained in the next section.

4. Route-Change Procedure

�is section describes how self-recommendation packets
can alter existing routes. �e route changes happen in a
distributed but ordered manner.

4.1. Procedure Timeline. Why is a timeline important? In
the simple scenario shown in Figure 2, synchronization is
not a must. However, as the topology incorporates more
nodes and the network accommodates more 	ows, mod-
i
ed RREPs may not immediately follow their initiating
modi
ed RREQs. �ey can be severely delayed or simply
get lost. We need to clarify how to handle these delayed
packets. Moreover, intermediate nodes can receivemore than
one self-recommendation in the same time frame, there-
fore, triggering even more modi
ed RREQ/RREP packets.
We need a synchronization method to coordinate all the
self-recommendation, modi
ed RREQ, and modi
ed RREP
packets so that they do not mess with each other. �is
synchronization method is a common timeline.

�e route-change procedure starts with the arrival of
an SR packet. SR packets can either initiate a route-change
procedure, or they can join an existing procedure. For a spe-
ci
c source node, there can be several parallel RC processing
instances going on, each for a di�erent destination. Modi
ed
RREQpackets are sent at certain time points in the procedure
and the modi
ed RREP packets are handled depending on
the time they were received. Figure 3 shows the timeline for
one of such RC instances.

An RC procedure consists of three periods, and we dis-
cuss them separately as follows.

(1) Waiting period: upon receiving SR0 for destination�,
if there has not been any RC instance for �, a new
RC instance is initiated. �is node then sends several
modi
ed RREQs (short for MQ in Figure 3), each for
a known route to �. During the waiting period, any
SR packets and any modi
ed RREP (short for MP)
packets for this destinationwill be temporarily stored.

(2) Probation period: at �1, the node examines the
SR/MP packets received so far, compares the pre-
vious in-use route with the recommended routes,
and decides which route is going to be adopted.
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Data packets are then sent through the newly adopted
route. SR andMP packets received during this period
are simply discarded.

(3) Con
rming period: at the end of probation period,
this node will again send modi
ed RREQs for each
route and gathers modi
ed RREPs from these routes.
�is con
rming period provides the chance to revert
previous route changes if the recommended route has
higher CRM than the previously-in-use route.

4.2. 
e Metric: Unbiased CRM. In the last section we men-
tioned that the CRM values in modi
ed RREP packets
received are biased.�eywill favor the currently in-use route.
We justify this statement here.

�e CRM values returned for the previously-in-use route
�in-use and the recommended route �sr are unbiased only if
there is no data packet sent through �in-use. �e unbiased
CRMswill weigh two routes equally. Consider a scenario as in
Figure 2. �e 	ow (1 → 4 → 2) has existed for some time.
As the new 	ow (6 → 3 → 5) arrives, node 3 will send a
self-recommendation to node 1.�epreviously in-use route is
�in-use (1 → 4 → 2 in Figure 2), and the recommended route
is �sr (1 → 3 → 2). In Figure 2, unfortunately, there have
been data packets sent through (1 → 4 → 2) before the
self-recommendation is received by node 1. �is tra�c will
increase the staticmodi
ed queue length (this is a component
of the CRM metric, refer to [3] for more details) of node
4 from 0 to some value di�. �is modi
ed queue length is
transmitted in node 4’s hello message, so node 3 will account
for this di� when calculating the CRM for (1 → 3 → 2).
Ironically, 	ow (1 → 4 → 2) will not account for di�
in calculating its own CRM. As a result, node 1 receives a
higher CRM for 	ow (1 → 3 → 2), which is unfair. Such
comparison between two 	owsmakes no sense and also leads
to a wrong routing decision.

�e remedy for the problem is a more sophisticated
modi
ed RREQ-RREP procedure. In this scheme, though the
CRMvalues are calculated as usual, node 1 will preprocess the
values and make sure that the 
nal comparison is unbiased
and e�ective.

�e packet formats of the modi
ed RREQ/RREP are
shown in Figure 4 where Path denotes the route of interest,
and InUsePath the previously in-use route. In addition to
the normal CRM calculation, when the modi
ed RREP is
transmitted back towards the source node, the intermediate
nodes update the Count of the packet. If a node in InUsePath
happens to be its neighbor, the corresponding count is
incremented by 1. Again using the simple scenario in Figure 2,
the modi
ed RREP for 	ow (1 → 3 → 2) will have a
count of 1. �is means node 4, which is in the InUsePath, is
node 3’s neighbor. Moreover, the modi
ed RREP packet has
an extra optional 
eld. �is 
eld will be present only when
Path is exactly the same as InUsePath. �is 
eld contains the
di�erence between the static modi
ed queue lengths of the
two cases: calculated with the in-use route and without the
in-use route.

When the source node receives the modi
ed RREPs for
both �in-use and �sr, we have enough information to adjust

the CRM values to the unbiased values. �e modi
ed RREP
from �in-use has the optional 
eld, and the modi
ed RREP
from �sr has the count 
eld. For each intermediate node in the
previously in-use route, subtract count × di�erence from the
CRM value of �sr. �erefore, the CRM values of both 	ows
are the net e�ect of the previously in-use route tra�c, and
they can be compared directly to decide which route should
be chosen.

5. Topology Analysis

�e performance of a coding-aware routing protocol is
highly dependent on the network topology, or rather “coding
structures.” To better understand the importance of routing
coordination, we have studied a series of indicators to quan-
tify how much a topology is susceptible to previous routing
decisions, and in that case, what bene
ts could routing
coordinations bring. Given the indicators, the performance of
the routing protocol can be estimated even before simulations
or deployment. Furthermore, these indicators shed some
light on coding structures, so that topology modi
cation can
be done in a guided direction seeking throughput gain.

Before describing the indicators, we 
rst de
ne some
terms used.

Link: undirected multihop path connecting one node
to another.

Route: directed multihop path connecting a source
node to a destination node.

Flow or S-D pair: an ordered pair of source and desti-
nation nodes, without specifying the route chosen.

Route coding-possible: this is the legacy de
nition.
For multiple routes, if each of their destinations can
decode the coded packets, these routes are coding-
possible.

Flow coding-possible: this is a new de
nition used
in this paper. If 
 	ows are said to be coding-
possible, there exist 
 coding-possible routes for the

 respective 	ows.

�e series of indicators are named as �� with� starting
from 2. For two 2-hop 	ows that are coding-possible, say,
(�1-�1, �2-�2), we assume the number of possible routes for
�1-�1 is larger than or equal to that for �2-�2. If we choose
a route �1 from all the possible routes for �1-�1 randomly,
the probability that there exists a route �2 for �2-�2 that is
coding-possible with �1 is de
ned as �2 for �1-�1, �2-�2.
For comparison purpose, this �2 value is then adjusted as
�2adj = 2 × |�2−0.5|.�e rationale of doing this adjustment is
discussed later in this section. As an illustration, we describe
the calculation of �2 for 1-2, 6-5 in the topology shown in
Figure 2. �ere are two possible routes for 	ow (1-2) and
only one possible route for (6-5). When choosing the route
(1-4-2) for 	ow (1-2), there is no possible route for 	ow (6-
5) to code, but if we choose the route (1-3-2) for 	ow (1-
2), there is possible route. So the �2 value for these two
	ow is 0.5, and a�er adjustment, 0. �e �2 value of the
topology is simply an average of all the adjusted �2 values
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SR0 SR1 SR2 SR3
MP1 MP2 MP3 MP4 MP5 MP6 MP7

MQs

MQs Route changeRoute change

Waiting period Probation period Con�rmation period

T0 T2T1 T3

Figure 3: Route-change procedure timeline (SR: self-recommendation, MQ: modi
ed RREQ packet, MP: modi
ed RREP packet).

Type PathLen InUsePathLen

Path (PathLen∗
4bytes)

InUsePath (InUsePathLen∗
4bytes)

Len

(a) Modi
ed RREQ

Type PathLen InUsePathLen

CRM (8bytes)

Path (PathLen∗
4bytes)

InUsePath (InUsePathLen∗
4bytes)

InUsePath in neighbor count (InUsePathLen bytes)

Optional (InUsePathLen∗
8bytes)

Len

(b) Modi
ed RREP

Figure 4: Modi
ed RREQ/RREP packet formats.

of every pair of coding-possible 	ows. �3 is de
ned similarly
with the only exception that we consider three 2-hop 	ows,
while still randomly selecting one route for the 
rst 	ow.�e
adjustment of �3 is the same, �3adj = 2 × |�3 − 0.5|. Note
that we consider only 2-hop 	ows. �is is because, in our
simulation, coding opportunities are mostly con
ned in 2-
hop scenarios.�ough we had also formulated the indicators
for multihop routes, simulation results did not agree with
the indicators. Multihop transmissions are prone to packet
loss and they usually have outrageous delays compared to
2-hop transmissions. Given the de
nition of ��, if we can

nd a systematic way of listing all coding-possible route
pairs/triples, �2 and �3 can be easily calculated. We then
provide a graph-based algorithm to enumerate all possible
coding-possible route pairs/triples.

Consider 3 possible node placements as shown in Fig-
ure 5. �e three sub
gures considered how many end nodes
these two routes have in common. Figure 5(a) shows the
case when two routes have their both end nodes in common;
that is, any 2-hop route can be coded with its reverse route.
In Figure 5(b), route A-O-C can be coded with route C-O-
B. Similarly, route B-O-C can be coded with C-O-A. In this
topology, two route coding pairs are found. Note that we do
not count A-O-C and C-O-A in this 
gure, because this pair
is already counted in Figure 5(a). In Figure 5(c), where two
routes share no common end node, four route coding pairs
are found. �ey are A-O-C with D-O-B, A-O-D with C-O-B,
C-O-A with B-O-D, and C-O-B with A-O-D. Similarly, the
pair A-O-C and C-O-B is not counted here as it has been

counted in the second case. In summary, our problem is
reduced to a problem of listing these structures, and then list
the route pairs as above as long as the respective sources and
destinations of these routes are not neighbors.

So far, the work seems trivial. But as we generalize to
coding-possible route triples, we begin to 
nd some patterns.
A coding-possible route triple can be seen as a coding-
possible route pair with an additional route. �e additional
route should meet certain criteria, that is, the destina-
tion/source of the additional route should be neighbor to the
source/destination of either of the other two routes (consider
a sharing node as a special case of neighborhood). So we
derive the three possible topologies for coding-possible route
triples from Figure 5, yielding Figure 6.

Extending Figure 5(a), the additional route cannot share
the end node with the previous routes, yielding a 4-node
structure with 4 triangles (Figure 6(a)). With the initial two
routes A-O-B and B-O-A, the new route can be either C-O-D
orD-O-C. In addition, this topology can be rotated 90 degree,
with C-O-D and D-O-C chosen to be the initial routes. So
we can 
nd 2 × 2 = 4 route triples. Extending Figure 5(b),
the additional route again cannot share end nodes with the
previous two, introducing the additional nodes � and � in
Figure 6(b). With the link O-C shared by the initial two
routes, there are two coding triples in this topology: (A-
O-C, C-O-B, D-O-E) and (B-O-C, C-O-A, E-O-D). Again,
due to the symmetry of the topology, the number of route
triples in this topology should be multiplied by 5, giving
2 × 5 = 10. Extending Figure 5(c) is the most complex one.
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Figure 5: Possible topologies for 2 coding-possible route pairs.
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Figure 6: Possible topologies for 3 coding-possible route triples.

�e additional route can potentially share end nodes with
initial routes. However, further investigation reveals that
sharing end nodeswill reduce the situation back to the onewe
have covered in Figures 6(a) and 6(b).�e only new situation
we should consider is shown in Figure 6(c), where altogether
6 end nodes are considered.�ere are two route triples in this
topology: (A-O-D, C-O-B, F-O-E) and (B-O-C, D-O-A, E-O-
F). Rotating the topology will not give new route triples.

Now we can see the importance of triangles in these
topologies. As long as we list all triangles in a topology, by
examining the adjacency of these triangles, we can easily list
all route pairs and route triples.�is deduction can be carried
forward for 4, 5, or even more routes. By the de
nition, �2
and �3 can be easily calculated. We then discuss what are the
implications of these indicators.

�e improvement of SCAR over DCAR lies in the route-
maintenance phase. SCAR provides a mechanism to revise
already-established routes. �erefore, if prior routes are
poorly selected, they can be changed to consider any new
	ows in the network. In terms of�2 values, any value between
0 and 1 leaves the possibility of choosing the “wrong” route
initially. DCAR is more likely to choose the “right” route if
the �2 value is closer to 1, and it is less likely to choose right
route if the �2 value is closer to 0. On the other hand, as
the �2 value increases from 0.5 to 1, the throughput gain

SCAR can provide over DCAR decreases as a result of better
DCAR performance. As the �2 value decreases from 0.5 to
0, theoretically SCAR could still 
nd the “right” route a�er
a route-change procedure and thus should provide a higher
throughput gain. However in practice, SCAR’s performance
also su�ers. A decreasing �2 value usually means more
potential routes and less “correct” routes. With more routes
in the network, the modi
ed RREQ-RREP packets are prone
to get lost, and yielding incorrect route change decisions.
So the intuition is �2 value being too big or too small can
limit SCAR’s performance over DCAR. So an adjusted �2 is
proposed as �2adj = 2 × |�2 − 0.5|. �2adj is still in the scale of
0 to 1. Smaller values imply higher throughput gain.

We argue the following.

(1) �2 represents the level of con
dence that DCAR
will 
nd a coding structure in a given topology. �3
and higher rank indicators denote the likelihood for
DCAR to 
nd multipacket coding opportunities.

(2) Adjusted �2, or �2adj, represents the extent of
throughput gain we can expect from choosing to use
SCAR over DCAR as the routing protocol. Smaller
�2adj implies higher throughput gain.



8 Journal of Computer Networks and Communications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 7: An arti
cially designed topology to measure the e�ectiveness of �� indicators.
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Figure 8: Scatter plot of throughput gain with di�erent �2 values.

(3) Adjusted �3 or higher-rank indicators o�er possibil-
ity of higher performance as well, but the volatility of
throughput gain is higher.

We validate our argument by simulations.�e objective is
to test and justify the e�ectiveness of using �� indicators to
predict SCAR’s throughput gain againstDCAR.�e approach
we take is, 
rst, to prove that the�2 can indeed re	ect SCAR’s
ability to improve throughput and then to verify that �3 and
higher-rank indicators for 	ows can re	ect SCAR’s ability
to discover multipacket coding opportunities. �ese two
justi
cations are based on simulation results from specially
designed topologies. We can assume that �� for the whole
topology, which is an average of adjusted �� values over all
	ows, can re	ect SCAR’s capability to improve throughput.
�is assumption is justi
ed by simulation results in the next
section.

5.1. Simulation 1. With an arti
cially designed topology
where 	ows with di�erent �� values can be found (See
Figure 7), we choose 16 	ow pairs for each of the �2 values to
be examined, namely, 0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5,
and 1. For each 	ow pair, wemeasure the network throughput
of both routing protocols under 6 di�erent o�ered loads

and 10 random seeds. �e throughput when the network
becomes saturated is averaged through 10 random seeds.
Figure 8 is the scatter plot of throughput gain for each 	ow
pair against the value of �2. �e mean throughput gain for
each �2 value is denoted as a triangle symbol in the 
gure.
�e throughput gains for both pre-adjusted C2 and adjusted
C2 are averaged through the data points to yield Figure 9.
From these results, we observe that a �2 value between 0
and 1 implies a throughput gain signi
cantly di�erent from
zero, while a �2 value of zero or one implies a throughput
gain near zero. It is worth noting that �2 being 0.5 gives the
highest throughput gain. �is justi
es the adjustment on �2.
�e adjusted �2 values are readily comparable and thus can
be averaged to get the �2 for the whole topology.�ough the
correlation between throughput gain and adjusted C2 values
is not strictly linear, it is safe to assume a linear relationship
in the granularity we are discussing.

5.2. Simulation 2. Topologies with a speci
ed �3 value are
di�cult to construct. In fact, the topology shown in Figure 7
gives 30 nonzero �3 values, but 26 of them are 1/3. In
order to test with other �3 values, we have to construct
a series of new topologies, which are omitted here due to
limited space. �e throughput gain with di�erent �3 values
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Figure 10: Scatter plot of throughput gain with di�erent �3 values.

is plotted in Figure 10, with the average throughput gain
shown in Figure 11. We can 
nd some patterns within the
scatter plot. �e scatter plot for each nonzero and nonone
�3 value in Figure 10 can be basically divided into two
clusters. One in the ±10% throughput gain range, and the
other cluster above 10%.�e
rst cluster is roughly symmetric
about the zero point and we can explain it as a normal
deviation. In these cases, SCAR simply brings in a dynamic
scheme for the sources to reconsider those already established
routes, adding some deviations to the mean throughput. �e
second cluster, however, is the cases where SCARmanaged to

nd multipacket coding possibilities. In fact, a�er thorough
examination of the simulation log 
le for data points in this
cluster, SCAR tends to 
nd 3-packet coding opportunities
while DCAR only 
nds 2-packet coding opportunities or no
coding opportunities at all due to the order of 	ow arrivals. As
a conclusion, a �3 value between 0 and 1 o�ers multipacket
coding opportunities that might be discovered by SCAR.
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Figure 11: Average throughput gain for di�erent �3 values.

However, SCAR is not guaranteed to 
nd them and the
performance can 	uctuate within a relatively large variation
depending on the tra�c condition. Average throughput gain
under di�erent �3 values is shown in Figure 11.

6. Evaluation

�ree sets of simulations are done on the Qualnet (http://
web.scalable-networks.com/content/qualnet/) simulator, re-
vealing di�erent aspects of features of our proposed protocol
SCAR.

6.1. Simulation 1: Simple Topology. Using the simple scenario
in Figure 2, we illustrate how DCAR is vulnerable to 	ow-
arrival times and how our proposed protocol SCAR can
withstand this variability. We start with a 	ow from node 1
to node 2 and, then, add the new 	ow from node 6 to 5.
�is is de
ned as starting order 1. �e starting order is then
reversed and is de
ned as starting order 2.�e 	ows are given
the same tra�c load. For starting order 1, whether there is
a coding structure depends on the route selection for 	ows
1-2. �e paths 1-3-2 and 1-4-2 are of the same quality at the
beginning. Under DCAR, if the node 1 randomly chooses the
path 1-4-2, there will be no coding structure formed in the
network. For starting order 2, DCAR can perfectly choose the
right routes to use. In contrast, for SCAR, no matter which
	ow node 1 chooses at the beginning, it is able to adjust itself
to form a coding structure and improves the throughput of
the network. In terms of �� indicators, the 	ow pair (1-2)
and (6-5) has a �2 value of 0.5, which equals an adjusted
�2 value of 0. �is implies that it is very likely to have a
throughput gain with these 	ow pairs. �e whole topology,
when considering all possible 	ow pairs, has an adjusted �2
value of 0.46. �ere is no multipacket coding opportunity in
this topology. Anyway, this topology is simply to serve as a
demonstration, so we do not test with more 	ow pairs.

We vary the o�ered load and plot the end-to-end
throughput in Figure 12. �e two starting orders mentioned
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Figure 12: Simulation results for the simple test topology.
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Figure 13: Simulation results for “wheel” topology.

above are considered for DCAR and SCAR. Each data point
in the 
gure is an average throughput over 10 di�erent
random seeds. We observe that SCAR could always choose
the path 1-3-2 a�er a period of time and forms a coding
structure in the network, while DCAR could only choose
between the paths 1-3-2 and 1-4-2 randomly under starting
order 1. �e throughput gain at the highest o�ered load
averages to 12.3%. However, under starting order 2, the
performances of DCAR and SCAR are quite similar. �e
con
dence interval, or the minimum/maximum value in the
simulation, is not plotted in the 
gure for clearance. In fact,
the minimum and maximum values are quite similar and
DCAR’s and SCAR’s con
dence intervals severely overlap.
�e reason why SCAR’s average performance is better than

DCAR’s is that SCAR has higher probability of reaching the
maximum value.

6.2. Simulation 2: “Wheel” Topology. �e “wheel” topology as
shown in Figure 13(a) is an interesting and e�cient topology
to study the performance of coding-aware routing protocol.
A central node (0) is surrounded by six nodes (1–6) evenly
distributed along the cycle. Each node can reach all the other
nodes except for the node on the opposite end of the diameter
(e.g., node 1 can reach all nodes except node 4 and vice versa).
Each node tries to send data to the node at the opposite end
of the diameter. �ere are many coding opportunities in this
scenario as studied in [3]. In our topology analysis, this topol-
ogy has an adjusted�2 value of 0.36 and an adjusted�3 value
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Figure 14: Simulation results for grid topology.

of 0.33. �is suggests that it is likely to see a throughput gain
by exploiting the�2 value, while the throughput gainmay not
be consistent because the�3 value brings inmore uncertainty
as well as an expected throughput gain.

�e average throughput of the network under varying
tra�c loads is plotted in Figure 13(b). When the network
is saturated, the throughput gain averages to 8.02%. Further
inspection into the simulation log reveals that SCAR tends to

nd 4-packet coding opportunities when DCAR never found
one.We have also tested di�erent starting orders and 
nd that
this does not have any in	uence on the performance ofDCAR
and SCAR. �e reason is that this is a totally symmetric
scenario with symmetric topology and 	ows.

6.3. Simulation 3: Grid Topology. Next we construct the same
4 × 4 topology as mentioned in [3] where each node can only
reach its northern, southern, eastern, and western nodes.�e
simulation is run for 10 rounds and at each round, 
ve 	ows
(each with 2–5 hops) are randomly added into the network.
�e adjusted�2 and�3 values of this topology are 1, suggest-
ing that there would be no throughput gain from switching
the routing protocol. �is is because, in the deduction of
�� indicators, we limit the coding structure to 2-hop ones.
But in this grid topology, only multihop coding structures
exist. �e average end-to-end throughput of the network
achieved by DCAR and SCAR is shown in Figure 14(a). In
this experiment, SCAR is only slightly better than DCAR
because the multihop coding opportunities discovered by
SCAR are prone to errors; therefore, the throughput gain
is compromised. When the o�er load continues to increase,
the throughput gain can be negative sometimes. �e average
throughput gain in saturated network is 1.15%.

However, by modifying the topology only a little bit,
we can achieve totally di�erent results. By increasing the
transmission range of the nodes to reach all its 8 neighboring
nodes, the �� indicators change rapidly. A�er the mod-
i
cation, the adjusted �2 value is 0.38 suggesting high

probability of throughput gain, and the adjusted �3 value is
0.48, suggesting an expected throughput gain with variation.
�e simulation results are shown in Figure 14(b) and the
throughput gain is obvious. �e average throughput gain
reaches 9.63% without changing any 	ow settings.

�e comparison between these two grid topology settings
further justi
es the e�ectiveness of �� indicators. �2 can
be used as a reliable predictor for the expected throughput
gain. �ough �3 is not as reliable as �2 for a single run of
simulation, it still identi
esmultipacket coding opportunities
and provides an expected throughput gain across a large
number of runs of simulations. Additionally, one can leverage
the knowledge of�� tomodify the network topology, hoping
to drastically improve the overall throughput.

7. Conclusion and Future Works

In this paper, we have introduced SCAR, a coding-ware rout-
ing protocol with self-recommendation. �e mechanism of
self-recommendation enables the protocol to discover hidden
coding opportunities that have been overlooked by other
routing protocols. Whenever a new 	ow joins the network
with new coding opportunity, prior routing decisions are
revised through a route-change procedure.�e route-change
procedure triggered by the self-recommendation is able to
adjust the biased routing metrics. Moreover, a series of indi-
cators are introduced. �ese indicators are calculated using
graph theory, and they re	ect howmuch throughput gain can
be expected when using our protocol under a speci
ed topol-
ogy. Testing these indicators on multiple topologies reveals
that the throughput gain is not a coincidence and many
practical topologies come with positive indicators. Further
simulations are done in Qualnet to evaluate our protocol.
It is shown that our protocol can remarkably outperform
other coding-aware routing protocols and the predictions
given by the indicators are generally correct. �e dynamic
nature of our protocol results in a higher invariability against
changes in the order of 	ow arrivals.



12 Journal of Computer Networks and Communications

�ere are several problems exposed in the simulations
that require further investigation. For example, when two
nodes are placed at a distance such that they can hear
each other sometimes but cannot in other occasions, the
performance of DCAR and SCAR can be severely degraded.
�is is because utilizing these unreliable coding opportunities
can even harm other normal 	ows if they are coded together.
In order to tackle this problem, a more sophisticated routing
protocol that handles packet loss probability more than
simply normalizing the routing metric should be employed.
Moreover, we can also improve the protocol when transmis-
sion links su�er from abrupt but temporary changes. It is not
uncommon that nodes in the network stop receiving packets
for several seconds and resumes a�erwards when the tra�c
load is high. Currently our implementation simply does not
drop any links. But when to drop the link and how to drop
the link can be important in some scenarios.
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