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Abstract: Importance sampling is a variance reduction technique that is used to improve the efficiency
of Monte Carlo estimation. Importance sampling uses the trick of sampling from a distribution,
which is located around the zone of interest of the primary distribution thereby reducing the number
of realizations required for an estimate. In the context of reliability-based structural design, the
limit state is usually separable and is of the form Capacity (C)–Response (R). The zone of interest
for importance sampling is observed to be the region where these distributions overlap each other.
However, often the distribution information of C and R themselves are not known, and one has only
scarce realizations of them. In this work, we propose approximating the probability density function
and the cumulative distribution function using kernel functions and employ these approximations to
find the parameters of the importance sampling density (ISD) to eventually estimate the reliability.
In the proposed approach, in addition to ISD parameters, the approximations also played a critical
role in affecting the accuracy of the probability estimates. We assume an ISD which follows a normal
distribution whose mean is defined by the most probable point (MPP) of failure, and the standard
deviation is empirically chosen such that most of the importance sample realizations lie within the
means of R and C. Since the probability estimate depends on the approximation, which in turn
depends on the underlying samples, we use bootstrap to quantify the variation associated with the
low failure probability estimate. The method is investigated with different tailed distributions of
R and C. Based on the observations, a modified Hill estimator is utilized to address scenarios with
heavy-tailed distributions where the distribution approximations perform poorly. The proposed
approach is tested on benchmark reliability examples and along with surrogate modeling techniques
is implemented on four reliability-based design optimization examples of which one is a multi-
objective optimization problem.

Keywords: reliability; importance sampling; scarce data; surrogate; RBDO; MOO

1. Introduction

Reliability-based design optimization (RBDO) is a design approach that is used to
generate reliable designs by accounting for uncertainties in the system variables such as ma-
terial properties, loading conditions and geometry. Probabilistic approaches use probability
distributions to model the uncertainties. In such approaches, the reliability of the system is
measured as the probability of failure to satisfy a performance criterion. Mathematically,
this involves calculating the hyper-volume of a multi-dimensional probability density
function (PDF) under the failure region. This calculation becomes infeasible when the
number of dimensions are large. Even in low dimensions, this calculation could become
intractable due to complicated geometry of the failure region [1]. Attractive alternatives are
analytical methods or sampling-based approaches.

Analytical methods, such as first-order and second-order reliability methods (FORM
and SORM), transform the probability distributions to standard normal space and use
linear or quadratic approximations of the performance function to estimate the failure
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probability at the most probable point (MPP) of failure [2–4]. In essence, analytical
methods can estimate failure probability within a reasonable number of evaluations for
linear or slightly non-linear performance functions. However, if the failure boundary
is highly non-linear, analytical approaches are likely to lead to erroneous estimation.
Additionally, other factors, such as island failure regions and multiple failure modes,
limit their performance [5,6].

Sampling-based approaches such as Monte Carlo methods are highly effective for com-
plex failure boundary problems and multi-modal failure problems [7]. In high-reliability
applications where the failure probability is very low, MCS requires a very large number
of model evaluations to obtain an accurate estimate. Most RBDO applications involve
evaluating high-fidelity models which are computationally expensive, thus rendering MCS
prohibitive for reliability estimation.

The computational burden of RBDO can be reduced by using surrogate-based methods
wherein surrogate models which are cheaper to evaluate are constructed using limited
high-fidelity model evaluations. Uncertainty from the random variables is then propa-
gated through these surrogate models to obtain reliability estimates. Various surrogate
modeling approaches, such as polynomial response surface (PRS), radial basis function
(RBF), support vector machine (SVM) and Kriging among others have been adopted for
reliability estimation [8]. Li and Xiu [9] proposed using cheaper to evaluate surrogates away
from the limit state and high-fidelity model evaluations close to the limit state to improve
accuracy and reduce cost. Dai et al. [10] proposed an SVM-based radial basis function
to approximate the limit state function which is then used to estimate failure probability.
Dubourg et al. [11] used error measure derived from Kriging to refine the surrogate during
subset-simulation-based reliability estimation. Reliability estimation using surrogates may
carry forward the bias from the surrogate approximation [12]. Surrogate modeling can also
be used to build approximation models for reliability metrics instead of limit state function.
Foschi et al. [13] used the combination of response surface, FORM and importance sampling
to perform reliability estimation. Qu and Haftka [14] compared the accuracy of surrogates
of different reliability metrics, such as failure probability, reliability index and probabilistic
sufficiency factor (PSF) during RBDO. They conclude that inverse measure, such as PSF
operating in performance space, performs better compared to a classical reliability metric.
A survey of various surrogate-based RBDO frameworks is provided in [15]. The choice
between surrogate for reliability estimation versus surrogate for limit state is a trade-off
based on the number of design variables and the number of random variables as well as
the cost of building the surrogate and cost of reliability estimate [16].

Employing variance reduction techniques to improve the efficiency and accuracy of
Monte Carlo estimations is another way to alleviate the computational burden of RBDO.
Several variance reduction techniques, such as importance sampling (IS) [17–19], subset
simulation (SS) [1,20] and separable Monte Carlo (SMC) [21,22], are used to improve the
accuracy of failure probability estimates while reducing the required number of high-fidelity
model evaluations.

Importance sampling improves the accuracy of the estimate by drawing the sample
realizations of the input random variables that have greater impact on the estimate, more
often. In order to do that, an alternate sampling density known as importance sampling
density (ISD) is chosen which enables sampling the important values more frequently. This
introduces a bias in the estimator which is corrected by weighing the sample realizations.
A good choice of ISD is proven to improve accuracy and in contrast, incorrect choice of ISD
could lead to spurious estimates. Hence, the choice of ISD is critical, and several approaches
have been explored to find the optimal ISD. Melchers [17] applied importance sampling for
assessing reliability of parallel and series structural systems, where a multi-normal PDF
centered at MPP was chosen as the ISD. Using the original distribution shifted to MPP,
multivariate normal distribution located at MPP with various choices for the co-variance
matrix ranging from the same as the original distribution to using only diagonal elements
of the original co-variance matrix have been studied [23].
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In cross-entropy-based methods [24], ISD is found by minimizing the Kullback–Leibler
(KL) divergence between theoretical optimal ISD and a chosen family of distributions. Kurtz
and Song [25] used a Gaussian mixture to obtain a non-parametric multi-modal PDF for ISD.
It was observed that the coefficient of variation of the failure probability estimate converged
as the number of Gaussian densities in the mixture increased. Cao and Choe [26] used an
expectation-maximization (EM) algorithm to obtain a Gaussian mixture as the near optimal
ISD. Cross-entropy information criterion (CIC) was used to select the number of Gaussian
densities in the mixture. Geyer et al. [27] proposed a modified version of EM algorithm for
updating the Gaussian-mixture-based ISD. For selecting the number of distributions in the
mixture, density-based spatial clustering of applications with noise (DBSCAN) algorithm
was used. In cross-entropy-based IS, one still requires the joint PDF of the original random
variables to compute the near optimal ISD.

Kernel-based IS is another way to obtain the alternate sampling density wherein
a kernel sampling density is constructed instead of choosing from a family of distribu-
tions [28,29]. Au and Beck [30] proposed Markov Chain Monte Carlo (MCMC) to distribute
samples asymptotically according to the optimal ISD, and subsequently a kernel sampling
density is constructed from these samples. Dai et al. [31] proposed a wavelet density esti-
mation technique to construct the ISD from the MCMC samples. Botev et al. [32] proposed
combining MCMC and IS to address the issues of biased sampling estimators that result
from MCMC. Various adaptive importance sampling procedures have gained popularity
recently. Dalbey and Swiler [33] proposed a Gaussian-process-based adaptive importance
sampling where a Gaussian process surrogate is used to identify the likely regions of failure
to adaptively improve the sampling density estimate. Zhao et al. [34] constructed a Kriging
surrogate from the initial MCMC samples which is improved using an active learning
process, and subsequently the surrogate is used for limit state evaluations for adaptive
improvement of ISD. Wang and Song [35] used cross-entropy-based adaptive importance
sampling for high-dimensional reliability analysis. Here, ISD is obtained by minimizing
the KL divergence between a von Mises–Fisher mixture model and near optimal ISD.

In all the literature discussed above, while employing IS, determination of the ap-
propriate ISD is considered to be the challenge. The probabilistic distributions and the
corresponding parameters of the original random variables, however, are assumed to be
known [22,36]. However, this is not necessarily always true. Here, we propose a frame-
work to employ the importance sampling method for separable failure boundary of the
form Capacity (C)–Response (R) using only scarce realizations of the R and C where no
information about their distributions is known. We make use of tail-modeling techniques
to approximate the cumulative distribution function (CDF) of the capacity and response.
These approximations are used to locate a Gaussian ISD whose standard deviation is
empirically chosen. Sample realizations drawn from the ISD are used to compute the
failure probability. During this computation, kernel density estimates of PDF of response
are utilized along with CDF approximation of capacity. Furthermore, bootstrap samples
are generated from the original scarce samples of R and C. The proposed framework
is applied on the bootstrap samples to obtain the confidence bounds for the reliability
estimate. Reliability estimates obtained from scarce samples using the proposed approach
are used to construct a surrogate of reliability index which is used for constraint evaluation
during RBDO.

The rest of the paper is organized as follows. Section 2 presents the theoretical
background of importance sampling in the context of reliability estimation. In Section 3,
the methodology is discussed, and in later sections we present the results from the proposed
method when applied to test cases and RBDO applications including a multi-objective opti-
mization (MOO) application. Appendices A and B are used to provide short descriptions
of kernel density estimation (KDE) and the third-order polynomial normal transformation
(TPNT) technique.
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2. Reliability Estimation Using Importance Sampling for Separable Limit States

In structural engineering, limit states are useful in prescribing performance require-
ments of a design. Thus, a limit state decomposes the design space of a system into safe
and failure regions. Violation of a limit state is considered to be failure. and reliability is a
measure of probability of such violations. For most structural problems, limit state can be
expressed as the difference of Capacity (C) and Response (R), as presented in Equation (1),
where R and C are functions of independent sets of random variables. This is referred to as
a separable limit state [21,22,37], and we consider such limit states in this work.

G(C, R) = C− R (1)

The system is said to fail when C ≤ R and safe when C > R. When either capacity or
response or both are functions of variables that are random, a probabilistic measure such as
the probability of failure is as presented in Equation (2)

p f =
∫∫

G≤0

fCR(c, r) dc dr (2)

where fCR is the joint probability distribution function (PDF), and G ≤ 0 is the failure
region. In the case of separable limit state, the joint PDF of capacity and response can be
decomposed into the product of the marginal PDFs of capacity and response as presented
in Equation (3)

p f =

∞∫
−∞

c≤r∫
−∞

fC(c) fR(r) dc dr (3)

p f =

∞∫
−∞

FC(x) fR(x) dx (4)

where fC(c) and fR(r) are the marginal density functions of C and R, respectively.
Equation (3) can also be written in a single integral form as presented in Equation (4).
Here, FC(c) is the cumulative distribution function (CDF) of capacity. For low failure prob-
abilities of order 10−4, to obtain a Monte Carlo estimate with 10% coefficient of variation,
the sample size required is 100× 1

p f
= 106. Generating 106 instances of expensive computer

models is not feasible. To reduce such computational burden, importance sampling is used
as in Equation (5).

p f IS =

∞∫
−∞

FC(x) fR(x)
hx(x)

hx(x) dx (5)

where hx(x) is the alternate sampling density, and p f IS is the failure probability com-
puted using the importance sampling approach. It is the expectation of the integrand
FC(x) fR(x)

hx(x) computed with respect to the ISD, hx. Consequently, if x1, x2, . . . , xN is an inde-
pendent identically distributed (i.i.d.) random sample from hx, then the expectation has an
unbiased estimator:

p̂ f IS =
N

∑
i=1

FC(xi) fR(xi)

hx(xi)
, xi ∼ hx (6)

Alternatively, if the marginal distribution of the response ( fR(r)) is integrated in
Equation (3), then the importance sampling estimator of p f would be expressed as:

p̂ f IS =
N

∑
i=1

(1− FR(xi)) fC(xi)

hx(xi)
, xi ∼ hx (7)
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As mentioned in Section 1, in most of the literature, importance sampling is used when
the distributions of R and C are known, and it becomes computationally expensive to draw
samples in the region where tails of R and C overlap. Figure 1 presents a schematic of such
a scenario where the limit state is of the separable form. Here, the region of interest lies in
the tails of the distributions of R and C, and it contains the most probable point (MPP) of
failure. Hence, it is only logical to locate the ISD at the MPP [3,17,22].

Figure 1. Basic C–R problem: a schematic of importance sampling.

Figure 1 depicts a Gaussian ISD for which MPP serves as the mean of the distribution
and is usually found by solving a constrained optimization problem. Once the mean
of the ISD is determined, the spread of the distribution needs to be chosen. In order to
have a finite variance for the importance sampling estimator, the ISD should not have a
lighter tail than the original distribution [38]. In the literature [22,23], using the same
co-variance matrix and sometimes using strictly the diagonal elements of the co-variance
matrix of the original distribution is suggested. This has been shown to work for a range
of possible limit states. However, sometimes a designer does not necessarily know the
original distributions of input variables but has only a few realizations of R and C either
through expensive computer simulations or physical experiments. Generally, response
is considered to be the source of randomness since it is a measured quantity. However,
capacity can also be a random variable. For instance, an example of capacity is yield
strength which is a measured quantity. We know that it is random and hence modeled
using probability distributions [39,40]. Other examples of capacity that are considered
to be random include: member capacity under seismic loading [41], maximum flow
capacity in measuring hydraulic reliability of water distribution system [42], and material
fatigue properties [43,44].

In this work, we first characterize the distributions of R and C from limited sam-
ples and use the concept of importance sampling to estimate low failure probabilities.
A Gaussian distribution is chosen as the ISD which is fully described by its two parameters,
the mean and variance. Section 3 describes the procedure employed to identify the param-
eters of ISD. In the proposed framework, to demonstrate the methodology, distribution
information of original input random variables is used only to generate the initial limited
samples. However, the distribution information is not utilized anywhere afterwards.
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3. Identifying Parameters of Gaussian ISD

Figure 2 presents an example scenario [23] of a separable limit state where the re-
sponse and capacity follow normal distributions. It can be observed that the functional
FC fR integrated in Equation (4) is maximum at the point (x ∼ 11.55), near the point of
intersection between the PDF of response and the CDF of capacity, i.e., fR(x) = FC(x).
In importance sampling, MPP is used to locate the ISD to maximize sampling of the failure
probability content. Hence, it is only logical to define this point of intersection as the MPP
and use it as the mean of Gaussian ISD.

Figure 2. Probabilistic view of MPP for a separable limit state scenario.

This point can be anywhere within the bounds of capacity and response. In high-
reliability scenarios, it is located at the tails of one of the distributions or both, so we need
to extrapolate into the tails of R and C. The available PDF approximation methods capture
the central part of the distribution better than the tails, whereas the main focus of the tail
modeling techniques applied for CDF estimation is at the tails of the distribution. Hence,
we can reduce the errors in finding the MPP by using the intersection of 1− FR and FC
instead of the intersection point of the curves fR and FC. Here, 1− FR is the complementary
CDF of R. It is to be noted that the suitability of such a modification has been tested for
only uni-modal type response. For multi-modal response, using a single MPP will only
capture partial failure region. However, the approach can be extended by using a mixture of
Gaussian distributions by using a summed failure probability integral as described in [45].
Algorithm 1 presents the bracketing procedure followed in the current work to find the
MPP, while the same process is visually presented in Figure 3.

In Steps 3 and 6 of Algorithm 1, it is stated that the CDF approximations of capacity (F̂C)
and response (F̂R) are obtained through a TPNT technique (details provided in Appendix B);
however, it is an independent block in the proposed approach and hence can be replaced by
any other suitable technique based on user discretion. In effect, the MPP finding problem
reduces to finding the zeroes of the function F̂C(x) − (1− F̂R(x)). Hence, root finding
algorithms can also be applied to find the MPP. However, it is advised to use derivative-free
approaches to avoid numerical issues.
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Algorithm 1 Finding µh.

1: Obtain samples of response r = {r1, r2, . . . , rM} and capacity c = {c1, c2, . . . , cN} as in
Figure 3a.

2: for i = 1, 2, . . . , M do
3: F̂C(ri), F̂R(ri)← TPNT approximations of CDF of response and capacity at response

sample r.
4: Obtain point A in Figure 3b←maximum of rx = {ri|F̂C(ri)− (1− F̂R(ri)) < 0}.
5: for i = 1, 2, . . . , N do
6: F̂C(ci), F̂R(ci)← TPNT approximations of CDF of response and capacity at capacity

sample c.
7: Obtain point B in Figure 3c←minimum of cx = {ci|F̂C(ci)− (1− F̂R(ci)) > 0}.
8: Generate a set of evenly spaced points x = {xi : i = 1, 2, . . . , 100} between points A

and B.
9: Obtain mean of ISD, µh ←maximum of x = {xi|F̂C(xi)− (1− F̂R(xi)) < 0}. (Alterna-

tively, minimum of x = {xi|F̂C(xi)− (1− F̂R(xi)) > 0} can also be used.)

(a) (b)

(c) (d)

Figure 3. Procedure for identifying mean of Gaussian ISD (µh). (a) Scarce samples of R and C.
(b) Finding point A using response sample ri as per Step 4 in Algorithm 1. (c) Finding point B using
capacity sample ci as per Step 7 in Algorithm 1. (d) µh identified between points A and B as per
Step 9 in Algorithm 1.

In very low failure probability estimation, the region corresponding to the estimation
is quite small, and it has been observed that aspects such as non-uniqueness of MPP and
non-linearity of the limit states have little effect on the estimation [5]. Similarly, we find
that errors in the MPP estimation have lesser effect on the reliability estimation compared
to a poor choice of standard deviation.

The standard deviation of the ISD determines the importance ascribed to region
around the MPP during sampling. The region of sampling itself could be bounded by
the supports of capacity and response distributions. Different measures of spread could
be applied based on the available knowledge. In this work, a 10% coefficient of variation
(CoV) was used to calculate the standard deviation of the ISD to investigate the effect.
Such a measure was found to be suitable for scarce samples of normally distributed
capacity and response. Different measures of spread were investigated while testing the
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formulation on samples simulated to be belonging to a different distribution. The spread
parameter obtained through Equation (8) was found to be appropriate as such a measure
allows one to restrict 68% percent of importance sample realizations within the means of
capacity and response.

σh =
x̄C − x̄R

2
(8)

where x̄C is the sample mean of capacity, and x̄R is the sample mean of the response.

4. Estimation of Reliability and Its Confidence Bounds

p̂ f =
N

∑
i=1

F̂C(xi) f̂R(xi)

hx(xi)
, xi ∼ hx : N (µh, σ2

h ) (9)

Using the now defined ISD, sample points are drawn at which the PDF of response
and CDF of capacity are obtained to be used in the computation of failure probability as per
Equation (6). However, instead of the actual values, approximations F̂C(xi), f̂R(xi) are used
during the computation as presented in Equation (9). As mentioned earlier, TPNT is used
to approximate CDF (F̂C), whereas for PDF approximation ( f̂R) an adaptive kernel density
estimation method is employed. Both of these methods are distribution-free methods;
however, other suitable methods of approximation [46,47] can also be used. Despite the
accuracy of the method chosen, errors from the approximations are bound to result in loss
of accuracy in the failure probability estimate. Hence, it becomes necessary to quantify the
confidence on the estimate. Here, confidence bounds on the estimate are computed using a
non-parametric bootstrap method.

Figure 4. Schematic representation of bootstrapping.
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The underlying idea of a non-parametric bootstrap method is to recreate samples
from the original sample by sampling with the replacement. The sample size of bootstrap
samples must be the same as the original sample. From each of the bootstrap samples,
a statistical quantity of interest (such as failure probability) can be estimated. By repeating
the process many times (say B times), one can obtain a distribution around the estimate
from the original sample. In the current work, the proposed approach is applied to the
bootstrap samples of C and R to obtain confidence bounds on the reliability estimate. Since
the original samples of C and R are themselves scarce, this process of bootstrapping is
repeated for T (=100) original samples of C and R. Thus, the quantiles of β̂ obtained from T
(=100) iterations are compared with mean and standard deviation of quantiles of β̂boot from
the bootstrap samples. Figure 4 presents a schematic representation of the bootstrapping
procedure followed in the current work.

In order to test the efficacy of the formulation, different tails for capacity and response
were considered. To simulate samples of response and capacity belonging to different tail
types, generalized extreme value (GEV) distribution is used which takes the shape parame-
ter (ξ) as an input along with location (θ) and scale (σ) parameters. Shape parameter or
tail index is a measure of heaviness of tails of a distribution. In GEV distributions, the shape
parameter affects the lower-tail and upper-tail differently. In this study, the parameters are
chosen such that response distributions are positively skewed, while capacity distributions
are negatively skewed to better simulate the difficulties of sampling in tails. Individually,
the shape parameters (ξr, ξc) correspond to three types of tail heaviness: heavy, medium
and light. Here, tail heaviness is considered for the upper-tail of R and the lower-tail
of C. The location parameter of the capacity distribution (θc) is changed while keeping
the response location (θr) stationary so that each combination corresponds to a failure
probability of 10−4. Nine study cases result because of the different combination of tails
possible for both R and C. The parameters for the nine study cases are presented in Table 1.
The distribution parameters are only utilized to generate scarce samples of R and C. It is to
be noted that the GEV distributions used here are continuous over the real line (R) and can
have negative values. Though this does not reflect the real-world scenario, it does not deter
in evaluating the performance of the proposed formulation.

Table 1. GEV distributions parameters of R and C for nine study cases.

Response Tail ξr , θr , σr Capacity Tail ξc, θc, σc

Heavy (−1.8, 1, 33.5)
Heavy (0.2, 1, 0) Medium (−1, 1, 26.5)

Light (−0.52, 1, 26.2)

Heavy (−1.8, 1, 30)
Medium (0, 1, 0) Medium (−1, 1, 10.7)

Light (−0.52, 1, 9.5)

Heavy (−1.8, 1, 30)
Light (−0.12, 1, 0) Medium (−1, 1, 9.4)

Light (−0.52, 1, 6.4)

To capture sampling variability, multiple iterations are carried out, and the procedure
employed for identifying the variability in the estimates and bootstrap bounds is presented
in Algorithm 2.
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Algorithm 2 Confidence bounds using bootstrap.

1: for j = 1, 2, . . . , T do
2: rj×M ∼ GEV(ξr, θr, σr), cj×N ∼ GEV(ξc, θc, σc) ← Generate samples of response

and capacity.
3: p̂ f j ← Estimate failure probability by applying proposed approach to samples rj×M

and cj×N .
4: for i = 1, 2, . . . , B do
5: rbi×M, cbi×N ← Generate bootstrap samples from original samples rj×M and

cj×N .
6: p̂ f bi ← Estimate failure probability by applying proposed approach to bootstrap

samples rbi×M and cbi×N .
7: 25th, 50th, 75th percentiles← { p̂ f }T×1.
8: 25th1×T , 50th1×T , 75th1×T percentiles← { p̂ f b}B×T .

β IS = Φ−1(1− p̂ f ) (10)

The failure probability estimates calculated through Algorithm 2 for each study case
are converted into reliability indices using Equation (10). To facilitate comparison, the es-
timates are divided by the actual reliability index (βa = 3.71). For all nine study cases,
the sample size of response (M) and capacity (N) are considered to be 50. The results
of applying the formulation to each study case are presented in Table 2. Values under
the ‘Original sample’ column represent the percentiles of ratio of the estimates from the
original samples (from Step 7 of Algorithm 2) repeated for T (=100) iterations. Mean and
standard deviation of the percentiles (from Step 8 of Algorithm 2) from the bootstrap
repetitions (B = 100) are presented under the ‘Bootstrap’ column. An accurate estimate
of the reliability index would be indicated with a value of one, and high precision is
indicated by low variability between the percentiles and low standard deviation in the
bootstrap percentiles. It is observed that the estimation is poorer in the case of heavy-tailed
response and medium-tailed capacity and heavy-tailed response and light-tailed capacity.
In both these cases, the failure region is situated further into the tail of the heavy-tailed
response where the scarce sample-based PDF estimation is prone to high errors. In many
instances, the probability density drops to zero prematurely which results in overestimation
of reliability.

Table 2. Both R and C unknown case: percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.96 1.10 (0.26) 1.21 1.42 (0.29) 1.79 2.08 (0.61)
50th 1.06 1.17 (0.29) 1.50 1.54 (0.32) 2.13 2.46 (0.89)
75th 1.22 1.36 (0.31) 1.76 1.77 (0.33) 2.59 3.08 (1.31)

Medium R
25th 0.93 1.03 (0.20) 0.85 0.95 (0.18) 1.01 1.09 (0.21)
50th 1.02 1.09 (0.21) 0.97 1.01 (0.19) 1.13 1.20 (0.25)
75th 1.18 1.25 (0.23) 1.08 1.14 (0.22) 1.30 1.40 (0.32)

Light R
25th 0.91 1.04 (0.23) 0.78 0.85 (0.14) 0.85 0.91 (0.12)
50th 1.01 1.10 (0.25) 0.88 0.91 (0.14) 0.94 0.98 (0.13)
75th 1.18 1.28 (0.26) 0.99 1.04 (0.17) 1.03 1.09 (0.18)

In certain reliability applications, either fR or fC is known, or it is easier to obtain
samples from one of the distributions of R and C. The proposed method is tested for such
scenarios where only one of the distributions is unknown, and during this exercise, the same
combinations of tails for R and C are assumed. Tables 3 and 4 present the results for R
unknown and C unknown cases, respectively, using the proposed approach. From Table 3,
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it is observed that both the accuracy and precision of the estimation improved for most of
the tail combinations compared to both R and C unknown cases. In the case of heavy-tailed
response and medium-tailed and light-tailed capacity, and in addition, medium-tailed
response and light-tailed capacity, the bias in the estimate has increased. This is again
due to the erroneous PDF estimation of heavier-tailed response distribution using a scarce
sample. Lesser bias in both R and C unknown cases is due to the interaction between the
PDF and CDF approximation.

In Table 4, larger errors are observed for heavy-tailed capacity and medium-tailed
response and heavy-tailed capacity and light-tailed response. This suggests that estimat-
ing heavy-tailed distribution further into the tails results in larger errors; this is akin to
the observations made for the R unknown case. Furthermore, the largest errors observed
in the C unknown case are smaller compared to the largest errors from the R unknown
case which suggests that TPNT is a better approximation for CDF of heavy tailed dis-
tributions compared to adaptive KDE used for PDF approximation. To demonstrate
that this is indeed the case, the alternate form of the importance sampling estimator pre-
sented in Equation (7) is used for the R unknown scenario, wherein CDF of the response
distribution is approximated instead of the PDF. Table 5 presents the results, from which
it is observed that the bias has reduced compared to the PDF approximation-based
estimation. However, this also results in underestimation of reliability in the case of
light-tailed response and light-tailed capacity. This is a trade-off between the choice
of adaptive-kernel-based PDF approximation and TPNT-based CDF approximation.
From these observations, it can be surmised that it would be beneficial to know the
heaviness of R and C so that appropriate estimator can be chosen based on the efficacy
of the approximation methods available.

Table 3. R unknown case: failure probability estimated as per Equation (6); (PDF approximation of
R): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 1.02 1.02

(9× 10−3) 1.67 1.71 (0.15) 3.16 3.63 (0.66)

50th 1.03 1.03
(7× 10−3) 1.78 1.72 (0.15) 3.64 3.67 (0.67)

75th 1.04 1.04
(5× 10−3) 1.81 1.79 (0.06) 4.00 4.09 (0.30)

Medium R
25th 0.99 0.99

(2× 10−3) 1.02 1.03 (0.06) 1.25 1.32 (0.20)

50th 1.00 1.00
(2× 10−3) 1.05 1.04 (0.05) 1.37 1.34 (0.20)

75th 1.00 1.00
(2× 10−3) 1.08 1.07 (0.03) 1.45 1.51 (0.14)

Light R
25th 0.99 0.99

(2× 10−3) 0.99 0.99 (0.02) 0.98 1.03 (0.10)

50th 1.00 1.00
(2× 10−3) 1.00 1.00 (0.02) 1.07 1.06 (0.10)

75th 1.00 1.00
(2× 10−3) 1.02 1.01 (0.02) 1.12 1.13 (0.07)

An additional observation is that for one (either R or C) unknown case, the bootstrap
standard deviation is larger when the bias in the estimates from the original samples are
larger and smaller for more accurate cases. Thus, in practice where there is no actual value
to compare with, bootstrap standard deviation can be used to discern the accuracy of the
estimate. However, this does not track well in the case of both R and C unknown.
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Table 4. C unknown case: failure probability estimated as per Equation (6); (CDF approximation of
C): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.96 0.98 (0.10) 0.99 0.99

(6× 10−3) 1.00 1.00
(2× 10−3)

50th 1.03 1.00 (0.08) 1.00 1.00
(3× 10−3) 1.00 1.00

(2× 10−3)

75th 1.06 1.04 (0.05) 1.00 1.00
(2× 10−3) 1.00 1.00

(2× 10−3)

Medium R
25th 0.93 1.13 (0.31) 0.87 0.92 (0.12) 0.96 0.96 (0.05)
50th 1.12 1.24 (0.35) 0.96 0.96 (0.11) 0.99 0.98 (0.04)
75th 1.42 1.52 (0.33) 1.03 1.02 (0.07) 1.00 1.00 (0.02)

Light R
25th 0.91 1.05 (0.23) 0.82 0.90 (0.13) 0.87 0.89 (0.09)
50th 1.03 1.12 (0.25) 0.93 0.95 (0.14) 0.94 0.94 (0.09)
75th 1.20 1.29 (0.29) 1.03 1.06 (0.14) 1.00 0.99 (0.08)

Table 5. R unknown case: failure probability estimated as per Equation (7); (CDF approximation of
R): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.95 0.96 (0.09) 0.95 1.14 (0.29) 0.92 1.13 (0.31)
50th 1.02 0.99 (0.07) 1.13 1.22 (0.31) 1.11 1.23 (0.35)
75th 1.03 1.03 (0.02) 1.43 1.42 (0.30) 1.38 1.51 (0.41)

Medium R
25th 0.99 0.99 (0.02) 0.84 0.89 (0.12) 0.77 0.89 (0.18)
50th 0.99 0.99 (0.01) 0.94 0.94 (0.11) 0.93 0.96 (0.20)

75th 1.00 1.00
(2× 10−3) 1.02 1.01 (0.09) 1.08 1.11 (0.21)

Light R
25th 0.99 0.99

(2× 10−3) 0.91 0.93 (0.07) 0.79 0.84 (0.12)

50th 1.00 1.00
(1× 10−3) 0.97 0.96 (0.06) 0.87 0.90 (0.12)

75th 1.00 1.00
(1× 10−3) 1.00 0.99 (0.04) 0.99 0.98 (0.12)

Tail-Index Estimation

Estimation of tail index is sometimes part of the distribution identification process
and in turn CDF estimation where methods such as Hill estimator [48], Pickands estimator,
Generalized Pareto fits and others are applied. Hill estimator considers k upper order
statistics from a sample to evaluate the tail heaviness. Equation (11) presents the estimator
for a positive sample of size n with the order statistics, X1,n ≤ X2,n ≤ . . . Xn,n.

Hk,n =
1
k

k−1

∑
i=0

log
Xn−i,n

Xn−k,n
(11)

The estimate of tail heaviness is sensitive to the number of order statistics (k) used
and shifting of sample. Different modifications that address such sensitivity issues exist in
the literature [49,50]. As we only require comparing between tails of R and C, especially
when they are very different, obtaining exact estimates is of low priority. Hence, a modified
Hill estimator is used where the sample is mean-shifted, and k is considered to be 10%
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of the sample size. For upper-tail estimation, the largest k values are used and for lower-
tail estimation, the absolute values of the smallest k values are used. The Modified Hill
estimator is applied to assess the tail-heaviness of upper-tail of response and lower-tail of
capacity, and the sample with the heavier tail is chosen for CDF approximation, and thereby
the appropriate form of the estimator is chosen for failure probability estimation.

In both unknown scenarios, the heavy-tailed R and the light-tailed C which showed
the largest deviation from the actual value was chosen to test the tail index estimate-
based improvement on the proposed formulation. Results presented in Table 6 show the
use of tail index estimation improved the estimates. It is to be noted that the modified
Hill estimator was successful in contrasting between heaviness of tails of R and C 81 out
of 100 iterations.

Table 6. Heavy R and light C: Percentiles of β IS/βt from tail estimation-based improved formulation.

Percentile Original Sample Bootstrap
Mean (Std)

25th 0.93 1.19 (0.39)
50th 1.12 1.32 (0.53)
75th 1.39 1.70 (1.02)

5. Reliability Estimation Examples

Based on the flowchart of the proposed approach in Figure 5, benchmark reliability
estimation examples are tested in this section. In all examples, to account for sample
variability 100 iterations are used with samples of size 50 for R and C in each iteration.
For each iteration, bootstrap samples for R and C are generated 100 times.

Figure 5. Flowchart representing failure probability estimation using proposed IS approach.

5.1. Example 1: Concave Limit State 1

This is a concave limit state example taken from [51].

G = 2.62− u2 − 0.15u1
2 (12)

Both u1 and u2 are standard normal variables, and the concave limit state is of the
separable form. Here, R is taken as 0.15u1

2, and C is taken as 2.62− u2.
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Table 7. Concave limit state-1: percentiles of β IS/βt for βt = 2.39.

Percentile Original Sample Bootstrap
Mean (Std)

25th 0.84 0.96 (0.20)
50th 0.96 1.03 (0.20)
75th 1.12 1.20 (0.22)

Note: βt is computed through MCS with 108 samples.

From tail-index estimates in 88 out of 100 iterations, response R is determined to be
heavier-tailed than C which is consistent with the analytical form of R and C. The response
distribution resulting from squaring a standard normal variable is an χ2-distribution with
one degree of freedom. In this case, the χ2-distribution has a heavier tail than the standard
normal distribution.

Table 7 provides the results obtained for a target reliability βt = 2.39. It is observed
that the true value is contained within the percentile bounds (0.84–1.12) from the original
sample estimates, and the bootstrap bounds obtained for each percentile also contain
the true value. The variability of the estimates from the original sample is high, and the
standard deviation computed from the bootstrap estimates is reflective of the variability
presented in the original sample estimates.

5.2. Example 2: Concave Limit State 2

Example 2 is a concave limit state taken from [51].

G = u1
2 − 5u2

2 + 45 (13)

Both u1 and u2 are standard normal variables, and the concave limit state is of the
separable form where R is taken as 5u2

2 and C is taken as u1
2 + 45.

Table 8 presents the numerical results obtained for this example by applying the
proposed IS approach. From tail-index estimates, in 100 out of 100 iterations, response R is
determined to be heavier-tailed than C. Here, both the response and capacity distributions
resulting from squaring standard normal variables u1 and u2 are χ2-distributions. However,
the upper tail of response is heavier because scaling a χ2-distribution results in an increase
of tail heaviness.

Table 8. Concave limit state-2: percentiles of β IS/βt for βt = 2.82.

Percentile Original Sample Bootstrap
Mean (Std)

25th 0.82 0.89 (0.16)
50th 0.90 0.95 (0.16)
75th 1.02 1.08 (0.19)

Note: βt is computed through MCS with 108 samples.

The percentiles of β IS/βt from the original samples show that the target value is con-
tained within the first and third quartile bounds. For all the percentiles, it is observed that
the bootstrap bounds also contain the target reliability.

5.3. Example 3: Roof Truss Example

This example is discussed as a case study for reliability estimation in [45]. The schematic
in Figure 6 presents a roof truss subjected to a uniformly distributed load q which is trans-
formed into the nodal load P = ql

4 . Equation (14) presents the limit state constructed for
perpendicular deflection ∆C at node C as:

G(x) = 0.03− ∆C (14)
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where

∆C =
ql2

2

(
3.81
AcEc

+
1.13
AsEs

)
(15)

Here, Ac and As are areas of cross sections of the concrete reinforced bars and steel bars,
respectively. Similarly, the variables Ec and Es represent the moduli of elasticity, while l
denotes the length. The input variables are considered to be mutually independent random
variables, distributed normally. The parameters of their distributions are as presented in
Table 9.

Figure 6. Schematic of roof truss.

Table 9. Mean and SD of random variables for roof truss example.

Random Variable Mean (SD)

q (N/m) 20,000 (1600)
l (m) 12 (0.24)
As (m2) 9.82× 10−4 (5.89× 10−5)
Ac (m2) 0.04 (0.008)
Es (N/m2) 1.2× 1011 (8.4× 109)

Ec (N/m2) 3× 1010 (2.4× 109)

The limit state is transformed into G(C, R) = C− R form where C = 0.03
q and R = ∆C

q
becomes a function of five random variables that correspond to the geometry and material
properties of the truss members.

Table 10 provides the estimates of reliability and the corresponding bootstrap bounds
for a target reliability of βt = 3.4. It is observed that at each of the percentiles, the bootstrap
bound captures the target reliability. From tail-index estimates, in 77 out of 100 iterations,
response R is determined to be heavier-tailed than C.



Math. Comput. Appl. 2022, 27, 99 16 of 29

Table 10. Roof truss example: percentiles of β IS/βt for βt = 3.4.

Percentile Original Sample Bootstrap
Mean (Std)

25th 0.84 0.94 (0.17)
50th 0.94 1.02 (0.20)
75th 1.07 1.18 (0.29)

Note: βt is computed through MCS with 108 samples.

5.4. Example 4: Propped Cantilever Beam Example

Figure 7 presents the schematic of the example which is taken from [52]. Equation (16)
presents the original limit state for the maximum deflection of the beam νmax against the
maximum allowable deflection νcrit:

G = νmax − νcrit (16)

where deflection of the beam ν(x) is measured as per Equation (17), and for the considered
loading condition, the maximum deflection (νmax) is obtained at x = 0.5528L.

ν(x) =
q0x2

120LEI
(4L3 − 8L2x− 5Lx2 − x3) (17)

where

I =
b f d3 − (b f − tw)(d− 2t f )

3

12
(18)

Figure 7. Propped cantilever beam with triangular distributed loading.

The limit state is modified to convert into G(C, R) = C − R form,where
C(νcrit, E) = νcritE, and R is a function of remaining seven random variables. Mean
and standard deviation (SD) of the normally distributed random variables is presented in
Table 11. The critical displacement νcrit is changed between 4–5 mm to generate three target
reliability situations.
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Table 11. Mean and SD of random variables for propped cantilever beam example.

Random Variable Mean (SD)

q0 (kN/m) 20 (2)
L (m) 6 (0.3)
E (GPa) 210 (10)
d (cm) 25 (0.5)
b f (cm) 25 (0.5)
tw (cm) 2 (0.2)
t f (cm) 2 (0.2)

Note: All random variables follow normal distribution.

Table 12 presents the results obtained from the proposed IS formulation for different
target reliability indices (βt). As the target reliability increases, the variability from both
the original sample estimates and bootstrap sample estimates remain similar.

Table 12. Propped cantilever beam: percentiles of β IS/βt for different νcrit and βt.

νcrit = 4.0 mm , βt = 2.98 νcrit = 4.5 mm , βt = 3.50 νcrit = 5.0 mm , βt = 3.97

Percentiles Original Bootstrap
Mean (Std) Original Bootstrap

Mean (Std) Original Bootstrap
Mean (Std)

25th 0.84 1.03 (0.30) 0.82 0.99 (0.27) 0.81 0.99 (0.30)
50th 0.99 1.13 (0.36) 0.99 1.09 (0.32) 0.96 1.12 (0.39)
75th 1.29 1.31 (0.42) 1.24 1.29 (0.44) 1.26 1.35 (0.52)

Note: βt values are computed through MCS with 108 samples.

6. Application to RBDO Examples

The proposed importance sampling approach is demonstrated on two benchmark
and two real-world RBDO examples. Algorithm 3 delineates the steps followed to
perform RBDO using the proposed approach of reliability estimation. For the benchmark
examples, efficiency between the proposed approach and a crude Monte Carlo approach
is compared using the total number of limit state evaluations which is computed as
Ndoe × Nis for the proposed approach and Ndoe × Nmcs for the MCS-based approach.
For the real-world examples, MCS is used only to validate the optima obtained through
the proposed approach.

Algorithm 3 RBDO using proposed importance sampling approach.

1: d = {d1, d2, . . . , dNdoe} ← Generate a design of experiment (DoE) in design variable
space.

2: for i = 1, 2, . . . , Ndoe do
3: Propagate uncertainty at DoE points.
4: r, c ← Obtain response and capacity samples through simulations or physical

experiments. In the examples, analytical functions are utilized.
5: p̂ f i ← Apply proposed importance sampling formulation to samples r, c.
6: β ISi ← Transform failure probability to reliability index using (10).

7: fîIS ← Construct surrogate model for reliability index using {β ISi} and d.
8: d∗ ← Optimization using fîIS for evaluation of reliability constraint.

6.1. Cantilever Beam Example

This is a standard RBDO example taken from [53]. In this example, the weight of a
cantilever beam (shown in Figure 8) is minimized while considering two failure modes:
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bending stress does not exceed yield strength (19) and the tip displacement does not exceed
the allowable displacement limit of 2.5 in (20).

Gs = σy −
6L
wt

(
X
w

+
Y
t

)
(19)

Gd = D0 −
4L3

Ewt

√(
Y
t2

)2
+

(
X
w2

)2
(20)

The length of the beam (L) and the density are held constant, while the width (w) and
thickness (t) of the beam are allowed to change which transforms the objective function
from weight to area of cross section, A = wt. The horizontal (X) and vertical (Y) loads
along with modulus of elasticity (E) are random variables whose uncertainty characteristics
are presented in Table 13.

Figure 8. Cantilever beam under horizontal and vertical loads.

Table 13. Random variables for cantilever beam example.

Random Variable Mean (SD)

X (lb) 500 (100)
Y (lb) 103 (100)
σy (psi) 4× 104 (2× 103)
E (psi) 2.9× 107 (1.45× 106)

Note: All random variables follow normal distribution.

RBDO of the cantilever beam requires that the failure probability of both the limits
states does not exceed 1.35× 10−3 which translates to a target reliability index βt ≥ 3. Thus,
the optimization is formulated as:

min
w,t

A = wt

s.t. g1 = Φ−1(1− Pr(Gs ≤ 0)) ≥ 3

g2 = Φ−1(1− Pr(Gd ≤ 0)) ≥ 3

(21)

As stated in Algorithm 3, a DoE of size (Ndoe = 40) is created in d = (w, t) space
using latin hypercube sampling (LHS). Additionally, four corner points are added to the
DoE. At each design point (di), samples of response and capacity for both limit states are
obtained by simulating uncertainty as per Table 13, considering a sample size of Nis = 50.
For limit state Gs, σy is considered as capacity, while the rest of the equation is considered
as a response. Similarly, for limit state Gd, D0 × E is taken as capacity by regrouping the
random variables in the limit state function to convert it into a separable form [54]. Using
these samples, failure probability estimates for both limit states are obtained through the
proposed approach. A surrogate model for reliability index β is constructed, and this
surrogate is used for constraint evaluation during optimization.

In a similar fashion, MCS-based failure probability estimates are also obtained at
the design points using samples of size Nmcs = 106. A surrogate model using the MCS
estimates is constructed for a reliability index, and optimization is carried out. At design
points that are closer to the lower and upper bounds, failure probability estimates could be
either zeros or ones. These estimates when converted into reliability indices become −∞
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and ∞; hence, these are modified during surrogate construction. These singularities are
more common in the case of MCS estimation compared to IS estimation.

The optima obtained from both MCS and IS are compared in Table 14. As the cost of the
knowledge of random variables is not quantified, computational cost is only compared with
MCS. Additionally, different surrogate choices, such as PRS, RBF, Kriging and weighted
average surrogate (WAS), were considered for fî construction, and the optima obtained
by using WAS model are presented. The accuracy of the surrogate for both constraints is
evaluated using a generalized mean square error (GMSE) metric. GMSE for constraint g1
using IS-based estimates is reported as 0.91 (mean of reliability estimates = 2.21), whereas
the error from the MCS-based surrogate is 0.09 (mean of reliability estimates = 1.97).
For constraint g2, GMSE (vs. mean) is reported as 0.70 (vs. 1.98) for the IS surrogate and
0.12 (vs. 1.41) for the MCS surrogate.

To validate the results, at the optima, a reliability index is calculated using MCS with
sample size of 107 which is also presented in the Table 14. It is observed that the surrogate
from IS estimates has less global accuracy. However, reliability indices obtained at the
optima using MCS (βMCS at d∗) suggest that the surrogate is reasonably approximated at
the constraint boundaries. The optima obtained from IS and MCS are very close, but the
computational savings are hugely in favour of IS (50 vs. 106).

Table 14. RBDO results of cantilever beam example.

Surrogate Model
for β Constraints

Reliability
Estimation Optima (d∗)

Objective
Function Value β̂ at d∗ βMCS at d∗

w (in) t (in) A (in2) g1 g2 g1 g2

WAS IS 2.59 3.74 9.69 3.00 3.64 3.25 3.69
MCS 2.59 3.66 9.50 3.00 3.44 2.95 3.39

6.2. Bracket Structure Example

This is originally from [55] where a bracket structure is subjected to a tip load (P) in
addition to its own weight due to gravity (g) as presented in Figure 9. The weight of the
bracket structure is optimized while considering two failure modes:

(i) Maximum bending stress of beam CD at point B (σB) does not exceed its yield strength
( fy),

(ii) Maximum axial load on beam AB (FAB) does not exceed the Euler critical buckling
load (Fbuckling).

Figure 9. Bracket structure subjected to a tip load.
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Equations (22) and (23) present the limit states as:

GCD = fy − σB, where (22a)

σB =
6MB

wCDt2 (22b)

MB =
PL
3

+
ρgwCDtL2

18
(22c)

GAB = Fbuckling − FAB, where (23a)

Fbuckling =
π2Etw3

AB9 sin θ2

48L2 (23b)

FAB =
1

cos θ

(
3P
2

+
3ρgwCDtL

4

)
(23c)

During RBDO of the bracket structure, the target reliability index for both limit states is
β ≥ 2, and the design parameters are means of the geometrical parameters of the structure:
width of CD (µwCD ), width of AB (µwAB) and thickness of AB and CD (µt) which are
bounded between 50 mm and 300 mm. The uncertainty characteristics of the random
variables is presented in Table 15. Thus, the RBDO is formulated as:

min
wCD ,wAB ,t

C = µρµtµL

(
4
√

3
9

µwAB + µwCD

)
s.t. g1 = Φ−1(1− Pr(GCD ≤ 0)) ≥ 2

g2 = Φ−1(1− Pr(GAB ≤ 0)) ≥ 2

50 ≤ µwCD , µwAB , µt ≤ 300 (in mm)

(24)

Table 15. Random variables for bracket structure example.

Type Variable Distribution Mean C.o.V

Random P (kN) Gumbel 100 15%
E (GPa) Gumbel 200 8%
fy (MPa) Lognormal 225 8%
ρ (kg ·m−3) Weibull 7860 10%
L (m) Gaussian 5 5%

Design wAB (mm) Gaussian µwAB 5%
wCD (mm) Gaussian µwCD 5%
t (mm) Gaussian µt 5%

The steps enumerated in Algorithm 3 are followed using a DoE of size (Ndoe = 60),
and scarce sample sizes of R and C during the IS approach are considered as Nis = 75, while
Nmcs = 106 realizations are used in MCS. The RBDO results are presented in Table 16 which
has the same format as the first example. GMSE (vs. mean) for constraint g1 using IS-based
estimates is reported as 0.58 (1.37), whereas the error from the MCS-based surrogate is
0.24 (1.02). For constraint g2, GMSE (vs. mean) is reported as 0.97 (vs. 3.72) for the IS
surrogate and 0.30 (vs. 3.08) for the MCS surrogate. It is observed that the IS estimate-based
surrogate has less global accuracy; however, the MCS-based reliability indices computed at
the optima show that it approximates reasonably well near the constraint boundaries. It is
to be noted that in both engineering examples, we assume that both R and C are unknown.
Any knowledge of the uncertainty characteristics of either R or C will only improve the
accuracy of the reliability estimates.
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Table 16. RBDO results of bracket structure example.

Surrogate Model
for β Constraints

Reliability
Estimation Optima (d∗)

Objective
Function Value β̂ at d∗ βMCS at d∗

wAB (mm) wCD (mm) t (mm) Weight (kg) g1 g2 g1 g2

WAS IS 58 89 300 1576 2.00 2.00 2.59 2.87
MCS 62 77 300 1474 2.00 2.00 2.02 3.55

6.3. Torque Arm Example

This example presents RBDO of torque arm where the mass of the component is to be
minimized adhering to a probabilistic constraint on the allowable stress. Unlike previous
examples, there is no analytical expression available for limit state evaluation in this case. It is
a shape optimization problem originally from Bennett and Botkin [56]. Researchers have used
it as a benchmark example for reliability estimation [52,57]. Rahman and Wei [58] perform
RBDO where a constant allowable stress limit is considered.

In the current study, seven design variables (see Figure 10) as per [59] are considered
for altering the shape of the torque arm. Figure 11 presents the base design of the
torque arm around which the optimization is to be performed. Here, a horizontal load
(Fx = −2789 N) and a vertical load (Fy = 5066 N) are applied at the right hole while
the left hole is fixed. The torque arm has modulus of elasticity E = 207× 105 N · cm−2,
density ρ = 7.850× 10−3 kg · cm−3 and Poisson’s ratio ν = 0.3.

Figure 10. Design variables used to modify the shape of the torque arm [59].

Figure 11. Loading and boundary conditions with base design parameter values (in cm) [59].
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Equation (25) presents the limit state equation for the torque arm.

G = σmax(di, Fx, Fy)− σall (25)

where σmax is the maximum von Mises stress developed in the torque arm, and σall is the
allowable stress limit. Since there is no analytical expression that relates the design variables
with the response σmax, finite-element analysis is used to compute the stresses developed in
the torque arm for a given loading condition. A MATLAB finite-element toolbox developed
by CALFEM [60] is used for this purpose. The thickness of the finite-elements in the mesh
is considered to be 0.3 cm. At the end of each finite-element analysis, the maximum of the
stresses is used as σmax in Equation (25).

For RBDO, the design variables (d1 to d7), loads (Fx and Fy) and the allowable stress
(σall) are considered to be uncertain. Each design point (di) is considered to be normally
distributed about itself with a coefficient of variation of 10%. The uncertainty characteristics
of the remaining random variables is presented in Table 17.

Table 17. Mean and SD of random variables in torque arm example.

Random Variable Distribution Type Mean; SD

Fx(N) Normal −2789; 278.9
Fy(N) Normal 5066; 506.6
σall(MPa) Lognormal 800; 80

Equation (26) presents the RBDO formulation of the torque arm where a target relia-
bility index of three is considered.

min
{d1,...,d7}

Mass

s.t. g = Φ−1(1− Pr(G ≤ 0)) ≥ 3
(26)

As per Algorithm 3, a DoE of size (Ndoe = 200) is generated where reliability is
estimated using an IS approach. Sample sizes of R = σmax and C = σall during IS approach
are considered as Nis = 100. An RBF-based surrogate is constructed using IS-based
reliability estimates. The error (GMSE vs. range) for the RBF surrogate of β is found
to be 6% which indicates a good fit. This surrogate is used for constraint (g) evaluation
during optimization.

The stress contour of the torque arm design obtained as a result of the optimization
is presented in Figure 12. Here, mean values for design parameters and mean loading
condition are considered. The maximum von Mises stress is observed to be 523.92 MPa for
the optimum design. The optimal mass of the torque arm is 0.801 kg. It can be observed
that the mass is distributed to meet the target reliability. An MCS (with 105 sample size) is
used to validate the reliability of RBDO optima obtained from the IS approach, and it is
observed that βMCS = 3.00. For the Monte Carlo simulation of 105 simulations, it took 8.7 h
using parallel computing toolbox of MATLAB on a system with the following specifications:
Intel Xeon 10 Core 2.20 GHz 64 bit processor, with 32GB RAM. Table 18 presents the design
variable bounds and the optimum design obtained from RBDO.

Though the errors in the individual reliability estimations are quantified via bootstrap,
they were not propagated into the surrogate model during RBDO. Using the surrogate
model for reliability index evaluation instead of direct evaluation enabled the smoothing of
noise from the IS-based estimation which leads to better convergence during optimization.
From MCS validation at the optima, it is observed that the proposed approach results in
heavier but safer designs. Further analysis is required to understand the error propagation
from different stages of the proposed approach.
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Figure 12. Stress (von Mises stress in MPa) contour of optimum design with mean design parameters
(d∗) and loading condition of Fx = −2789 N and Fy = 5066 N.

Table 18. Design variable bounds and optimum design of torque arm (in cm).

DV dL dU
d∗

(Optimum)

d1 1.80 3.20 2.15
d2 1.25 1.60 1.28
d3 1.20 4.60 1.59
d4 −0.10 0.40 −0.09
d5 −0.30 0.30 0.30
d6 −0.90 0.80 0.30
d7 0.40 1.80 0.54

Figure 13. Pareto optimal front corresponding to different values of reliability index estimated
through polynomial response surface (PRS).

6.4. Car Side-Impact Problem—A Multi-Objective Reliability-Based Design Optimization
(MORBDO) Example

We demonstrate the proposed methodology on an MORBDO example taken from [61].
In this example, the objective is to minimize the weight ( f1) of a car as well as the average
rib deflection ( f2) during a crash. A car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The effect of the side-impact on
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a dummy in terms of head injury criteria, load in the abdomen, pubic symphysis force,
viscous criterion, and rib deflections at the upper, middle and lower rib locations are
considered as constraints. The MORBDO formulation is made up of seven uncertain design
variables (x1, . . . , x7) and four random variables (p1, . . . , p4). Equation (27) presents the
optimization formulation of the car side-impact problem:

min
µx

f1 = f (µx, µp)

min
µx

f2 =
g2(µx, µp) + g3(µx, µp) + g4(µx, µp)

3

s.t. Φ−1
(

1− Pr
(

gi(x,p)
)
≤ bi

)
≥ βt,

i = 1, . . . , 10.

(27)

where

g1(x,p) ≡ Abdomen load ≤ 1 kN

g2(x,p) ≡ Upper rib deflection ≤ 32 mm

g3(x,p) ≡Middle rib deflection ≤ 32 mm

g4(x,p) ≡ Lower rib deflection ≤ 32 mm

g5(x,p) ≡ Upper viscous criteria ≤ 0.32 m/s

g6(x,p) ≡Middle viscous criteria ≤ 0.32 m/s

g7(x,p) ≡ Lower viscous criteria ≤ 0.32 m/s

g8(x,p) ≡ Pubic symphysis force ≤ 4.0 kN

g9(x,p) ≡ Velocity of B-pillar at middle point

≤ 10 mm/ms

g10(x,p) ≡ Velocity of front door at B-pillar

≤ 15.7 mm/ms;

1.0 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.0, 0.5 ≤ x3 ≤ 1.5,

0.5 ≤ x4 ≤ 1.5, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2,

0.4 ≤ x7 ≤ 1.2, µp1 = 0.345, µp2 = 0.192, µp3 = µp4 = 0.

Analytical expressions of the objective functions and constraints as well as the physical
descriptions of the design variables (x1− x7), and random variables (p1− p4) are presented
in Appendix C.

In order to solve the MORBDO problem as per Algorithm 3, a DoE of size (Ndoe = 200)
is generated within the design bounds where reliability of the ten constraints (g1, . . . , g10) is
estimated using the IS approach. In this example, the number of design variables is seven;
hence, 27 = 128 corner points have been sampled. Next, we performed a space-filling
sampling using LHS. In each dimension, we sampled 10 points (in total 7× 10 = 70) using
LHS design as per a thumb rule in DoE sampling [62]. Without loss of generalization, we
added two to make a round sampling number. Sample sizes of response and capacity during
IS are considered as Nis = 50. PRS surrogate for reliability indices of the ten constraints
is constructed using the IS-based estimates. In order to improve the surrogate accuracy,
an additional DoE of size 200 is generated within adjusted design bounds. The final
surrogate errors (GMSE vs. range) for all constraints is found to range between 3.76% and
8.38%. Using these surrogates for constraint evaluation, the MOO problem presented in
Equation (27) is solved using NSGA-II [63].

The Pareto optimal front corresponding to the different target reliability indices
(βt = [2.5, 3.0, 3.5]) along with the deterministic Pareto optimal front is presented in
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Figure 13. The NSGA-II algorithm is applied for the four instances using the population
size of 200 for 100 generations. The GA uses the following parameters: number of
offspring is 50, probability (pc) of simulated binary crossover (SBX) is 0.9, crossover
parameter (ηc) is 20, probability of mutation (pm) is 0.9, and the mutation parameter (ηm)
is 50.

It is evident from Figure 13 that as the targeted reliability increases, the respective
reliable Pareto optimal front shifts inside the feasible criterion space and away from the
deterministic Pareto optimal front to ensure more reliable solutions. The Pareto solutions
were further validated using MCS (Nmcs = 106), and all the solutions were found to meet
the target reliability.

7. Conclusions

A scarce sample-based importance sampling approach to estimate reliability is
proposed when there is little or no information about the uncertainty characteristics
of the random variables involved. The proposed formulation was tested on different
tail heaviness for R and C distributions. In the case of one of the distributions being
heavy-tailed, a tail-index estimate-based improvement to choose between PDF and CDF
approximation was employed and shown to improve the accuracy (50th percentile by
1.9 times). Confidence bounds on the reliability estimate obtained through the bootstrap
procedure have been shown to be indicative of the accuracy of the estimate. The proposed
IS approach has been applied for reliability estimation and RBDO examples and found
to be effective in terms of computational savings (50× 44 = 2200 for cantilever beam and
75× 60 = 4500 for bracket structure example) as compared to MCS where the sample size
for each reliability estimate was 106. The approach is demonstrated on a non-analytical
RBDO example which yielded a design that met the target reliability index (validated
by MCS). The proposed approach has also been demonstrated on the car side-impact
problem which is a multi-objective reliability-based design optimization example.

While the tail-index estimate-based alternative reduces the errors from the approxima-
tion, establishing the superiority of CDF approximation versus PDF approximation was
only achieved through post-analysis of results for the specific methods used in this work.
Future work could include incorporating region-wise best methods for both PDF and CDF
approximation, using a suite of methods assessed through cross-validation errors. Active
learning approaches could be employed during optimization to further reduce the number
of design points, thereby reducing the number of reliability estimations required to obtain
the optima.
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Appendix A. Kernel Density Estimation (KDE)

Let (x1, x2, ..., xn) be an i.i.d. sample from a distribution with a PDF ( f ), then the
kernel density estimate of f is given as

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(A1)

where h is a smoothing parameter called bandwidth, n is the sample size, and K(.) is
a kernel, which is non-negative, integrates to one and is centered at zero. Different
kernel functions can be used, such as normal, uniform, Epanechnikov, triangle and
others, and the bandwidth is selected based on the sample data chosen. The choice of
the bandwidth influences the variance and the bias of the estimator. The performance of
the kernel density estimator is more dependent on the choice of the bandwidth rather
than kernel choice. Despite being the most popular non-parametric approach to density
estimation, there are some implementation issues, such as bandwidth selection, local
adaptivity and boundary bias. While KDE works well for data following a normal
distribution, it performs poorly while estimating heavy-tailed distributions, especially
in the tail region which is our region of interest, hence adaptive KDE proposed by [64] is
chosen. The Matlab® implementation of adaptive KDE for 1D [65] was employed in the
current work for PDF approximation.

Appendix B. Third-Order Polynomial Normal Transformation Technique (TPNT)

Hong and Lind [66] proposed this method of approximating a CDF where given the
order statistics ζ1 ≤ ζ2 ≤ . . . ≤ ζN obtained from a sample realization of a random variable
Z, through “sample rule” the fractiles are constrained in the following manner:

{ζi, FZ(ζi)} = {ζi,
i

N + 1
}, i = 1, 2, . . . , N (A2)

where FZ(.) is the cumulative distribution function of Z. In this method, a third-order
polynomial relationship between ζ and a normal transformation of FZ(ζ) is assumed as
presented in Equation (A3)

ζ =
3

∑
k=0

akηk (A3)

where
η = Φ−1(FZ(ζ)) (A4)

Here, Φ−1(.) is the inverse of the standard normal distribution function. The coeffi-
cients of the polynomial in Equation (A3) are found through least squares minimization of
the error, ε:

ε = ∑
j∈Js

(
ζ j −

3

∑
k=0

ak(ηj)
k

)
(A5)

where Js is a set of data points chosen for the parameter estimation which is usually the
same as sample size N. Two constraints a2

2 − 3a1a3 > 0, a3 > 0 are imposed to ensure
monotonicity in the third-order polynomial curve.

At a new fractile ζ0, the probability FZ(ζ0) is determined through Φ(η0), where η0 is
obtained by solving Equation (A3), with substitution of ζ by ζ0.
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Appendix C. Car Side-Impact Problem

The analytical expression of the objective function and constraint functions are given
below:

f1(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4+

1.78x5 + 0.00001x6 + 2.73x7,

g1(x,p) = 1.16− 0.3717x2x4 − 0.00931x2 p3−
0.484x3 p2 + 0.01343x6 p3,

g2(x,p) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5 p3

+ 6.63x6x9 − 7.7x7x8 + 0.32p2 p3,

g3(x,p) = 33.86 + 2.95x3 + 0.1792p3 − 5.057x1x2−
11x2 p1 − 0.0215x5 p3 − 9.98x7 p1 + 22p1 p2,

g4(x,p) = 46.36− 9.9x2 − 12.9x1 p1 + 0.1107x3 p3,

g5(x,p) = 0.261− 0.0159x1x2 − 0.188x1 p1 − 0.019x2x7+

0.0144x3x5 + 0.0008757x5 p3 + 0.08045x6x9+

0.00139p1 p4 + 0.00001575p3 p4,

g6(x,p) = 0.214 + 0.00817x5 − 0.131x1 p1 − 0.0704x1 p2+

0.03099x2x6 − 0.018x2x7 + 0.0208x3 p1

+ 0.121x3 p2 − 0.00364x5x6 + 0.0007715x5 p3−
0.0005354x6 p3 + 0.00121p1 p4+

0.00184x9 p3 − 0.018x2x2,

g7(x,p) = 0.74− 0.61x2 − 0.163x3 p1 + 0.001232x3 p3−
0.166x7 p2 + 0.227x2x2,

g8(x,p) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4 p3+

0.009325x6 p3 + 0.000191p4 p4,

g9(x,p) = 10.58− 0.674x1x2 − 1.95x2 p1 + 0.02054x3 p3−
0.0198x4 p3 + 0.028x6 p3,

g10(x,p) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432p2 p3−
0.0556p2 p4 − 0.000786p4 p4.

Description of the design variables (x1 − x7) and random variables (p1 − p4) (standard
deviation in bracket)

x1 = Thickness of B-Pillar inner (0.03),

x2 = Thickness of B-Pillar reinforcement (0.03),

x3 = Thickness of floor side inner (0.03),

x4 = Thickness of cross members (0.03),

x5 = Thickness of door beam (0.05),

x6 = Thickness of door belt line reinforcement (0.03),

x7 = Thickness of roof rail (0.03),

p1 = Material of B-Pillar inner (0.006),

p2 = Material of floor side inner (0.006),

p3 = Barrier height (10),

p4 = Barrier hitting position (10).
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