SCARE of Secret Ciphers with SPN Structures

Matthieu Rivain

Joint work with Thomas Roche (ANSSI)

ASIACRYPT 2013 - December 3rd

Outline

- 1 Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- **4** SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

Outline

- 1 Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- **4** SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

Introduction

SCARE: Side-Channel Analysis for Reverse Engineering

- private code recovery
- secret crypto design recovery

Introduction

SCARE: Side-Channel Analysis for Reverse Engineering

- private code recovery
- secret crypto design recovery

 This paper

Introduction

SCARE: Side-Channel Analysis for Reverse Engineering

- private code recovery
- secret crypto design recovery

 This paper
- usual in mobile SIM / pay-TV cards

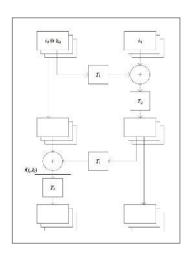
Previous works

[Novak. ACNS 2003]

- secret instance of the GSM A3/A8 algorithm
- side-channel assumption: detection of colliding s-boxes
- recovery of one secret s-box

[Clavier. ePrint 2004/ICISS 2007]

 recovery of the two s-boxes and the secret key



Limitations

- Target: specific cipher structure
- Assumption: idealized leakage model
 - ⇒ perfect collision detection

Our work

- Consider a generic class of ciphers:
 Substitution-Permutation Networks (SPN)
- Relax the idealized leakage assumption
 - consider noisy leakages
 - experiments in a practical leakage model

Further works

[Daudigny et al. ACNS 2005] (DES)

[Réal et al. CARDIS 2008] (hardware Feistel)

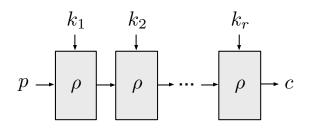
[Guilley et al. LATINCRYPT 2010] (stream ciphers)

[Clavier et al. INDOCRYPT 2013] (modified AES)

Outline

- Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- 4 SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

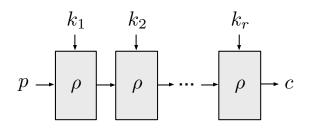
Substitution-Permutation Networks



We consider two types of round functions:

- Classical SPN structures
- Feistel structures

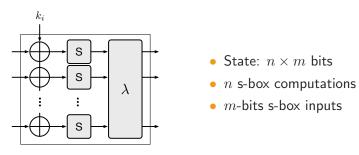
Substitution-Permutation Networks



We consider two types of round functions:

- Classical SPN structures ← This talk
- Feistel structures

Classical SPN Structure



- State: $n \times m$ bits

$$\lambda : \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{with } a_{i,j} \in \mathbb{F}_{2^m}$$

Outline

- Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- **4** SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

Attacker Model

Basic assumption:

Colliding s-box computations can be detected from the side-channel leakage.

Specifically, we assume that the attacker is able to

- (i) identify the s-box computations in the side-channel leakage trace and extract the leakage corresponding to each s-box computation,
- (ii) decide whether two s-box computations $y_1 \leftarrow S(x_1)$ and $y_2 \leftarrow S(x_2)$ are such that $x_1 = x_2$ or not from their respective leakages.

One cipher has several representations

1. Change the s-box: $S'(x) = S(x \oplus \delta)$ and the round keys: $k_i' = (k_{i,1} \oplus \delta, k_{i,2} \oplus \delta, \dots, k_{i,n} \oplus \delta)$

One cipher has several representations

- 1. Change the s-box: $S'(x) = S(x \oplus \delta)$ and the round keys: $k_i' = (k_{i,1} \oplus \delta, k_{i,2} \oplus \delta, \dots, k_{i,n} \oplus \delta)$
- 2. Change the s-box: $S'(x) = \alpha \cdot S(x)$ and the matrix coefficients: $a'_{i,j} = \frac{a_{i,j}}{\alpha}$

One cipher has several representations

- 1. Change the s-box: $S'(x) = S(x \oplus \delta)$ and the round keys: $k_i' = (k_{i,1} \oplus \delta, k_{i,2} \oplus \delta, \dots, k_{i,n} \oplus \delta)$
- 2. Change the s-box: $S'(x) = \alpha \cdot S(x)$ and the matrix coefficients: $a'_{i,j} = \frac{a_{i,j}}{\alpha}$

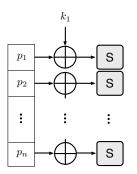
The attack can recover the cipher up to equivalent representations

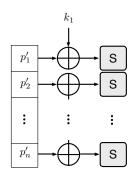
One cipher has several representations

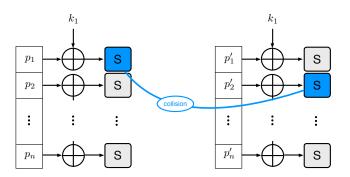
- 1. Change the s-box: $S'(x) = S(x \oplus \delta)$ and the round keys: $k_i' = (k_{i,1} \oplus \delta, k_{i,2} \oplus \delta, \dots, k_{i,n} \oplus \delta)$
- 2. Change the s-box: $S'(x) = \alpha \cdot S(x)$ and the matrix coefficients: $a'_{i,j} = \frac{a_{i,j}}{\alpha}$

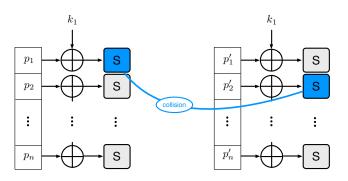
The attack can recover the cipher up to equivalent representations

We fix a representation by setting $k_{1,1} = 0$ and $a_{1,1} = 1$

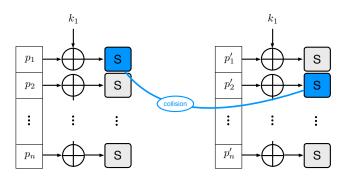




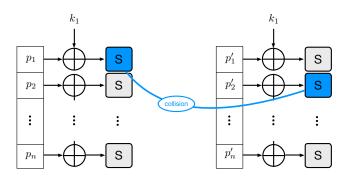




$$p_1 \oplus k_{1,1} = p_2' \oplus k_{1,2}$$



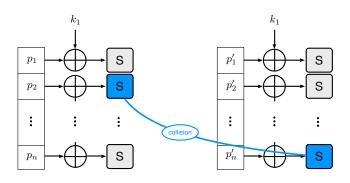
$$p_1 \oplus k_{1,1} = p_2' \oplus \mathbf{k}_{1,2}$$



$$p_1 \oplus k_{1,1} = p'_2 \oplus k_{1,2} \quad \Rightarrow \quad k_{1,2} = p_1 \oplus p'_2 \oplus k_{1,1}$$

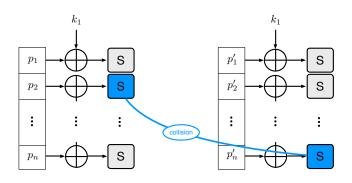


$$p_1 \oplus k_{1,1} = p'_2 \oplus k_{1,2} \quad \Rightarrow \quad k_{1,2} = p_1 \oplus p'_2 \oplus k_{1,1}$$



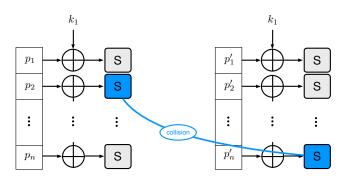
$$p_1 \oplus k_{1,1} = p'_2 \oplus k_{1,2} \Rightarrow k_{1,2} = p_1 \oplus p'_2 \oplus k_{1,1}$$

 $p_2 \oplus k_{1,2} = p'_n \oplus k_{1,n}$

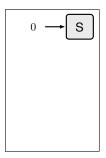


$$p_1 \oplus k_{1,1} = p'_2 \oplus k_{1,2} \Rightarrow k_{1,2} = p_1 \oplus p'_2 \oplus k_{1,1}$$

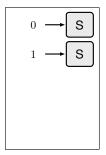
 $p_2 \oplus k_{1,2} = p'_n \oplus k_{1,n}$



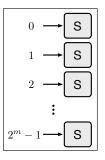
$$\begin{array}{lll} p_1 \oplus k_{1,1} = p_2' \oplus k_{1,2} & \Rightarrow & k_{1,2} = p_1 \oplus p_2' \oplus k_{1,1} \\ p_2 \oplus k_{1,2} = p_n' \oplus k_{1,n} & \Rightarrow & k_{1,n} = p_1 \oplus p_n' \oplus k_{1,2} \\ \text{and so on } \dots \end{array}$$



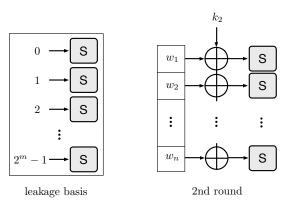
leakage basis

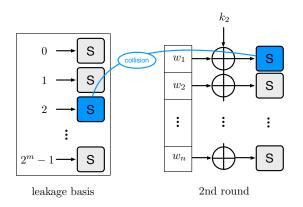


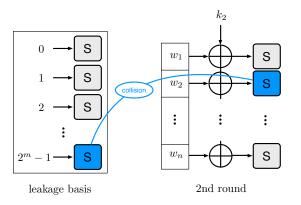
leakage basis

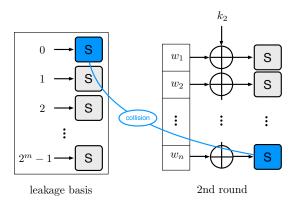


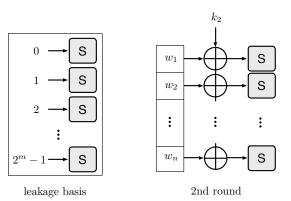
leakage basis

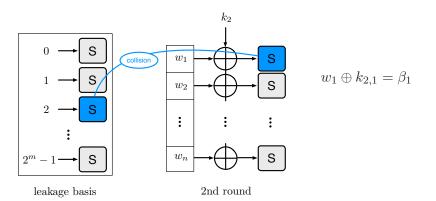


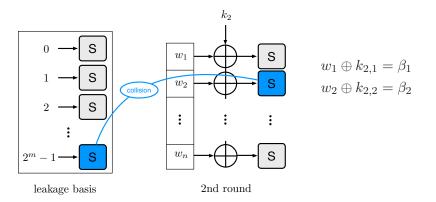


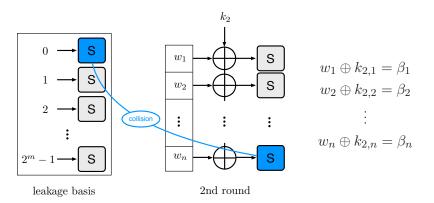












We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} S(p_1 \oplus k_{1,1}) \\ S(p_2 \oplus k_{1,2}) \\ \vdots \\ S(p_n \oplus k_{1,n}) \end{pmatrix}$$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} S(p_1 \oplus k_{1,1}) \\ S(p_2 \oplus k_{1,2}) \\ \vdots \\ S(p_n \oplus k_{1,n}) \end{pmatrix}$$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} S(j_1) \\ S(j_2) \\ \vdots \\ S(j_n) \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{x}_{j_1} \\ \boldsymbol{x}_{j_2} \\ \vdots \\ \boldsymbol{x}_{j_n} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We get equations of the form:

$$k_{2,i} \oplus \beta_i = a_{i,1} \cdot x_{j_1} \oplus a_{i,2} \cdot x_{j_2} \oplus \cdots \oplus a_{i,n} \cdot x_{j_n}$$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{x_{j_1}} \\ \boldsymbol{x_{j_2}} \\ \vdots \\ \boldsymbol{x_{j_n}} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We get quadratic equations of the form:

$$k_{2,i} \oplus \beta_i = a_{i,1} \cdot x_{j_1} \oplus a_{i,2} \cdot x_{j_2} \oplus \cdots \oplus a_{i,n} \cdot x_{j_n}$$

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{x}_{j_1} \\ \boldsymbol{x}_{j_2} \\ \vdots \\ \boldsymbol{x}_{j_n} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We get quadratic equations of the form:

$$k_{2,i} \oplus \beta_i = a_{i,1} \cdot x_{j_1} \oplus a_{i,2} \cdot x_{j_2} \oplus \cdots \oplus a_{i,n} \cdot x_{j_n}$$

Using linearization, we get a system with $2^m \cdot n^2 + n$ unknowns

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We get quadratic equations of the form:

$$k_{2,i} \oplus \beta_i = a_{i,1} \cdot x_{j_1} \oplus a_{i,2} \cdot x_{j_2} \oplus \cdots \oplus a_{i,n} \cdot x_{j_n}$$

Using linearization, we get a system with $2^m \cdot n^2 + n$ unknowns \Rightarrow solvable with $2^m \cdot n + 1$ encryptions

We have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix} \oplus \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}$$

where $j_t = p_t \oplus k_{1,t}$ and $x_j = S(j)$.

We get quadratic equations of the form:

$$k_{2,i} \oplus \beta_i = a_{i,1} \cdot x_{j_1} \oplus a_{i,2} \cdot x_{j_2} \oplus \cdots \oplus a_{i,n} \cdot x_{j_n}$$

Using linearization, we get a system with $2^m \cdot n^2 + n$ unknowns

- \Rightarrow solvable with $2^m \cdot n + 1$ encryptions
- \Rightarrow solvable with 4097 encryptions for m=8, n=16

$$\underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}}_{\vec{x}} = \underbrace{\begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix}}_{\vec{k}_2} \oplus \underbrace{\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}}_{\vec{\beta}}$$

$$\cdot \vec{x} = \vec{k}_2 \oplus \vec{k}_2$$

$$\underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}}_{\vec{x}} = \underbrace{\begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix}}_{\vec{k}_2} \oplus \underbrace{\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}}_{\vec{\beta}}$$

$$A \cdot \vec{x} = \vec{k}_2 \oplus \vec{\beta}$$

$$\vec{x} = A^{-1} \cdot \vec{k}_2 \oplus A^{-1} \cdot \vec{\beta}$$

$$\underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix}}_{\vec{x}} = \underbrace{\begin{pmatrix} k_{2,1} \\ k_{2,2} \\ \vdots \\ k_{2,n} \end{pmatrix}}_{\vec{k}_2} \oplus \underbrace{\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}}_{\vec{\beta}}$$

$$A \cdot \vec{x} = \vec{k}_2 \oplus \vec{\beta}$$

$$\vec{x} = \underbrace{A^{-1} \cdot \vec{k}_2}_{\vec{k}'} \oplus A^{-1} \cdot \vec{\beta}$$

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We get equations of the form:

$$x_{j_i} = k'_{2,i} \oplus a'_{i,1} \cdot \beta_1 \oplus a'_{i,2} \cdot \beta_2 \oplus \cdots \oplus a'_{i,n} \cdot \beta_n$$

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We get linear equations of the form:

$$x_{j_i} = k'_{2,i} \oplus a'_{i,1} \cdot \beta_1 \oplus a'_{i,2} \cdot \beta_2 \oplus \cdots \oplus a'_{i,n} \cdot \beta_n$$

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We get linear equations of the form:

$$x_{j_i} = k'_{2,i} \oplus a'_{i,1} \cdot \beta_1 \oplus a'_{i,2} \cdot \beta_2 \oplus \cdots \oplus a'_{i,n} \cdot \beta_n$$

We get a linear system with $2^m + n^2 + n$ unknowns

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We get linear equations of the form:

$$x_{j_i} = k'_{2,i} \oplus a'_{i,1} \cdot \beta_1 \oplus a'_{i,2} \cdot \beta_2 \oplus \cdots \oplus a'_{i,n} \cdot \beta_n$$

We get a linear system with $2^m + n^2 + n$ unknowns \Rightarrow solvable with $2^m/n + n + 1$ encryptions

$$\begin{pmatrix} x_{j_1} \\ x_{j_2} \\ \vdots \\ x_{j_n} \end{pmatrix} = \begin{pmatrix} k'_{2,1} \\ k'_{2,2} \\ \vdots \\ k'_{2,n} \end{pmatrix} \oplus \begin{pmatrix} a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{n,1} & a'_{n,2} & \cdots & a'_{n,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

We get linear equations of the form:

$$x_{j_i} = k'_{2,i} \oplus a'_{i,1} \cdot \beta_1 \oplus a'_{i,2} \cdot \beta_2 \oplus \cdots \oplus a'_{i,n} \cdot \beta_n$$

We get a linear system with $2^m + n^2 + n$ unknowns

- \Rightarrow solvable with $2^m/n + n + 1$ encryptions
- \Rightarrow solvable with 33 encryptions for m=8, n=16

And finally

Stage 3: recovering k_3 , k_4 , ..., k_r

 \Rightarrow similar as stage 1

Outline

- 1 Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- **4** SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

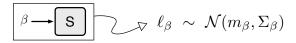
SCARE in the Presence of Noisy Leakage

Gaussian noise assumption:

$$egin{pmatrix} eta & igotimes i$$

SCARE in the Presence of Noisy Leakage

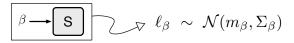
Gaussian noise assumption:



Stage 1 (Recovering k_1): usual scenario of *linear collision attacks* [Gérard-Standaert. CHES 2012]

SCARE in the Presence of Noisy Leakage

Gaussian noise assumption:



Stage 1 (Recovering k_1): usual scenario of *linear collision attacks* [Gérard-Standaert. CHES 2012]

Stage 2 (Recovering λ , S and k_2) composed of 4 steps:

- building leakage templates
- collecting equations
- solving a subsystem (Stage 2.1)
- recovering remaining unknowns (Stage 2.2)

Building leakage templates

Construct a template basis:

$$\mathcal{B} = \{ (\widehat{m}_{\beta}, \widehat{\Sigma}_{\beta})_{\beta} \mid \beta \in \mathbb{F}_{2^m} \} ,$$

with

- \widehat{m}_{β} : sample mean
- $\widehat{\Sigma}_{\beta}$: sample covariance matrix

Collecting equations

We collect several groups of equations $\vec{x} = \vec{k}_2' \oplus A^{-1} \cdot \vec{\beta}$

Noisy leakage \Rightarrow we cannot determine $\vec{\beta}$ with a 100% confidence

- \triangleright we use averaging (each encryption N times)
- ightharpoonup maximum likelihood approach based on ${\cal B}$

Problem: we cannot tolerate one single wrong β_i

Success probability:

- for one s-box: p
- for one encryption: p^n
- for the attack: $(p^n)^t$
 - ightharpoonup where t is the number of required encryptions

Solving a subsytem

Increasing the success probability:

- reduce the number t
- subsystem only involving x_0 , x_1 , ..., x_{s-1}
- chosen plaintext attack

Obtained system:

- $n^2 + n + s 2$ unknowns
- taking $s \le n+2$
 - ightharpoonup we get at most n^2+2n unknowns
 - ightharpoonup we need t=n+2
- e.g. t=18 instead of t=33 for n=16 and m=8

Recovering remaining unknowns

Maximum likelihood approach for

- remaining s-box output x_s , x_{s+1} , ..., x_{2^m-1} (Stage 2.2)
- remaining round keys k_3 , k_4 , ..., k_r (Stage 3)

Outline

- Introduction
- 2 Substitution-Permutation Networks
- 3 Basic SCARE of Classical SPN Structures
- **4** SCARE in the Presence of Noisy Leakage
- 5 Attack Experiments

Attack Experiments

Attack simulations using a practical leakage model

- s-box computation on an AVR chip (ATMega 32A, 8-bit)
- profiled electromagnetic leakage
- Gaussian noise assumption
- 3 leakage points depending on the s-box input
- 3 leakage points depending on the s-box output

Attack Experiments

Two different settings:

- (128,8)-setting:
 - ▶ 128-bit message block
 - 8-bit s-box $(m = 8 \Rightarrow n = 16)$
 - e.g. AES block cipher
- (64,4)-setting:
 - ▶ 64-bit message block
 - 4-bit s-box $(m=4 \Rightarrow n=16)$
 - ▶ e.g. LED and PRESENT lightweight block ciphers

Attack results

Stage 1: 100% success rate with

- a few hundred traces for the (64,4)-setting
- a few thousand traces for the (128,8)-setting

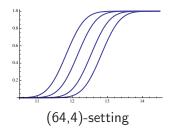
Attack results

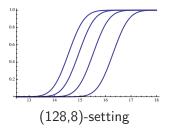
Stage 1: 100% success rate with

- a few hundred traces for the (64,4)-setting
- a few thousand traces for the (128,8)-setting

Stage 2.1: bottleneck of the attack

SR w.r.t. #encryptions (for 1, 2, 2^8 , 2^{32} system solving trials)





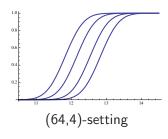
Attack results

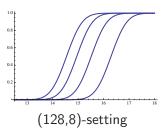
Stage 1: 100% success rate with

- a few hundred traces for the (64,4)-setting
- a few thousand traces for the (128,8)-setting

Stage 2.1: bottleneck of the attack

SR w.r.t. #encryptions (for 1, 2, 2^8 , 2^{32} system solving trials)





Stages 2.2, 3: a few dozens/hundreds of traces.

The end

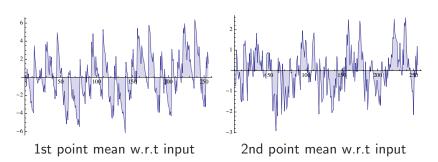
Questions?

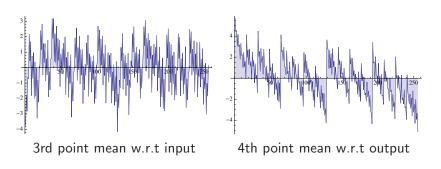
The end

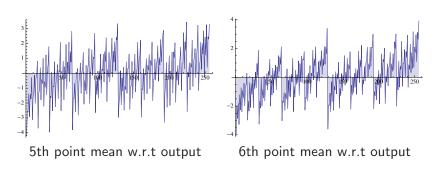
Questions?

The end

Questions?







$$\Sigma = \begin{pmatrix} \mathbf{36.7} & -\mathbf{13.7} & -1.8 & 2.9 & -2.2 & -0.7 \\ -\mathbf{13.7} & \mathbf{30.7} & 0.6 & 0.7 & -0.5 & -0.1 \\ -1.8 & 0.6 & \mathbf{27.5} & -0.9 & 0.7 & 0.4 \\ 2.9 & 0.7 & -0.9 & \mathbf{38.7} & -\mathbf{27.0} & -5.4 \\ -2.2 & -0.5 & 0.7 & -\mathbf{27.0} & \mathbf{37.2} & 3.9 \\ -0.7 & -0.1 & 0.4 & -5.4 & 3.9 & \mathbf{26.2} \end{pmatrix}$$